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Abstract: With the rapid growth of the health data scale, the limited storage and computation
resources of wireless body area sensor networks (WBANs) is becoming a barrier to their development.
Therefore, outsourcing the encrypted health data to the cloud has been an appealing strategy.
However, date aggregation will become difficult. Some recently-proposed schemes try to address
this problem. However, there are still some functions and privacy issues that are not discussed.
In this paper, we propose a privacy-enhanced and multifunctional health data aggregation scheme
(PMHA-DP) under differential privacy. Specifically, we achieve a new aggregation function,
weighted average (WAAS), and design a privacy-enhanced aggregation scheme (PAAS) to protect the
aggregated data from cloud servers. Besides, a histogram aggregation scheme with high accuracy
is proposed. PMHA-DP supports fault tolerance while preserving data privacy. The performance
evaluation shows that the proposal leads to less communication overhead than the existing one.

Keywords: cloud-assisted WBANs; privacy-enhanced; multifunctional aggregation; health data;
fault tolerance; differential privacy

1. Introduction

Recently, many information techniques have been utilized for healthcare systems [1] to reduce the
expenses and boost the efficiency of medical services. Specifically, the application of wireless body
area networks (WBANs) [2] is a promising technique, which has a huge potential to revolutionize the
future of healthcare monitoring by diagnosing many life-threatening diseases and providing real-time
patient monitoring [3]. WBANs can continuously monitor patient’s physiological attributes, such as
blood pressure, body temperature, electrocardiograph (ECG), electroencephalogram (EEG) [4], and
so on. Usually, all of the detected data are gathered by the user’s personal digital assistant (PDA)
or smartphone. Hence, aggregating and analyzing this sensitive health information is crucial for
medical institutions.

In the era of big data, health data aggregation is the basic work of medical big data analysis.
Actually, both spatial and temporal aggregation services are widely applied in many healthcare
scenarios. For instance, in an elderly community, there are some patients who suffer from hypertension.
All of these patients may be equipped with body area sensors to monitor their blood pressure.
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The collected data of each patient are uploaded to the authorized hospital via smart devices.
Therefore, the hospital can obtain each user’s maximum/minimum blood pressure over the past
day. If one patient’s blood pressure is abnormal, the doctor may ask the patient to come to the hospital
to have a further treatment. It is a typical temporal aggregation [5] case, which helps hospital provide
better healthcare service. For a medicine research center and health bureau, the spatial aggregate
statistics [6] (e.g., the average blood pressure of users in a specific community) may be much more
useful than temporal aggregation.

However, with the rapidly increasing amount of health information, the cost of providing
e-health services is becoming high for some hospitals and medical research institutions. In addition,
the traditional WBANs have limited computation and storage resources, which have difficulty
satisfying the needs of practical applications. Therefore, outsourcing large-scale health data to the cloud
is a cost-efficient choice to release the burdens of data storage and data management. Therefore, in this
paper, we leverage the cloud-assisted WBANs to accomplish the mission of storing and processing
health data. Unfortunately, the original system model of cloud computing may suffer from the problems
of data security and user privacy. Because the cloud server is honest-but-curious, it may reveal the
content of personal health information. For instance, a patient’s living and eating habits can be
reflected by his or her ECG. Thus, the health data should be protected from malicious entities.
A direct solution to preserve the privacy and integrity of health data is to let the data owners
encrypt them before outsourcing. However, conventional encryption schemes make data aggregation
computation harder to run. Thus, many privacy-preserving schemes are proposed to address this
problem, such as [7–9]. However, these schemes only calculate summation aggregation or additive
aggregation [10]. Recently, Han et al. [6] proposed a scheme to achieve additive and non-additive
aggregation simultaneously. However, some functions are still not discussed, such as the weighted
average. Besides, the histogram aggregation is also not investigated thoroughly in [6]. Furthermore,
the sum of all of the users’ health data may be disclosed by cloud servers in Han et al.’s scheme [6].

In this paper, to address the above problems, we propose a privacy-enhanced and multifunctional
health data aggregation scheme under differential privacy guarantees (PMHA-DP). Specifically,
the main contributions of this paper can be summarized as follows:

• First, we propose a basic average aggregation scheme (BAAS) by utilizing the Boneh–Goh–Nissim
cryptosystem. Note that, in some scenarios, the data analysts would prefer to acquire the weighted
average; because, the weighted average can be more objective to reflect the overall state of all
users. Thus, we propose a privacy-preserving weighted average scheme (WAAS) to meet the
above requirement. To the best of our knowledge, this paper is the first to discuss the weighted
average aggregation. Besides, the final results of both schemes are protected by differential privacy
mechanisms [11].

• Second, we provide a privacy-enhanced average aggregation scheme (PAAS) to protect the sum
of all of the gathered health data. In [6], one of the working cloud servers is able to obtain the
plaintext of the sum. If this server is compromised, it may leak the information to some malicious
entities. Therefore, we design a protocol with additional private keys to hide the aggregated data.
PAAS hides the sum of the dataset from the cloud servers. It further protects the users’ privacy.

• Third, histogram aggregation is well studied in this paper. We leverage the hierarchical method [12]
for histogram (HMH). Then, we add Laplace noise [13] to the query result. Moreover, we also
leverage the post-processing technique [12] to boost the accuracy of the released answer.

• Finally, we conduct real experiments and compare PMHA-DP with the other scheme [6].
The comparison results show that our non-additive aggregation scheme (NAS) and PAAS lead
to less communication overhead than that of another scheme called MHDA⊕ [6]. Besides, PAAS
enhances the data privacy with acceptable computational overhead. Moreover, we give a
security analysis to show that the proposed scheme preserves data privacy under the given
strong adversary model. More importantly, all of the proposed aggregation protocols support
fault tolerance.
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The remainder of this paper is organized as follows. In Section 2, the system model of PMHA-DP,
the adversary model and the security requirements are formalized. We recall the Boneh–Goh–Nissim
cryptosystem and differential privacy in Section 3. In Section 4, we propose our scheme. This is
followed by the security, privacy analysis and performance evaluation in Sections 5 and 6, respectively.
In Section 7, we give some further discussions on four vital topics. The related work is introduced in
Section 8. Finally, we conclude this paper in Section 9.

2. Problem Statement

In this section, we will introduce the system model, adversary model, security and privacy
requirements of PMHA-DP to formalize the research problems.

2.1. System Model

As shown in Figure 1, the system model of PMHA-DP is composed of four entities: mobile users,
cloud servers, trusted authority and healthcare institutions. Each entity is introduced as follows.

Figure 1. System model of privacy-enhanced and multifunctional health data aggregation scheme (PMHA-DP).

• Mobile users (MUs): MUs are the data providers of the cloud-assisted WBAN system, which
are denoted as U = {U1, U2, ..., Uk}. Specifically, Ui is equipped with some body area sensors to
monitor different types of health data. Then, the original health data collected by sensors will be
stored in Ui’s smartphone or PDA. For privacy consideration, MUs encrypt the data using the
smartphone before reporting them to the cloud servers. Furthermore, MUs report the personal
health data according to the aggregation protocols formulated by the trusted authority.

• Cloud servers (CSs): CSs are a group of public cloud servers denoted as S = {S1, S2, ..., Sn}.
In PMHA-DP, multiple servers are necessary for executing the aggregation missions and
supporting fault tolerance. A large volume of health data is stored in CSs. The aggregation result
will be delivered to the trusted authority instead of healthcare institutions directly. According to
the practice, we assume that all of the CSs are honest-but-curious. CSs store and process data
honestly, but they may be also curious about individual user’s health data. Thus, CSs only store
the ciphertexts of health data received from MUs. Since CSs are powerful, we assume that a strong
adversary can compromise or paralyze no more than l = dn/2e − 1 cloud servers.

