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Abstract: This study combines the high-throughput capabilities of microfluidics with the sensitive
measurements of microelectromechanical systems (MEMS) technology to perform biophysical
characterization of circulating cells for diagnostic purposes. The proposed device includes a built-in
microchannel that is probed by two opposing tips performing compression and sensing separately.
Mechanical displacement of the compressing tip (up to a maximum of 14 µm) and the sensing
tip (with a quality factor of 8.9) are provided by two separate comb-drive actuators, and sensing
is performed with a capacitive displacement sensor. The device is designed and developed for
simultaneous electrical and mechanical measurements. As the device is capable of exchanging the
liquid inside the channel, different solutions were tested consecutively. The performance of the device
was evaluated by introducing varying concentrations of glucose (from 0.55 mM (0.1%) to 55.5 mM
(10%)) and NaCl (from 0.1 mM to 10 mM) solutions in the microchannel and by monitoring changes in
the mechanical and electrical properties. Moreover, we demonstrated biological sample handling by
capturing single cancer cells. These results show three important capabilities of the proposed device:
mechanical measurements, electrical measurements, and biological sample handling. Combined in
one device, these features allow for high-throughput multi-parameter characterization of single cells.

Keywords: single cell analysis; biophysical cell characterization; bioMEMS; microfluidics;
MEMS design
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1. Introduction

Cells in a sample solution can be largely heterogeneous, consisting of various different
sub-populations, even if they originate from the same tumor or cell line. Immunochemistry has
been an effective means to investigate sub-populations within a cell solution especially based on
specific membrane protein expressions, designated as “cluster of differentiation” (CD). Highly specific
immunoaffinity-based assays represent a powerful analysis method, especially with the development
of high-throughput cell cytometry. However, the use of biomarkers is still an important limitation
due to practical reasons, such as availability of surface markers and corresponding antibodies and
heterogeneity between specimens regarding combined marker expressions. Therefore, routine clinical
tests for early diagnosis would benefit from cost and time-efficient alternatives.

Cell shape and structural integrity significantly influence many biological processes. Therefore,
the physical properties of cells may potentially be used to reflect the state of their health [1].
This connection between biophysics and disease has been attracting scientific research attention,
especially for oncological studies [2–7] where diseased cells proliferate “uncontrollably” and disrupt
the organization of tissue. When the physical properties of a cell change, the behavior of the cell, e.g.,
the way they spread, changes as well [8]. In human cancer cell lines, invasive cells exhibit biophysical
properties that are distinct from their noninvasive counterparts with a reduction in stiffness and
an increase in metastatic efficiency [2–4,9–11], especially in the case of circulating tumor cells (CTCs).
Therefore, the biophysical properties of cells can be considered as biomarkers to distinguish cells
and thereby used as practical label-free indicators for routine clinical examinations targeting early
disease diagnosis.

Numerous methods have been used to examine the biophysical properties of single cells:
biomechanical assays to probe cell components [3,12,13] or single cell deformation [10,14–16],
cytoadherence assays [8], and microfluidics-based assays for mechanical properties [5,17] or for
electrical properties [18]. As the majority of these methods can be applied solely for the study of
adherent cells, suitable options to analyze non-adherent cells, such as CTCs, are limited. Moreover,
there is a trade-off between throughput and information content [7]. Certain techniques such as
atomic force microscopy (AFM) allow very sensitive measurements but suffer from low-throughput,
while microfluidics-based methods like deformability cytometry provide rapid measurements but
with limited information content. However, using biophysical properties for practical routine tests to
distinguish cells in a sample solution requires both high-throughput and multi-parameter analysis.