• Trusted authority (TA): TA is a powerful data center, which is responsible for assigning aggregation
tasks and key management. TA receives different aggregation requests from healthcare institutions,
then it bootstraps the whole system. In the initialization phase, TA first generates secret keys
and US certificates for each registered user. Besides, keys and certificates are distributed through
a secure channel. Meanwhile, TA also generates private keys for cloud servers. If TA wants some
statistical information of the health dataset, it will make l + 1 cloud servers work together to
aggregate and decrypt the data. Then, the system randomly selects one of the working cloud
servers to send the statistics to TA. At last, TA will calculate the final result and adds noise
to it by utilizing differential privacy mechanisms. TA is the only globally-trusted entity of the
whole system.



Sensors 2016, 16, 1463 4 of 27

• Healthcare institutions (HIs): HIs represent the organizations (i.e., certified hospital, medicine
research center, health departments, etc.) that are interested in the statistical information of a large
volume of health data. HIs obtain this information by sending specific requests to TA, and TA
returns the final result to HIs.

In order to convince us that the system model is practical, we make a further discussion.
Differential private techniques are firstly designed to resist the differential attacks. As the development
of differential privacy, data sanitizing schemes are proposed. Those schemes add a little bit of noise
to the users’ local data to protect the sensitive information. However, those techniques cannot hide
all of the personal information. For instance, a user adds a little noise to his/her body temperature
(suppose the original value is 37). The noisy value may be quite close to the original value, such
as 37.5. If the data are not encrypted, the public cloud can deduce the distribution and some other
statistical information of the dataset. The mathematical expectation of the permutated dataset is the
same as the original dataset. Therefore, the cloud server can infer that the dataset must be the users’
temperatures if the mathematical expectation is about 37. Since the ciphertext contains no statistical
information, all of that sensitive information can be protected against the public cloud if all users’
data are encrypted. In order to resist differential attack, we add noises to the final aggregation results
instead of encrypting the data (again) and sending the encrypted data to HI. If we choose to encrypt
the results again without permutation, HI can deduce some individual records’ by asking legitimate
queries. Thus, it is necessary to release the result under differential privacy.

2.2. Adversary Model

In PMHA-DP, a strong adversary Adv is considered. Adv may launch the following attacks:

• Adv may eavesdrop on communication flows.
• Adv may compromise some users directly.
• Adv may compromise less than l = dn/2e − 1 CSs to breach users’ privacy.
• In our privacy-enhanced health data aggregation scheme, Adv may compromise all of the l + 1

working cloud servers and obtain the sum of all users’ private data.
• Adv may launch differential attacks on TA (e.g., Adv may deduce the newly-added users’ data by

asking TA legitimate queries).

2.3. Security and Privacy Requirements

The adversary Adv would like to reveal as much of the users’ personal private information as
possible. Therefore, the designed data aggregation system should resist Adv’s attacks. Specifically,
the scheme must satisfy the following security and privacy requirements:

• Adv cannot reveal users’ private health data, even if the communication flows are intercepted.
• Adv cannot reveal the uncompromised users’ private health data, even if some users are

compromised directly.
• Adv cannot reveal users’ private health data, even if l cloud servers are compromised.
• Adv cannot obtain the sum of all of the users’ private data, even if all of the l + 1 working cloud

servers are compromised.
• Adv cannot deduce any individual user’s health data by launching differential attacks on TA.

3. Preliminaries

In this section, we will briefly present the concept of differential privacy and the cryptographic
building block that PMHA-DP builds on. At last, we give a further discussion on the data type and
differential privacy mechanism.
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3.1. Boneh–Goh–Nissim Cryptosystem

Boneh et al. [14] presented a homomorphic public key encryption scheme based on finite groups
of composite order that support a bilinear map. Their system supports arbitrary additions and one
multiplication on encrypted data. Due to those homomorphic features, it is often used to achieve
privacy-preserving data aggregation tasks. Here, we introduce the three algorithms making up
the system.

• KeyGen(τ) : Given a security parameter τ ∈ Z+, the system runs Gen(τ) to acquire a tuple
(p, q,G,G1, e). Here, G and G1 are two cyclic groups of order n = pq. In addition, e : G×G→ G1

is a bilinear map [15]. Randomly pick two generators g, u ∈ G, and set h = uq. Then, h is a random
generator of the subgroup of G of order p. The public key is PK = (n,G,G1, e, g, h). The private
key is SK = p.

• Encrypt(PK, m) : Let m ∈ {0, 1, ..., T} represent a message, and T (T � q) is the upper bound of
the message space. To encrypt a message m using public key PK, the user picks a random number
r (r ∈ Zn) and calculates the ciphertext as C = gmhr ∈ G.

• Decrypt(SK, C) : The system decrypts ciphertext C with private key SK = p through computing
Cp = (gmhr)p = (gp)m. Let ĝ = gp. Then, the system computes the discrete logarithm of Cp

base ĝ to recover m. The computation takes the expected time O(
√

T) using Pollard’s lambda
method [16].

Here, we introduce the two homomorphic properties of the Boneh–Goh–Nissim cryptosystem.

1. Firstly, the system is clearly additively homomorphic. Given any two ciphertexts C1, C2 ∈ G
of messages m1, m2 ∈ {0, 1, ..., T}, respectively, one can obtain the encryption of m1 + m2 by
computing the product C = C1C2.

2. Secondly, one can multiply two encrypted messages once using the bilinear map to acquire
the product of two messages. Let g1 = e(g, g), h1 = e(g, h), and set h = gαq where α ∈ Z is
unknown. Suppose that the two given ciphertexts are C1 = gm1 hr1 ∈ G and C2 = gm2 hr2 ∈ G.
Then, we have:

C = e(C1, C2) = e(gm1 hr1 , gm2 hr2) = gm1m2
1 hm1r2+m2r1+αqr1r2

1

= gm1m2
1 hr̄

1 ∈ G1
(1)

where r̄ = m1r2 + m2r1 + αqr1r2, and r̄ ∈ Zn. Thus, C is the ciphertext of m1m2, and the recovery
of m1m2 is similar to C1, C2. Furthermore, the system is still additively homomorphic in G1.

3.2. Differential Privacy

Differential privacy [11] was first proposed by Dwork. Informally, if an algorithm is not sensitive
to small changes in the input, then it may be differentially private. The idea of a differential privacy
protection model is derived from a very simple observation: when the dataset D contains individual
Alice, let f be arbitrary query operation on D (such as count, sum, average, median or other range
queries, etc.); the results obtained are f (D). If the result of the query is still f (D) when Alice’s record
is deleted, you can indicate that Alice’s privacy is protected from the differential attack. Differential
privacy is to ensure that any operation on a single record (e.g., add, remove or change a record) cannot
impact the final result of the query. In other words, there are two almost identical sets of data (only
one record is different); the probability of getting the same result from the same query that is operated
on the two datasets is close to one.

Formally, for any given database instance D, let nbrs(D) denote the set of neighboring databases
differing from D by at most one record; i.e., if D

′ ∈ nbrs(D), then |(D − D
′
) ∪ (D

′ − D)| = 1.
Let function Range(A) be the output range of the random algorithm A. Then, the formal definition is
shown below.
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Definition 1. An randomized algorithm A is ε-differentially private if for all instances D, any D
′ ∈ nbrs(D),

and any subset of outputs S ⊆ Range(A), the following holds:

Pr[A(D) ∈ S] ≤ exp(ε)× Pr[A(D
′
) ∈ S], (2)

where ε is the privacy budget.

Different from the encryption-based schemes, differential privacy does not have a security level
(e.g., secure under chosen plaintext attack, etc.). The privacy level of the differential private algorithm
depends on the privacy budget ε. It is set by the user; the larger the privacy budget is, the smaller the
noise is. Thus, the privacy budget is inversely proportional to the accuracy of the query result.

In this paper, we adopt the Laplace mechanism [13] to design differential privacy algorithms.
The Laplace mechanism utilizes the sensitivity of the query function to calibrate the noise scale. The
definition of the function sensitivity is shown as below.

Definition 2. Given a function f : D → R, the sensitivity of f , denoted ∆ f , is:

∆ f = max
D,D′
| f (D)− f (D

′
)|1 s.t. D

′ ∈ nbrs(D). (3)

Let Lap(λ) denote the Laplace probability distribution with mean zero and scale λ. The Laplace
mechanism achieves differential privacy by adding Laplace noise to the output of function f .

Definition 3. Let f be an aggregation function of a database D and Z be a random variable where
Z ∼ Lap(∆ f /ε). The Laplace mechanism f̃ is defined as:

f̃ (D) = f (D) +Z . (4)

The randomized algorithm f̃ is ε-differentially private.
The data type in this paper is numerical. We cannot calculate the statistics of the categorical

data under the ciphertext environment. For instance, there exists an attribute recording the favorite
sports of the user. In the database, we can use integral numbers to represent the categorical data
(e.g., one represents ąřfootballąś, two represents ąřbasketballąś, etc.). However, it is meaningless
to calculate the average or summation of the categorical data. Since the aggregation tasks can be
assigned to the cloud in any time, the cloud servers and the data should be online. The encrypted data
are stored in relational tables. However, the attribute types and the record values are all encrypted
or permutated. There is no limit to the size of the data. The user could encrypt some short health
message, such as blood pressure, temperature, and so on. Therefore, the expected maximum value
of those health data depends on the observation of clinical medicine. For example, a person’s blood
pressure is usually less than 140 mmHg. Then, we can use this value to quantify the sensitivity of
aggregation functions.

Interactive and non-interactive differential privacy mechanisms are significantly different.
The interactive mechanism allows the user to query several times until the privacy budget is consumed.
The non-interactive mechanism answers all of the queries at one time. The Laplace mechanism applied
in this paper is interactive. Therefore, the proposed differential privacy scheme is interactive.

4. Proposed Scheme

In this section, we propose a multifunctional health data additive aggregation scheme and
a non-additive aggregation scheme, respectively. “Multifunctional” means that we provide different
aggregation functions. It is an important property that reflects the scalability and the practicability
of a data aggregation scheme. Our scheme achieves the average, the summation, the median and
some other aggregation functions simultaneously. In the first part, we only illustrate the average
aggregation as an example of additive aggregation. In the second part, we will discuss various
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non-additive aggregations, such as min/max, median, histogram, etc., which are widely applied in
reality. Furthermore, advanced schemes are also proposed.

4.1. Additive Aggregation of Health Data

In this part, we will show the details of the basic average aggregation and weighted average
aggregation scheme. Besides, the final results calculated by TA strictly satisfy the differential privacy.
Compared with the scheme proposed by Han et al. [6], PMHA-DP is well designed with less noise
being added, which improves the accuracy of the final results significantly. In [6], the cloud servers are
able to decrypt and learn the sum of health data. However, the statistical information (i.e., sum of the
dataset) may be sensitive and should not be disclosed to the public. On addressing the above problem,
we propose a new advanced average aggregation protocol.

4.1.1. System Initialization

In the phase of initialization, TA bootstraps the system and generates public and private keys.
Firstly, TA runs Gen(τ) to obtain a bilinear map tuple (p, q,G,G1, e). As previously stated in Section 3.1,
TA generates the tuple (n,G,G1, e, g, h) by leveraging the Boneh–Goh–Nissim cryptosystem. h = gq is
a random generator of the subgroup of G of order p, and g ∈ G is a random generator of G. In addition,
TA chooses a one-way hash function H : {0, 1}∗ → G. Hence, the public key is (n,G,G1, e, g, h, H),
and the private key is p. Moreover, the private key SK = p is seen as a shared secret, and each
share of p is assigned to each working cloud server. For simplicity, TA utilizes Shamir’s [17] secret
share scheme. TA first randomly generates a polynomial function G(x) = p + a1x + a2x2 + ... + al xl

s.t. i = 1, 2, ..., l. ai ∈ Zn, then TA calculates G(j) as Sj’s private key, where Sj ∈ S.

4.1.2. Basic Average Aggregation Scheme

Since we can easily calculate the average of the dataset from its sum, the working CSs firstly
compute the sum and deliver it to TA. Then, TA computes the average of dataset. Details are shown
as follows.

User generates ciphertext: Mobile user’ health data are detected by body sensors, and the
original data are all stored and processed in the user’s smartphone or PDA. The detected data directly
reflects the health status of users. Thus, MUs would like to report their health data to the healthcare
institutions and acquire health services. However, the health data may leak some sensitive information
of individuals. Consequently, users encrypt their data before submitting them to the public cloud.
Specifically, each user Ui ∈ U encrypts his or her health data mi,o ∈ {0, 1, ..., T} at time point to through
the following three steps:

• Step 1: Ui computes the hash value θo = H(to) at the time point to.
• Step 2: Ui encrypts the message mi,o through calculating Ci,o = gmi,o hθo ·ri,o , where ri,o ∈ Z+

n is
a random number.

• Step 3: Ui submits the ciphertext Ci,o to one of the working cloud servers.

Privacy-preserving computing of Sumo: One of the working cloud servers receives all of the users’
encrypted health data {C1,o, C2,o, ..., Ck,o} of message set {m1, m2, ..., mk}. According to the privacy
requirements, the cloud server needs to compute the encrypted sum without knowing the plaintext of
any specific message. By utilizing the homomorphic property of Boneh–Goh–Nissim, we can obtain
the encrypted aggregation Sumo as follows:

Sumo =
k

∏
i=1

Ci,o =
k

∏
i=1

(gmi,o · hθo ·ri,o ) = g∑k
i=1 mi,o · hZ, (5)

where Z = ∑k
i=1(θo · ri,o) mod p.

Joint decryption of Sumo: Before each aggregation task begins, TA randomly chooses l + 1 cloud
servers δ ⊂ S as the working servers. As mentioned above, one of the cloud severs calculates Sumo
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and sends it to the other l working cloud servers. Upon receiving Sumo at time point to, each cloud
server first calculates:

γj = ∏
i∈δ,i 6=j

i
i− j

(6)

then computes:
dj,o = Sum

γjG(j)
o (7)

Then, TA selects one of the l + 1 servers to gather all of the dj,o computed by each Sj ∈ δ

and calculates:

Do = ∏
Sj∈δ

dj,o = ∏
Sj∈δ

Sum
γjG(j)
o

= Sum
∑Sj∈δ γjG(j)
o = Sump

o = (g∑k
i=1 mi,o )p · (hZ)p

= (gp)∑k
i=1 mi,o = ĝ∑k

i=1 mi,o

(8)

where ĝ = gp. According to the Lagrange interpolation polynomial [17], we have:

G(x) =
l

∑
j=0

(
l

∏
i=0,i 6=j

xi − x
xi − xj

)G(xj) (9)

Thus,

∑
Sj∈δ

γjG(j) =
l

∑
j=0

(
l

∏
i=0,i 6=j

i− 0
i− j

)G(j) = G(0) = p (10)

Since mi ∈ {0, 1, 2, ..., T}, we have ∑∗ = ∑k
i=1 mi,o ≤ (k + 1)T. The CS can obtain the sum of users’

health data ∑∗, by computing the discrete logarithm of Do based on ĝ in expected time O(
√
(k + 1)T).

At last, the CS sends ∑∗ to TA.
Result release under differential privacy: Different from scheme proposed in [6], CS cannot release

any data to the analyst directly. CS must send the intermediate result to TA first. TA is responsible for
computing the final result and releasing it under differential privacy. The details of the computation
and proof of differential privacy are shown as follows.