Three main features necessary for the targeted practical system are (i) the high-throughput
handling of non-adherent cells without compromising (ii) the detection sensitivity for
(iii) a multi-parameter analysis. Microfluidics technology is well-suited to handle non-adherent
cells and such capabilities have already been demonstrated with high-throughput techniques [5,17].
For a practical yet still highly sensitive multi-parameter detection method, on the other hand,
microelectromechanical systems (MEMS) technology provides low-noise electrical detection while
providing mechanical and electrical stimulation of cells. Integrating MEMS with microfluidics enables
the handling and/or analysis of biological samples such as microtubules [19], DNA [20], and cells [21],
even for clinical purposes [22]. MEMS devices with built-in microfluidics simplify biophysical
characterization and improve throughput, even though existing examples use external actuation
and optical detection [23,24]. To achieve the optimal use of MEMS, sensitive harmonic analysis can be
combined with practical electrostatic actuation. However, to reach the necessary sensitivity, the MEMS
elements have to be operated in air while the cell characterization is performed in liquid.

This study develops a MEMS device with an embedded microfluidic channel to perform
multi-parameter biophysical (mechanical and electrical) characterization. Electrostatic actuation
allows both single cell stimulation and harmonic analysis for sensitive real-time measurements due to
a specific device design, separating the in-liquid biological sample handling from in-air MEMS actions
(actuation and detection). Here, we introduce the device features, perform real-time measurements
(mechanical and electrical), and demonstrate a proof of concept for single cell handling. This device will
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allow high-throughput characterization of individual cells in complex biological samples. This could
open potential tool alternatives for routine clinical tests for early disease diagnosis with improved cost
and time efficiency.

2. Concept and Design

2.1. Principle

The proposed single cell characterization device consists of three main components (Figure 1):
(1) a microfluidic channel integrated with two opposing tips to handle cells, (2) a series of comb
drive actuators to perform compression, and (3) a differential capacitive sensor for displacement
measurements. This sensor is connected to a second electrostatic comb drive actuator for harmonic
measurements. A flow is created in the microfluidic channel (shown in gray) with a vacuum pump
connected to the outlet after introducing a cell solution via the inlet. Adjusting the vacuum pump
pressure enables control of the flow rate, which allows for single cell positioning at the characterization
area between tips. One tip, connected to an electrostatic actuator for displacement (shown in red),
is used for compressing cells, whereas the other (shown in blue) is used for sensing the mechanical
properties of cells under various compressive strain values with a displacement sensor based on
a differential capacitor (shown in light blue). After being introduced via the inlet, a cell is positioned at
the characterization area for opposing tips to perform single cell mechanical/electrical characterization.
By controlling the flow rate, the captured cell can then be washed away to receive the next cell
for characterization.
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Figure 1. (a) Schematic image of the device with embedded channel, (b) A close-up view of the tips at
the handling area.

2.2. Design Description

The device is composed of a MEMS layer and a polydimethylsiloxane (PDMS) layer. The MEMS
layer is fabricated on a silicon-on-insulator (SOI) wafer. The top silicon of the wafer forms the functional
part of the proposed device (Figure 2a). In addition to being the handling layer of the device, the
bottom silicon has two other functions: (i) providing mechanical connection between electrically
isolated elements of the sensing part and (ii) completing the microfluidic channel together with the
PDMS layer (Figure 2b). The functionality of the device is achieved through the combination of three
distinct areas.
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Figure 2. (a) Scanning electron microscope (SEM) image of the handling area where compressing
and sensing tips access the microfluidic channel, (b) Schematic view of polydimethylsiloxane (PDMS)
cover alignment.

2.2.1. Handling Area and Microfluidic Channel

The handling area consists of a channel formed by the frontside silicon (30 µm) of the SOI wafer
as sidewalls, the backside silicon of the SOI wafer as the bottom surface, and the PDMS slab as the top
surface. The width of the channel is 100 µm with a narrower portion of 20 µm between the actuation
and sensing tips (Figure 2a). The handling channel is accessed by four openings: an inlet and an outlet
in the PDMS slab to handle the liquid in the channel (Figure 2b) and two side openings at the sidewalls
for the compressing and sensing tips. As both tips need to be moveable, the PDMS surface above the
characterization area is 10 µm above the top of the sidewalls, preventing any contact with the actuating
elements (Figure S1). The tips are free to move after the oxide layer between the top and bottom silicon
of the SOI wafer is removed (see fabrication). The width of the elevated PDMS area is designed as
500 µm to allow for simple alignment of the two layers.

The inlet and outlet openings in the PDMS are formed using biopsy punchers (1 mm for the
inlet and 0.5 mm for the outlet) and thus, do not require any specific designs. Injection to the inlet
is performed using a micropipette, while the outlet is connected to the pump with a tube. The side
openings for the actuating and sensing tips, on the other hand, are fabricated on the SOI wafer (see
fabrication) and require careful design consideration. Excessively wide openings may compromise
detection sensitivity, while a very narrow opening will cause fabrication difficulties. The objective is
to prevent liquid within the channel from leaking out of the backside silicon layer border forming
the channel. Ultimately a gap of 5 µm between the sidewalls and the tips was chosen. This value is
similar to some previous studies using actuation at an air-liquid interface [25]. Another trade-off for
a design parameter is related to the width of the tips themselves. The width was chosen as 20 µm
to be comparable with the targeted cell dimensions. Larger tip width could improve cell-capturing
efficiency, however, etching the SiO2 layer under the tips would be more difficult.

2.2.2. Compressing Side

The compressing side consists of electrostatic comb-drive actuators, which provide the necessary
motion of the compressing tip. Depending on the dimension of the targeted cells, the displacement
requirement for the actuator varies. Therefore, we use various designs with different spring geometry,
spring constant, and actuator teeth dimensions. Two different spring designs are used: crab-leg
springs [26] and folded springs [27]. The folded spring design with a spring constant of 40 N·m−1

provides highly stable characteristics in terms of y-axis displacement. Conversely, the crab-leg spring
design (30 N·m−1) is softer than the folded spring design, which allows longer displacement at lower
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Figure 3. Actuation characteristics of various spring designs.

Four groups of comb drives (with 250 teeth per group) provide actuation. Each tooth is designed
to have a width of 4 µm. A pitch of 8 µm between each tooth results in a gap of 2 µm between two
complimentary opposing teeth (Figure 4). The crab-leg spring design has 20 µm long teeth with 6 µm
of overlap between opposing teeth. To obtain a longer stroke with the more-stable folded spring
geometry, we use two different designs: 20 µm long teeth (with 4 µm overlap) for ordinary use and
30 µm long teeth (with 4 µm overlap) for applications requiring longer displacement (Table 1, Figure 3).
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Figure 4. SEM images of the fabricated device: (a) Displacement sensor based on differential capacitors,
(b) opposing tips accessing the handling area, (c) an overview of the device, (d) electrostatic comb
drive actuators with (e) a close-up view.

Table 1. Main parameters of device designs.

Device
Compressing Side Sensing Side

Spring Shape Spring Constant
(N/m)

Comb Tooth
Length/Overlap (µm) Spring Shape Spring Constant

(N/m)

Design 1 Crab-leg 30 20/6 Crab-leg 25
Design 2 Folded 40 20/4 Crab-leg 5
Design 3 Folded 40 30/4 Crab-leg 25

A typical displacement in a crab-leg spring actuator is 6 µm for an actuation voltage of 60 V.
Above 60 V, the comb drive teeth stick to each other. Having a higher spring constant, the folded
spring design requires ~75 V to achieve 6 µm of displacement. Devices with a tooth length of 20 µm
provide ~8 µm of displacement before suffering from stiction at ~85 V, while the longer teeth length
(30 µm) provides displacement beyond 14 µm (at 110 V).



Micromachines 2018, 9, 275 6 of 14

2.2.3. Sensing Side

The sensing side consists of three elements [26,28]: (i) comb-drive actuators providing the
necessary vibrating motion of the sensing tip, (ii) differential parallel plate capacitors for displacement
sensing, and (iii) a sensing tip to access the handling area (Figures 1a and 4). These elements are
mechanically connected while kept isolated electrically to provide optimal simultaneous mechanical
and electrical sensing. The comb-drive actuators are driven by a lock-in-amplifier while the phase is
locked based on the output of the displacement sensor for resonance mode.