Once TA receives the sum of dataset ∑∗, TA can get the average value by simply calculating
M = ∑∗

k . In order to ensure differential privacy, we add noise to M by leveraging the Laplace
mechanism. Let Z be a random variable, and Z ∼ Lap( T

ε(k−1) ). Here, Z is the Laplace noise, which

will be added to M. Then, TA simply computes M̃ = M +Z . Finally, M̃ is returned to the data analyst
(HIs) as the final result. We can assert that the released result M̃ is ε-differentially private. The mainly
challenge is the proof of the differential privacy. The formal proof of differential privacy is given in
Section 5.

4.1.3. Weighted Average Aggregation Scheme

In a real data aggregation scenario, each data source is weighted by its reliability. For instance,
a data provider may submit abnormal data. Then, the weight of this provider should be lower than the
normal ones. In WAAS, the i-th provider’s weight is denoted by a non-integral number wi ∈ {0, 1, ..., T}.
All of the weights of the providers are stored in TA represented as a weight vectorW = (w1, w2, ..., wk).
Moreover, the sum of all of the weights is ∑weight, which is also kept by the TA. In addition, the
plaintext of mobile users’ data also could be represented by a vectorM = (m1, m2, ..., mk). We can
regard the weight vectorW as a batch of messages, which has no difference between the users’ data
vectorW . Therefore, the weighted sum of the dataset is the inner product ofM andW . Similar to the
basic aggregation scheme, we first calculate weighted sum ∑∗ =W ·M. Details are shown as follows.
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User generates ciphertext: Similar to the basic scheme, the data should be encrypted before
sending to the cloud server. Specifically, each user Ui ∈ U encrypts his or her health data
mi,o ∈ {0, 1, ..., T} at time point to through the following three steps:

• Step 1: Ui computes the hash value θo = H(to) at the time point to.
• Step 2: Ui encrypts the message mi,o through calculating Ci,o = gmi,o hθo ·ri,o , where ri,o ∈ Z+

n is
a random number. Furthermore, we set h = gαq for some (unknown) α ∈ Z.

• Step 3: Ui submits the ciphertext Ci,o ∈ G to one of the working cloud server.

TA generates ciphertext ofW : The weight vector directly reflects the importance of each message
and the reliability of every user. Therefore,W should be encrypted, as well. Specifically, TA encrypts
W at time point to through the following three steps:

• Step 1: TA computes the hash value ηo = H(to) at the time point to.
• Step 2: TA encrypts the i-th weight wi,o through calculating w̃i,o = gwi,o hηo ·ρi,o , where ρi,o ∈ Z+

n is
a random number. Furthermore, we set h = gαq for some (unknown) α ∈ Z. Thus, the weight
vector’s ciphertext is W̃ = (w̃1,o, w̃2,o, ..., w̃k,o)

• Step 3: TA submits the ciphertext W̃ ∈ G to one of the working cloud server.

Privacy-preserving computing of Sumw: One of the working cloud servers receives all of the users’
encrypted health data M̃ = (C1,o, C2,o, ..., Ck,o) and W̃ = (w̃1,o, w̃2,o, ..., w̃k,o). According to the privacy
requirements, the cloud server needs to compute the encrypted weighted sum without knowing the
plaintext of any specific message. By utilizing the homomorphic property of Boneh–Goh–Nissim, we
can obtain the encrypted aggregation sum Sumw as follows.

As introduced in Section 3.1, anyone can multiply two encrypted messages once using the bilinear
map. Let g1 = e(g, g) and h1 = e(g, h). Then, we have:

e(Ci,o, w̃i,o) = e(gmi,o hθo ·ri,o , gwi,o hηo ·ρi,o ) = gwi,omi,o
1 hmi,oηoρi,o+wi,oθori,o+αqθori,oηoρi,o

1

= gmi,owi,o
1 hr̄i

1 ∈ G1

(11)

where r̄i = mi,oηoρi,o + wi,oθori,o + αqθori,oηoρi,o. We note that the cryptosystem is still additively
homomorphic in G1. Thus, we can compute Sumw as:

Sumw =
k

∏
i=1

e(Ci,o, w̃i,o) =
k

∏
i=1

gmi,owi,o
1 hr̄i

1 = g∑k
i=1 mi,owi,o

1 h∑k
i=1 r̄i

1 (12)

Since the plaintext of weighted sum ∑∗ =W ·M = ∑k
i=1 mi,owi,o, we have:

Sumw = g∑∗
1 h∑k

i=1 r̄i
1 (13)

Joint decryption of Sumw: Exactly the same as the basic scheme, TA randomly chooses l + 1 cloud
servers δ ∈ S as the working servers. As mentioned above, one cloud server calculates Sumw and
sends it to the other l working cloud servers. Upon receiving Sumw at time point to, l + 1 cloud servers
decrypt Sumw together. Eventually, we have:

Do = Sump
w = (g∑∗

1 )p · (h∑k
i=1 r̄i

1 )p = (gp
1 )

∑∗ = ĝ1
∑∗ (14)

where ĝ1 = gp
1 .

Since mi, wi ∈ {0, 1, 2, ..., T}, we have ∑∗ = ∑k
i=1 mi,owi,o ≤ (k + 1)T2. Nevertheless, T is the

range of the message, and it is large enough; we let mi,owi,o ≤ T. Thus, the CS can obtain the weighted
sum of users’ health data ∑∗, by computing the discrete logarithm of Do based on ĝ1 in the expected
time O(

√
(k + 1)T). At last, the CS sends ∑∗ to TA.

Result release under differential privacy: Similar to the basic scheme, TA is responsible for
computing the final result and releasing it under differential privacy. Once TA receives ∑∗, TA can
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get the weighted average value by simply calculating M = ∑∗
k . Generally, TA adds noise to M by

leveraging the Laplace mechanism. Let Z be a random variable, and Z ∈ Lap( T·wmax
ε(∑weight −wmax)

). Here,

Z is the Laplace noise, which will be added to M, and wmax is the largest weight of users. Then, TA
simply computes M̃ = M +Z . Finally, M̃ is returned to the data analyst (HIs) as the final result. We
can assert that the released result M̃ is ε-differentially private. The formal proof of differential privacy
is given in Section 5.

4.1.4. Privacy-Enhanced Average Aggregation Scheme

In the basic and weighted average aggregation schemes, one of the cloud servers is able to learn
the sum of users’ data. Consequently, the cloud server may leak the sensitive statistical information
to the unauthorized users. On addressing the problem, we design a privacy-enhanced average
aggregation protocol.

First of all, let us recall the basic aggregation scheme (BAAS). Once all of the encrypted data
are gathered by several cloud servers, one of the randomly chosen servers can access the decrypted
summation of the dataset. In this scheme, all of the cloud servers are curious about the content of the
data. Hence, the plaintext of the summation is under the risk of being disclosed. PAAS is designed to
address the above problem.

In the initial phase, TA generates additional private keys for each user. Then, each user encrypts
the message using private keys. The user generates two ciphertexts for one message and sends them
to the cloud. The cloud then calculates two summations for one dataset. Since both summations are
permutated by the additional private keys, the cloud cannot access the real summation of the dataset.
TA recovers the original summation by solving an equation set. Actually, TA only needs to compute
a polynomial.

Details of the scheme are shown as follows.
TA generates private keys for users: TA firstly generates additional private keys for mobile users.

In order to strictly protect the privacy of the user, TA assigns each user a unique ID. A user’s ID
could be a function of the serial number i. For instance, the i-th registered user’s ID can be set as
ID = i2 + i + 1 or some other functions. For simplicity, we set ID = i. Thus, each user’s ID just is
the serial number i. Then, TA generates the i-th user’s private keys Xi and Yi through computing
Xi = a1i + b1, Yi = a2i + b2. Here, a1, a2, b1, b2 are four random integers created by TA. Then, TA sends
(Xi, Yi) to the i-th user as its additional private keys.