The actuating elements of the sensing area are suspended with 6 crab-leg springs. Two different
sensing area designs were fabricated to provide different stiffness: 5 N·m−1 and 25 N·m−1. The stiffer
design provides enough sensitivity for measurements with harmonic oscillations while static
measurements would benefit from the higher sensitivity of the softer design.

Similar to the compressing actuator, four groups of comb drives (with 280 teeth per group) provide
actuation for harmonic detection. Each tooth is designed to have the same dimensions as the crab-leg
spring design of the compressing side: a tooth width of 4 µm, a tooth length of 20 µm, a gap of
2 µm and an overlap of 6 µm between two consequent opposing teeth. Although the sensing tip is
actuated with amplitude of only 0.2 µm during normal use (3 Vp-p actuation voltage), standard 5 µm
displacement (at ~50 V) can be provided if required.

The displacement sensor, comprised of two stationary electrodes with a common movable
electrode forming two identical capacitors, works in differential mode [26,29]. Eighty teeth
(10 µm × 575 µm; width × length) form parallel-plate capacitors with an initial gap of 40 µm.
The movable electrode is designed to have a gap of 5 µm between both stationary electrodes with
an overlap of 525 µm (Figure 4). Working in differential mode, the gap between one of the electrode
pair increases, while the gap between the other electrode pair decreases during measurements.

2.3. MEMS Fabrication Process

The device fabrication starts with a standard photolithography process (Figure 5) on the frontside
of an SOI wafer (30/2/350 µm-thick). Photoresist is spun on the wafer as a mask for deep reactive ion
etching (DRIE), and 30-µm-deep structures (tips, comb drive actuators, capacitive sensors) are defined.
After protecting the etched structures on the front surface with a photoresist layer, a 100-nm-thick
aluminum (Al) mask is patterned on the backside surface as an etch mask for another DRIE process
stopping at the buried oxide layer (BOX) and forming 350-µm-deep structures. The final process is
the removal of the SiO2 BOX layer with hydrofluoric acid (HF) to release the structures. As a result,
the opposing tips are suspended to move freely for single cell characterization (Figure 5).
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The PDMS top cover is fabricated using a standard soft-lithography process. SU8-2015 (with
a height of 10 µm, MicroChem, Westborough, MA) is patterned on a silicon wafer and used as a mold
for PDMS. Then, the channel inlet and outlet are opened using biopsy punchers (1 mm for the inlet
and 0.5 mm for the outlet). Finally, the PDMS cover is aligned and assembled on the MEMS device to
form the channel (Figure 2b).

3. Setup and Operation

3.1. Experimental Setup

Experiments are performed on an upright microscope stage (VH-S30B, Keyence Corporation,
Osaka, Japan). A long-working distance objective (VH-Z50L, Keyence Corporation) and a camera
(Infinity 3, Lumenera Corporation, Ottawa, ON, Canada) are used to monitor the experiments.
The fabricated devices are connected to peripheral electronics and fluidic equipment, which are
controlled and driven by a LabVIEW (version 16, National Instruments Corporation, Austin, TX, USA)
program. Prior to positioning on the microscope stage, the assembled device is mounted on a printed
circuit board (PCB) and connected with aluminum wires (Figure 6a).
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Actuating the compressing tip requires applying a potential difference between the combs of
the electrostatic actuator. This potential difference is provided with a function generator (33500B,
Keysight Technologies Inc., Santa Rosa, CA, USA) and a high voltage amplifier (WMA-100, Falco
Systems BV, Katwijk aan Zee, The Netherlands) to maintain higher voltages. As one of the actuation
electrodes is also used for electrical sensing, this electrode is grounded virtually by the transimpedance
amplifier needed for electrical measurements and the actuation signal is applied on the other electrode
(Figure 6b).