User generates ciphertext: Each user Ui ∈ U encrypts his or her health data mi at time point to

through the following three steps:

• Step 1: Ui computes the hash value θo = H(to) at the time point to.
• Step 2: Ui encrypts mi,o through calculating m̃i,o = gmi,o hθo ·ri,o , where ri,o ∈ Z+

n is a random number.
Furthermore, we set h = gαq for some (unknown) α ∈ Z. Moreover, private keys (Xi, Yi) are
encrypted in the same way X̃i = gXi hθo ·ri,o , Ỹi = gYi hθo ·ri,o .

• Step 3: Let g1 = e(g, g) and h1 = e(g, h). Ui creates the ciphertexts (Ci,o,1, Ci,o,2) of mi,o as follows.

{
Ci,o,1 = e(m̃i,o, X̃i) = e(gmi,o hθo ·ri,o , gXi hθo ·ri,o ) = gmi,oXi

1 · hr̄i,1
1

Ci,o,2 = e(m̃i,o, Ỹi) = e(gmi,o hθo ·ri,o , gYi hθo ·ri,o ) = gmi,oYi
1 · hr̄i,2

1

(15)

where r̄i,1 = mi,oθori,o + Xiθori,o + αq(θori,o)
2 and r̄i,2 = mi,oθori,o + Yiθori,o + αq(θori,o)

2.
• Step 4: Ui submits the ciphertexts (Ci,o,1, Ci,o,2) of mi to one working cloud server Sj ∈ S.

Privacy-preserving computing of Sum1 and Sum2: Sj receives all of the users’ encrypted health
data. Since each user submits two ciphertexts (Ci,o,1, Ci,o,2) of the message mi, Sj needs to compute the



Sensors 2016, 16, 1463 11 of 27

encrypted sum twice. By utilizing the homomorphic property of Boneh–Goh–Nissim, we can obtain
the encrypted aggregation sum Sum1 and Sum2 as follows,





Sum1 =
k

∏
i=1

Ci,o,1 =
k

∏
i=1

(gmi,oXi
1 · hr̄i,1

1 ) = g∑k
i=1 mi,oXi

1 · h∑k
i=1 r̄i,1

1

Sum2 =
k

∏
i=1

Ci,o,2 =
k

∏
i=1

(gmi,oYi
1 · hr̄i,2

1 ) = g∑k
i=1 mi,oYi

1 · h∑k
i=1 r̄i,2

1

(16)

Joint decryption of Sum1 and Sum2: As mentioned above, the cloud sever Sj calculates Sum1 and
Sum2. Then, Sj sends them to the other l working cloud servers. Upon receiving Sum1 and Sum2 at
time point to, l + 1 cloud servers decrypt Sum1 and Sum2 together. Finally, we have:





D1 = Sump
1 = (g∑k

i=1 mi,oXi
1 )p · (h∑k

i=1 r̄i,1
1 )p = (gp

1 )
∑k

i=1 mi,oXi = ĝ1
∑k

i=1 mi,oXi

D2 = Sump
2 = (g∑k

i=1 mi,oYi
1 )p · (h∑k

i=1 r̄i,2
1 )p = (gp

1 )
∑k

i=1 mi,oYi = ĝ1
∑k

i=1 mi,oYi
(17)

Since mi, Xi, Yi ∈ {0, 1, 2..., T}, we have ∑X = ∑k
i=1 mi,oXi ≤ (k + 1)T2 and ∑Y = ∑k

i=1 mi,oYi ≤
(k + 1)T2. Nevertheless, T is the range of the message, and it is large enough; we let mi,oXi ≤ T and
mi,oYi ≤ T. Thus, the CS can obtain ∑X and ∑Y by computing the discrete logarithm of D1 and D2

based on ĝ1 in expected time O(
√
(k + 1)T). At last, the CS sends ∑X and ∑Y to TA.

Result release under differential privacy: TA is responsible for computing the final result and
releasing it under differential privacy. Once TA receives ∑X and ∑Y, TA can get the data sum ∑k

i=1 mi,o
by solving the following equation set,





∑X = ∑k
i=1 mi,oXi

∑Y = ∑k
i=1 mi,oYi

Xi = a1i + b1

Yi = a2i + b2

(18)

Based on the above equation set, we can deduce that:

{
∑X = a1 ∑k

i=1 mi,o · i + b1 ∑k
i=1 mi,o

∑Y = a2 ∑k
i=1 mi,o · i + b2 ∑k

i=1 mi,o
(19)

Here, a1, a2, b1, b2 are four integers generated by TA. Therefore, the solution of the equation
set is ∑k

i=1 mi,o = (a2 ∑X −a1 ∑Y)/(a2b1 − a1b2). Therefore, the average value of the dataset is
M = (∑k

i=1 mi,o)/k.
Similarly, TA adds noise to M by utilizing the Laplace mechanism. Let Z be a random variable,

and Z ∈ Lap( T
ε(k−1) ). Z is the Laplace noise, which will be added to M. Then, TA simply calculates

M̃ = M +Z . Finally, M is returned to the data analyst (HIs) as the final result. Moreover, M̃
is ε-differentially private. Since the aggregation function of PAAS is exactly the same as BAAS,
the differential privacy is guaranteed.

4.2. Non-Additive Aggregation of Health Data

In reality, non-additive aggregation results are widely applied in cloud-assisted WBAN systems;
for instance, min/max, median, histogram, etc. In this section, we propose a scheme for these
aggregation tasks. The same as the scheme proposed in [6], the comparison of the data is accomplished
in the plaintext environment. In fact, if one wants to obtain the non-additive aggregation results
of a encrypted dataset without decrypting it, order-preserving encryption techniques may be
applied. Because the comparison is the basic operation, which cannot be finished without knowing the
order information of the data, therefore the decryption of the specific message in the cloud servers
is inevitable.
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Different from [6], all of the decrypted messages mi ∈ {m1, m2, ..., mk} are gathered by TA.
Thus, the distribution of the data is protected by TA, and cloud servers cannot get access to it.
First, one user Ui ∈ U encrypts its message mi. Second, Ui sends Enc(mi) to the cloud server.
Here, we use Enc(mi) to represent the ciphertext of mi. Third, l + 1 working cloud servers are
randomly chosen to decrypt the message. At last, the plaintext of each message mi is uploaded
to TA. Thus, TA gathers all of the users’ messages M = {m1, m2, ..., mk}. In [6], the scheme stores all
of the plaintext of the messages in one cloud server. If this cloud server is compromised, all of the
users’ personal health information may be leaked. For the privacy consideration, we let TA store the
plaintext of the whole dataset.

Once TA has gathered all of the users’ messages M, it sorts M’s elements. Then, TA uses an array
A[k + 1] to store the ordered messages. For instance, the minimum message is A[1], and the maximum
is A[k]. Note that the first element of array A is empty. Therefore, we have A[1] < A[2] < ... < A[k].

Based on the ordered array A, we can easily deduce that the median message is med = A[ k+1
2 ],

if k is odd. When k is even, med = (A[ k
2 ] + A[ k

2 + 1])/2. As mentioned above, the minimum and
maximum messages are min = A[1], max = A[k]. In [6], noises are added to the result of min/max
and median aggregations. However, the scale of the noises is too large, because the sensitivities of
min/max and median aggregations are max{M} = T. Since healthcare institutions (HIs) provide
health services based on these data, the min/max and median values of users’ health data are required
to be as accurate as possible. Thus, TA releases min/max and med directly to the HIs. In the following
paragraphs, we will show how to accomplish histogram aggregation and release it with differential
privacy guaranty.