The sensing side has a more complex structure to provide mechanical oscillations for harmonic
analysis while simultaneously performing electrical measurements. Phase-lock loops (PLL) are
essential to perform harmonic oscillations for mechanical measurements. A lock-in-amplifier (Model
7230, AMETEK, Inc., Berwyn, PA, USA) drives the comb-drive actuations at a constant phase according
to the differential capacitive sensor readings. Two stationary electrodes (C1 and C2), forming two
identical capacitors with the movable electrode (C0), are connected to the inputs of the lock-in-amplifier
after passing through low-noise current-to-voltage (A/V) preamplifiers (Signal Recovery, model 5182).
C0, on the other hand, is connected to a power source (provided by the lock-in-amplifier) to be polarized
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with a constant voltage. The lock-in-amplifier uses sensor measurements to drive the actuators at the
resonance frequency. The tip of the sensing area is connected to another lock-in amplifier (HF2LI,
Zurich Instruments Ltd., Zurich, Switzerland) for electrical measurements. An electrical signal is
applied on the sensing tip, while the compressing tip is connected to a transimpedance preamplifier
(Zurich Instruments HF2TA) that feeds the input of the lock-in amplifier.

The channel outlet on the microfluidic PDMS cap is connected to a flow sensor with tubing before
reaching the vacuum pump (AF1, Elveflow, Paris, France, Figure 6a). This equipment is monitored
and controlled by the LabVIEW program.

3.2. Liquid Handling

As cell characterization can only be performed in a dedicated area, targeted cells inserted via the
channel inlet have to be transported and positioned between the tips. Applying a negative pressure
at the outlet of the channel creates a flow and adjusting the pressure level changes the flow speed to
control the motion of cells in the channel.

After assembling the PDMS cover and the MEMS device, we connect the outlet of the channel
to the pump with tubes (Figure 7ai). At first, we fill the channel and the connection tube with water
(Figure 7aii–iv). Due to the small dimensions (5 µm gap between tips and the sidewalls), high surface
tension at the handling area maintains the stability of the air-liquid interface. As a result, the liquid
inside the channel does not leak out (Figure 7av). Moreover, by injecting another solution in the inlet,
we can exchange the solution in the channel within seconds [20,30]. This property is important for
a variety of purposes, for example washing, surface treatment, and drug testing. This is demonstrated
by replacing water inside the channel with a blue-dye solution (Figure 7b).
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Figure 7. (a) After assembling the PDMS cover on the MEMS device (i); the formed channel is filled
with liquid. Adjusting the pressure with the pump, the liquid enters the channel (ii); reaches the
opposing tips (iii); goes through the handling area (iv); and finally, completely fills the channels;
(b) The liquid exchange capability of the device is tested with water and a blue dye solution. (i) While
the channel is filled with water; (ii,iii) a blue dye solution is injected at the inlet and within seconds
(iv) the liquid in the channel is completely replaced.
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3.3. Mechanical Detection Method

By avoiding the usage of the MEMS elements in liquid, we achieve a higher system quality factor
when performing sensitive harmonic analyses [26,29]. In short, the sensing part of the device oscillates
harmonically with a series of comb-drive actuators (0.2 µm of actuation at 3 Vrms). These actuators
are driven at the resonance frequency of the system by a lock-in amplifier (Signal Recovery, AMETEK
7270 DSP). Due to the mechanical connection (between the sensor, the actuator and the sensing
tip), actuators oscillate the central electrode (C0) of the differential capacitive sensor. Detecting
the capacitance between the movable common electrode (C0) and the other two fixed electrodes of
the differential capacitive sensor (C1 and C2), a LabVIEW-controlled PLL keeps the sensing arm at
resonance throughput the experiment. Capturing a biological sample between the tips changes the
spring constant of the system, which can be detected as a change in the resonance frequency by the
PLL driven by the lock-in amplifier.

To improve the detection performance of the displacement sensor, C0 is polarized with a constant
voltage V0 (3 V) and the fixed electrodes are kept grounded [28]. During harmonic oscillations,
the change in the gap between the mobile and fixed parallel plate electrodes creates dynamic currents
that are collected from C1 and C2. Amplified with low-noise current-to-voltage preamplifiers (with a
gain of 108), the sensor outputs are fed into the lock-in-amplifier for real-time measurements.

3.4. Electrical Detection Method

Electrical insulation of the various elements of the sensing area is crucial for simultaneous
mechanical and electrical detection. By connecting through the backside silicon, the SiO2 layer keeps
the sensing elements mechanically attached while providing electrical access to each individual
element. This allows us to apply a sinusoidal signal at the actuator (3 Vrms at the resonance frequency
of the system) and to read the sensor outputs in parallel with the electrical measurements performed
at the tip of the sensing arm.

The electrical detection is performed between the sensing and the compressing tips. A 1 Vp-p

signal is applied on the sensing tip, while the compressing tip is connected to the virtual ground of
a transimpedance amplifier. The dynamic current passing through the amplifier is converted to voltage
and measured in real-time. Moreover, by sweeping the frequency at the sensing tip, the frequency
response of the system can be analyzed.

4. Device Performance and Results

Hereafter, we show some results to investigate the performance of the proposed device. Starting
with the frequency response of the device, we performed mechanical and electrical measurements
using different sample solutions. Finally, we demonstrated the biomaterial-handling capabilities of the
proposed device to confirm the capability of single cell analysis.

4.1. Frequency Response and Real-Time Analysis

To characterize the behavior of the device during harmonic analysis, the frequency response
of the system was monitored with the lock-in-amplifier (Figure 8). Compared to the initial device
characteristics (resonance frequency of 1195 Hz with a quality factor (Q-factor) of 8.9), the assembled
device (with PDMS cover) showed a slight increase in the resonance frequency (1200 Hz) and a decrease
in the Q-factor (6.3) due to the increased damping as a result of the PDMS slab. Filling the channel
with liquid also changes the frequency response. Although the effect of the liquid in terms of mass is
negligible compared to the total mass of the mobile part of the sensing arm, the surface tension due to
the air-liquid interface in the handling region did affect the spring constant of the system. As a result,
the resonance frequency was increased to 1220 Hz with a similar Q-factor (6.8).

Observing the changes in the mechanical properties of biological samples requires real-time
monitoring of the system response. To achieve this, we performed repeated PLLs controlled by
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a LabVIEW program. Before comparing different samples and solutions, we tested the stability of
the detection method. Although the mechanical characterization of cells requires less than 30 s,
we monitored the system for over five min (Figure S2). Confirmation of the system stability allowed
us to perform mechanical measurements in various sample media.
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4.2. Mechanical Measurements

Mechanical detection performance of the system was tested by measuring the change in the
resonance frequency in solutions with different viscosities and surface properties. We compared the
mechanical response of the device in glucose solutions of various concentrations ranging from 0.1%
to 10% (w/v). Using the vacuum pump, these solutions were consecutively injected after filling the
channel with water. The PLL measurements allowed real-time observation of the changes in the
solution between the tips.

Increasing glucose concentration resulted in an increase of the resonance frequency (Figure 9).
Taking the water measurements as the base value, we obtained a resonance frequency shift of 1.4 Hz,
2.4 Hz, and 8.3 Hz for glucose concentrations of 0.1%, 1% and 10%, respectively (Figure 9a) with stable
characteristics (Figure S3). Similarly, a decrease in amplitude is observed with increasing glucose
concentration (Figure 9b, Figure S4). Compared to the initial water measurements, a decrease of
5 mV, 7 mV, and 10 mV in the amplitude was observed due to higher damping. These measurements
show that the proposed device is capable of observing changes in the mechanical characteristics at the
handling area.
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4.3. Electrical Measurements

An important property of the proposed device is the ability to perform electrical measurements
together with mechanical characterization. To demonstrate this capability, we injected solutions with
different ionic strengths in the channel and examined the electrical properties. Similar to the glucose
measurements, we filled the channel first with water and then injected different molar concentrations
of NaCl (0.1 mM–10 mM) consecutively. Using a lock-in-amplifier, we applied 1 Vp-p to the sensing tip
and amplified the signal obtained from the compressing tip with a transimpedance amplifier (with
a gain of 105). Measurements resulted in increasing voltage waveform amplitudes for increasing ion
concentration when the potential difference was applied at 4 kHz (Figure 10a) indicating an increase
in the current passing through the tips. In addition to these real-time measurements (Figure S5), we
could also obtain the frequency response of the system by sweeping the frequency from 100 Hz to
100 kHz (Figure 10b, Figure S5).
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4.4. Biological Sample Handling