4.2.1. Hierarchical Method for Histogram

In this part, we provide the histogram aggregation protocol. The histogram is widely used to
reflect the distribution of dataset in statistics. Specifically, each bin of a histogram illustrates the
frequency of the values falling into it. As shown in Figure 2a, the first bin’s value is 50. Each bin’s value
is the count of the hypertensive patients of a certain age group. Since TA has the ordered messages
A[1], A[2], ..., A[k], it can easily obtain the values of the bins in the histogram. Then, TA answers the
query submitted by the healthcare institutions based on the histogram. Note that the original histogram
can directly reflect the distribution of the dataset. In order to protect the sensitive information, we
add noises to the result of the query. Besides, we leverage the post-processing technique [12] to
boost the accuracy. Details of query sequence generation, the differential privacy mechanism and
post-processing are shown in the following paragraphs.

Figure 2. (a) Example of a histogram. (b) Example of query tree T.

Query sequence generation: A query sequence is proposed by the HIs, which not only asks for
unit-length intervals (e.g., single data bin), but also asks for larger intervals (e.g., age from 20–45
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in Figure 2a). In this strategy, the larger intervals are a linear combination of the few counts of
sub-intervals. The query sequence consists of a batch of hierarchical intervals denoted as a vectorH.

Moreover, the intervals can be arranged into a tree T, where the unit-length intervals are the
leaves. Each node v ∈ T in the tree corresponds to an interval with s children. The node v’s children
are equally-sized sub-intervals. We useH to denote the case of a query tree with n leaves. If t denotes
the height of the tree and s is the branch factor, then dt = logsn + 1e. The sequence is ordered by
a breadth-first traversal of the tree. Here, we give an example of tree T associated with query sequence
H for s = 2.

As shown in Figure 2b, the query sequence is H = {R1, R2..., R7}. Each query is arranged into
the tree T whose value is the sum of its children. For instance, the root (R1) is the whole range of the
histogram equal to R2 + R3.

Once TA receives the query sequenceH, it computes each query from the leaf to the root of tree T.
We useH(A) to represent the result of query on message array A.

Add noises to the query sequence: To answer H under differential privacy, the first step is to
analyze the sensitivity of H. When users alter one record, the count changes within ±1 through
the same level. As the level of the tree is t, the output of H changes ±t at most. Thus, ∆H = t.
By the aforementioned inference and basic Laplace mechanism, the following algorithm satisfies
ε-differential privacy:

H̃(A) = H(A) + [Lap(t/ε)]m (20)

where m is the length of sequenceH.
Problem of consistency: The property of consistency will be broken after adding noises to the

query results. Because the noises added are randomly produced, there may be a noisy count that does
not equal the sum of its sub-intervals. Therefore, H̃ cannot be the final output.

Post-processing of query sequence: This step is aimed to derive a consistent and more accurate
query result denoted as H. We adopt the method proposed by [12]. As summarized in [18],
this technique can be dissected into two steps: weighted averaging and mean consistency.

Weighted averaging: First, we need to ensure a fact depicted as the following sentences:

Given two random variables X and Y, consider Z = αX + (1− α)Y. When α = Var(Y)
Var(X)+Var(Y) ,

the variance of Z gets the minimum and minimal variance, which is Var(X)Var(Y)
Var(X)+Var(Y) .

Let H̃ be the noisy value of node v ∈ T at level t of tree T. To estimate the node’s noisy value,
we use the weighted average of its original noisy value and the sum of its children’s count. Let z[v] be
the transformed count and succ(v) be the set of v’s children.

z[v] =

{
H̃[v], i f v is a lea f node
st−st−1

st−1 H̃[v] + st−1−1
st−1 ∑u∈succ(v)z[u], o.w.

(21)

Mean consistency: The mean consistency step aims at ensuring that for each node, its children
values sum up to be the same as the parent. Let u be the parent of v.

H[v] =

{
z[v], i f v is the root
z[v] + 1

s (H[u]−∑w∈succ(u)z[w]), o.w.
(22)

After post-processing, each node’s value is a weighted sum of the original noisy values of all
nodes in the tree. At last, TA returns the final result H to HIs. The formal analysis of differential
privacy is given in Section 5.

5. Security and Privacy Analysis

In this section, we will discuss the security and privacy issues involved in PMHA-DP.
The adversary model, security and privacy requirements are given in Section 3. Clearly, our mission
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is to preserve users’ private health data from the adversary Adv and to satisfy all of the security
requirements. As mentioned in Section 4, each aggregation scheme (includes BAAS, WAAS, PAAS,
HMH) is under a differential privacy guarantee. Therefore, we will show the privacy proof of
each scheme in this section. Details are shown as follows.

• The users’ privacy is preserved, even if the communication flows are intercepted by
Adv. Specifically, Adv may eavesdrop on the communication flows from users to the cloud
servers. However, the mobile users in WBANs are dynamic, and the number of users is large; it is
impractical for Adv to do so. Even if the data are captured by Adv at time point to, Ui’s message
mi,o is encrypted as gmi,o · hθori,o . Thus, Adv cannot decrypt the ciphertext and obtain the message
mi,o without private key p. Therefore, we can assert that Adv cannot reveal the private data, even
if the communication flows are intercepted.

• Adv cannot reveal the uncompromised users’ private health data. Since the amount of mobile
users is quite large in the cloud-assisted WBANs system, Adv would be unlikely to breach users’
privacy through compromising some of the users. We assume that Adv may try to disclose the
uncompromised users’ private health data by utilizing the private information and private keys of
the compromised users. Namely, Adv is able to obtain some of the users’ private keys and their
personal data. However, the privacy of uncompromised users is well guaranteed, and the reasons
are listed as follows. First, each mobile user’s private key is generated independently; one can
deduce nothing about another user from one user’s private key. Second, the sum of all users’
private keys is transparent to Adv. Even if Adv learns k− 1 users’ private keys, it still cannot
reveal the last user’s private key and health data.

• Adv cannot obtain users’ private health data and the aggregated data, even if l CSs are
compromised. In the system initialization phase, TA distributes the private keys G(j), j = 1, 2, ..., l
to each CS and l ≥ 3. In this system, the users’ privacy can be protected when no more than
l = dn/2e − 1 CSs are paralyzed or compromised. According to the “all or nothing” property of
secret sharing [17], at least l + 1 CSs are needed to acquire private key p. Therefore, even if Adv
possesses l private keys, it still cannot recover p. Similarly, Adv only has l decryption shares of
CSs at most, which are insufficient to recover the aggregated data either. Therefore, Adv cannot
expose the aggregated data.

• In the privacy-enhanced scheme, Adv cannot acquire the aggregated data, even if all of the l + 1
CSs are compromised. First, TA utilizes each user’s ID to generate Ui’s additional private key
(Xi, Yi) and distributes them through a secure channel. Then, Ui encrypts its message mi twice by
using p and (Xi, Yi). Then, the l + 1 working CSs calculate two encrypted sums of all of the data.
Moreover, l + 1 working CSs cannot recover the real sum without knowing each user’s additional
private key (Xi, Yi) and four randomly generated numbers a1, a2, b1, b2. Even if all of these secure
parameters and two encrypted sums are leaked to Adv, it still does not know how to build an
equation group and compute the real sum. Consequently, the aggregated data are well protected
even if all of the l + 1 CSs are compromised by Adv.

• Adv cannot deduce any individual user’s health data by launching differential attacks on TA.
TA is the only entity that can release statistical information to HIs. TA adds Laplace noises to
the original aggregated data before release. Therefore, the differential privacy mechanism is only
applied on TA. Due to the property of the Laplace mechanism, TA is able to resist differential
attacks in each proposed aggregation scheme. The proof of differential privacy is given below.

Here, we give a formal differential privacy proof of each aggregation scheme. First, the proof of
BAAS is shown as follows:

Proof of Differential Privacy. BAAS directly utilizes the Laplace mechanism [13], which is introduced
in Definition 3. Thus, the critical step of privacy proof is calculating the sensitivity of the aggregation
function. Here, the output of the function is the average of a dataset. Therefore, we rewrite the function

as f (D) = ∑k
i=1 mi

k . Here, mi is the i-th user’s record of the dataset D, and k is the total number of
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the users’ data. Let D
′ ∈ nbrs(D) be the neighboring dataset differing from D in at most one record.