Besides the mechanical and electrical measurements, a key feature of the proposed device is
the ability to handle biological samples, e.g., single cells. We examined the single cell handling
capability of the device by injecting solutions of fixed cancer cells. The human SUM159PT breast cancer
cell line was purchased from Asterand (Detroit, MI, USA). The cells were cultured in F12 medium
(Invitrogen Corporation, Carlsbad, CA, USA) supplemented with 5% fetal bovine serum (Lonza Group,
Basel, Switzerland), streptomycin (100 µg/mL), penicillin (100 units/mL), insulin (5 µg/mL) and
hydrocortisone (1 µg/mL) (Invitrogen). Prior to the experiments, subconfluent cell culture were
trypsinized, resuspended in single cell solution, and then fixed with 4% Paraformaldehyde (10 min,
RT), and rinsed with phosphate buffered saline (PBS).

We controlled the vacuum pump and the compressing actuator to capture single cells. After
injecting the cell solution in the channel, we created a flow with pump and applied 110 V at the
compressing actuator electrodes to narrow the gap between the tips. This decreases the width of the
channel from 20 µm to ~6 µm (Figure 11a). Thus, cells with a mean diameter of ~16 µm could not
pass through. When a cell was stopped at the handling area (Figure 11b), we immediately stopped
the flow and decreased the applied voltage to widen the gap between the tips and position the cell
between the tips (Figure 11c). With the cell thusly captured, we could then apply the compression
signal at the compressing actuator (Figure 11d) to examine the characteristics of the captured cell. After
measurements, the compressing tip was moved back to the initial (open) position and the flow was
restarted to remove the captured cell and prepare for another cell to characterize.
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Figure 11. Sequential photos demonstrate single cell capturing. (a) Applying a potential difference
between the compressing actuator electrodes narrows the gap between the tips; (b) The solution is kept
flowing until a cell arrives at the handling area; (c) Then, the flow rate and the potential difference
between the compressing actuator electrodes are decreased until the cell is positioned between the tips;
(d) Finally, the flow is completely stopped and cell compression is performed.

An important point to note was the stability of the air-liquid interface at the sensing tip. Although
the compressing arm moved towards the sensing tip while compressing the cell, the air-liquid interface
at the sensing tip was not affected. This stability is a crucial point for reliable and sensitive detection
with the proposed device.

5. Conclusions

Separating handling and sensing elements of a microfabricated device is the key to handle and
analyze biological samples without compromising precise MEMS performance. We demonstrated
a MEMS device with a built-in microfluidic channel to perform single cell biophysical characterization.
The built-in channel, requiring no assembly actions between the MEMS and microfluidics elements,
not only provides higher-throughput for analysis but also improves sensitivity by allowing integration
of microfluidic and MEMS elements at a much finer assembly resolution. Moreover, simultaneous
electrical and mechanical measurements allow various parameters to be targeted, such as size, stiffness,
viscous losses, membrane fluidity, membrane capacitance, and cytoplasm resistivity. The device
is sensitive enough to distinguish differences between liquids according to their mechanical and
electrical properties. As demonstrated with cell compression, the device is capable of capturing
a single cell and stimulating it mechanically. Sensitive real-time measurements and highly controllable
mechanical stimulation allow single cell characterization at different compression levels. Together
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with the electrical measurements, the device allows for practical multi-parameter analyses of single
non-adherent cells to perform routine clinical tests for early disease diagnosis with improved cost and
time efficiency.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-666X/9/6/275/s1,
Figure S1: Schematic view of the assembly, Figure S2: Real-time stability measurements, Figure S3: Real-time
frequency monitoring in glucose solutions with different concentrations, Figure S4: Real-time amplitude
monitoring in glucose solutions with different concentrations, Figure S5: Real-time electrical measurements.
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