Therefore, if we want to calculate ∆ f = max
D,D′
| f (D)− f (D

′
)|1, we need to analyze the problem from

three conditions.

Condition 1. D
′

has one more record m than D. Consider two extreme situations, m = 0 and m = max,
where max denotes the largest value of the user’s record. If m = 0, | f (D)− f (D

′
)| = f (D)− k f (D)

k+1 = f (D)
k+1 .

If m = max, | f (D)− f (D
′
)| = k f (D)+max

k+1 − f (D) = max− f (D)
k+1 . Therefore, we have:

∆ f1 = max
0≤ f (D)≤max

{ f (D)

k + 1
,

max− f (D)

k + 1
} = max

k + 1
(23)

Condition 2. D
′

has one less record m than D. If m = 0, | f (D) − f (D
′
)| = k f (D)

k−1 − f (D) = f (D)
k−1 .

If m = max, | f (D)− f (D
′
)| = f (D)− k f (D)−max

k−1 = max− f (D)
k−1 . Thus, we have:

∆ f2 = max
0≤ f (D)≤max

{ f (D)

k− 1
,

max− f (D)

k− 1
} = max

k− 1
(24)

Condition 3. D and D
′

have the same number of records, but m ∈ D and m
′ ∈ D

′
are the only different

records between them. If m = max and m
′
= 0, | f (D)− f (D

′
)| = f (D)− k f (D)−max

k = max
k . If, m = 0 and

m
′
= max, | f (D)− f (D

′
)| = k f (D)+max

k − f (D) = max
k . Then, we have ∆ f3 = max

k .
Based on the above analysis, we can deduce that:

∆ f = max
D,D′
| f (D)− f (D

′
)|1 = max{∆ f1, ∆ f2, ∆ f3} =

max
k− 1

(25)

Since mi ∈ {0, 1, 2, ..., T}, max = T. Thus, the sensitivity of function f is ∆ f = T
k−1 . According to

Definition 3, the algorithm M̃ = M +Z s.t. Z ∼ Lap( T
ε(k−1) ) is ε-differentially private.

The above analysis indicates that quantifying the sensitivity of the aggregation function is critical.
The sensitivity analysis of the weighted average aggregation function (i.e., WAAS) is almost the same
as BAAS. Thus, we omit it. Moreover, since the aggregation function of PAAS is exactly the same as
BAAS, the differential privacy is guaranteed.

The formal analysis of the differential privacy of HMH is shown as follows:

Proof of Differential Privacy. The sensitivity of query sequence H is well analyzed in Section 4.2.
We formalize it as ∆H = t. According to the Laplace mechanism [13], when the added random variable
satisfies Lap(∆H/ε), the algorithm is ε-differential privacy. Note that the post-processing does not
consume the privacy budget.

6. Performance Evaluation

In this section, we evaluate the performance of PMHA-DP in terms of functionality, computation
and communication overhead. Besides, the error analysis is also provided. We will compare our
additive and non-additive aggregation schemes with MHDA+ [6] and MHDA⊕ [6].

Here, we will give a detailed discussion on the dataset. As we know, once the differential privacy
mechanism is chosen, the noise scale is also calibrated. In this paper, we utilize the Laplace mechanism
as the building block of the scheme. Hence, the sensitivity of the aggregation function is the only
parameter that can directly affect the noise scale (i.e., the accuracy of the result). In reality, there
are many different health data, such as the blood pressure, body temperature, heart rate, and so
on. Different data types lead to different data ranges and typical sizes. For instance, usually, body
temperature is within the range of 35–45 degrees Celsius. For a common person, the mean value of the
body temperature is 36.9 Celsius. However, for another kind of health data, such as blood pressure,
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the data range must be totally different from the body temperature. The maximum of blood pressure
should be less than 180 mmHg. In this paper, the maximum of the message should be less than T.
Hence, our scheme can be applied for different data types as long as the max value is less than T.
In this paper, we only consider the size of the largest message to evaluate the sensitivity and the error
of the result. Therefore, the error of each protocol is irrelevant to the type of data. Specifically, we vary
the size of the message w (T = 2w − 1) from {12, 13, 14, 15, 16, 17, 18, 19, 20, 21} (w is the length of
a message). Once the maximum value and the message amount are both established, we can calculate
the mathematical expectation of the square difference of the Laplace mechanism.

6.1. Functionality

In our additive aggregation scheme, we propose a basic scheme that is similar to MHDA+.
Both our scheme and MHDA+ provide an average aggregation protocol. In reality, the weighted
average is also widely used. However, to the best knowledge of the authors, their are few reported
works in the open literature providing a privacy-preserving weighted average aggregation scheme.
We design a weighted average aggregation protocol and provide the final result under differential
privacy. Moreover, as the working cloud servers in MHDA+ are able to learn the real value of the
aggregated data, some sensitive information may be leaked. On addressing the above problem,
we design a privacy-enhanced average aggregation scheme, which protects the real sum of the
dataset from all of the cloud servers. Besides, the released result also satisfies differential privacy.
The comparison of the functionality between PMHA-DP and MHDA+ is shown in Table 1.

Table 1. Comparison of the functionality of additive aggregation.

Basic Scheme Weighted Average Aggregated Data Protection Differential Privacy

MHDA+[6]
√ × × √

PMHA-DP
√ √ √ √

The same as MHDA⊕, our non-additive aggregation scheme provides max/min, median and
histogram aggregation protocols. As analyzed in Section 4.2, the scale of noise is too large for
max/min and median aggregations. Thus, we release the final results without adding noises.
Histogram aggregation is well discussed in our paper. We first apply the hierarchical method to
answer the query submitted by HIs. Then, for privacy consideration, we add Laplace noises to the
result. Furthermore, we leverage the post-processing technique to boost the accuracy of noisy answers.
Thus, our histogram aggregation scheme is more practical. The comparison of the functionality
between PMHA-DP and MHDA⊕ is shown in Table 2.

Table 2. Comparison of the functionality of non-additive aggregation.

Max/Min Median Hierarchical Method Post-Processing Differential Privacy

MHDA⊕ [6]
√ √ × × √

PMHA-DP
√ √ √ √ √

6.2. Computational Overhead

For additive aggregation schemes, the computation overhead is clear. Because, the process of the
encryption and decryption of the whole aggregation system can be divided into some basic calculations,
in this paper, we mainly consider four different kinds of calculations. As shown in Table 3, we use
some symbols to denote the time of each operation.
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Table 3. Notations.

Symbols Meanings

Texp time of modular exponential calculation in Zn2

Tmul time of modular multiplication

Tbim time of bilinear map operation

Tpol time of using Pollard’s lambda method to compute the discrete logarithm

k the number of mobile users

l + 1 the number of working cloud servers

In our system, there are three entities that share the total computational overhead: MUs
(mobile users), TA and CSs. Consequently, we analyze the computational overhead of MHDA+

and three different additive aggregation protocols of PMHA-DP in the above three aspects. Details are
shown as follows.

In this paper, the TA has to bear some computational tasks. We have tried our best to reduce
the computational burden of TA. As we know, the encrypted data are outsourced to the public
cloud. Most aggregation operations are finished by the cloud. However, the cloud servers are
honest-but-curious, which may learn the content of the data. Therefore, some sensitive information of
the dataset should not be disclosed to the cloud servers. TA is assigned to add noises to the original
query result, such as the summation of the data. Due to the property of the Laplace mechanism, the
noise scale is proportional to the sensitivity of the aggregation function. Once the privacy budget is set,
it is easy to obtain the sensitivity. The sensitivity of an aggregation function can directly reflect the
distribution of a dataset. For instance, if the sensitivity of a function is about 37, we can deduce that
the dataset is the body temperature. Furthermore, the TA only needs to add noises to the final result,
and it is irrelevant regarding the number of users. The time complexity of adding noises is O(1).

For WAAS, TA needs to store the weights of the users and encrypt them before sending them to
the cloud servers. Each user’s weight is personal information, and it should be protected from the
public cloud. When the system is running for the first time, TA needs to encrypt all of the users’s
weights. After the first time, TA only needs to do some partial modifications, which can significantly
reduce the computational burden.

For PAAS, the additional calculation of TA is computing the summation of the data. TA can obtain
the sum by calculating a simple polynomial. The time complexity is O(1).

Computation overhead of BAAS: Each MU encrypts the health data with one modular
multiplication and two modular exponential operations. Therefore, each MU’s total computational
overhead is 2Texp + Tmul . One of the working CSs gathers all of the MUs’ messages by taking
k − 1 modular multiplication, that is (k − 1)Tmul . Then, all of the l + 1 working CSs calculate the
decryption shares with l + 1 modular exponential operations. Next, one randomly chosen CS gathers
the decryption, shares and decrypts it using Pollard’s lambda method, which takes lTmul + Tpol .
Therefore, the total computational overhead of working CSs is (l + 1)Texp + (k + l − 1)Tmul + Tpol .
TA’s computation burden is light and negligible in the basic scheme.

Computation overhead of WAAS: Each MU encrypts the private data with time 2Texp + Tmul .
TA encrypts each MU’s weight with time 2Texp + Tmul , and there are k users. Therefore, the total
time of TA is 2kTexp + kTmul . Then, all of the working CSs calculate the encrypted weighted
sum of the dataset with k bilinear map operations and k − 1 modular multiplication, that is
kTbim + (k− 1)Tmul . At last, l + 1 CSs jointly decrypt the aggregated data with the same time of
the basic scheme: (l + 1)Texp + lTmul + Tpol . Therefore, the total computation overhead of CSs is
(l + 1)Texp + (k + l − 1)Tmul + kTbim + Tpol .

Computation overhead of PAAS: Each user encrypts the message mi,o with time 2Texp + Tmul .
Then, the user preprocesses the additional private keys (Xi, Yi) with time 4Texp + 2Tmul . Finally, the
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user generates the ciphertext of mi,o with two bilinear map operations. Thus, the total time of each user
is 6Texp + 3Tmul + 2Tbim. In the privacy-enhanced scheme, working CSs need to calculate the sum of
all users’ messages twice and jointly decrypt them. Therefore, the total computational overhead of CSs
is two times that of the basic scheme, that is 2(l + 1)Texp + 2(k + l − 1)Tmul + 2Tpol . TA’s computation
burden is negligible and is irrelevant to the scale of the dataset.

Computation overhead of MHDA+: In MHDA+ [6], each individual MU encrypts the health
data with two modular exponential operations and one modular multiplication. Therefore, the total
overhead of an MU is 2Texp + Tmul . The aggregator SP’soverhead is (k− 1)Tmul . The working CSs
jointly decrypt the aggregated data with time (l + 1)Texp + lTmul + Tpol .

The comparison of the computational overhead is shown in Table 4.

Table 4. Comparison of the computational overhead. BAAS, basic average aggregation scheme; WAAS,
weighted average aggregation scheme; PAAS, privacy-enhanced aggregation scheme; MU, mobile user;
CS, cloud server; TA, trusted authority.

MU SP CSs TA

BAAS 2Texp + Tmul N/A (l + 1)Texp + (k + l − 1)Tmul + Tpol N/A

WAAS 2Texp + Tmul N/A (l + 1)Texp + (k + l − 1)Tmul + kTbim + Tpol 2kTexp + kTmul

PAAS 6Texp + 3Tmul + 2Tbim N/A 2(l + 1)Texp + 2(k + l − 1)Tmul + 2Tpol N/A

MHDA+ [6] 2Texp + Tmul (k− 1)Tmul (l + 1)Texp + lTmul + Tpol N/A

We utilize OpenSSL Library [19] to conduct our experiment on a 2.65-GHz processor, 4 GB
memory, computing machine. We let the security parameter τ = 512 and set message’s bit length
as w = 13. Besides, we let the user number range from 10,000–100,000. One CS can provide service
for 2500 users at most. The result of the experiment showed that the bilinear map operation and
Pollard’s lambda method are quit time consuming. Specifically, we have the results Texp = 10.082 ms,
Tmul = 0.016 ms and Tbim = 21.823 ms. Besides, Tpol is directly proportional to

√
k(2w − 1). When

k = 10, 000, Tpol = 42.875 ms. Based on these results, we depict the variation of computational
overheads in terms of k in Figures 3 and 4.
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Figure 4. The computational overhead of TA and CSs + SP in WAAS.

As shown in Figure 3, the computational overhead of CSs + SP in the basic scheme (BAAS) is
exactly the same as MHDA+. Therefore, we use the same line to depict the variation. We can find
that the overhead of the privacy-enhanced scheme (PAAS) is two times that of BAAS and MHDA+.
When the user number is 100,000, PAAS’s computational overhead is 3898.80 ms, nearly 4 s. Besides,
MHDA+’s overhead is 1949.40 ms, nearly 2 s. Therefore, the privacy-enhanced scheme takes up an
extra 2 s of calculating time, which is acceptable. Even in the big data environment, suppose the user
number reaches 10 million; the calculating time of PAAS is 363,159.64 ms, nearly six minutes. Consider
that the high-performance servers in the cloud and part of the computation burden can be uniformly
distributed; it is possible to reduce the running time into the acceptable range. Thus, PAAS protects
the aggregated data at a low price.

As depicted in Figure 4, the time consumption of TA and CSs + SP in WAAS increases linearly
with the number of users. Besides, the loads of TA and CSs are balanced. When the amount of users
reaches 100,000, the computational overhead of TA is 2018 s, which is close to CSs’ 2184 s. In WAAS,
CSs need to do k bilinear map operations, and TA is required to take 2k modular exponential operations.
These two calculations are time consuming, but both of them can be completed in parallel. Thus, it is
possible to reduce the running time.

6.3. Communication Overhead

First, we compare the communication overhead of the proposed additive aggregation schemes
with MHDA+. As we know, the length of the ciphertext directly reflects the communication overhead.
Therefore, the communication cost of each entity (TA MUs CSs) in BAAS is the same as MHDA+.
In WAAS, the additional communication burden is carried by TA. TA needs to send all of the
encrypted weights of MUs to CSs. Actually, in a system, one user’s weight cannot be set by himself
or herself. Thus, some control centers like TA are bound to manage all of the users’ weight, and
the communication cost is inevitable. In PAAS, each user needs to generate two ciphertexts for one
message. Thus, the communication cost of MU is two times that of MHDA+.

For the proposed non-additive aggregation schemes (NAS) and MHDA⊕, the communication
overhead can be considered in the communication of each MU. In NAS, MU reports its own encrypt
message to CSs. However, MU in MHDA⊕ submits the ciphertext to SP instead. The length of MU’s
ciphertext in MHDA⊕ is a linear function of the size of the plaintext w. That is 2τ(w + 1), where τ is
the security parameter. However, the size of MU’s ciphertext in NAS is a constant 2τ.



Sensors 2016, 16, 1463 20 of 27

Actually, each MU’s packet also contains some other information, such as time stamp, user
ID, and so on. However, the message occupies the most space of one packet. Therefore, we
only consider the message’s communication overhead. As shown in Figure 5, we vary w from
{8, 9, 10, 11, 12, 13, 14, 15, 16, 17} and illustrate the communication cost of PAAS, NAS, MHDA+ and
MHDA⊕ in terms of w. The size of MU’s encrypted data in NAS is the same as MHDA+. Thus, we
use the same line to depict them. Similarly, the communication overhead of MU in PAAS is also a
constant and is irrelevant to w. However, each MU in PAAS needs to generate two ciphertext for one
message. Therefore, PAAS has twice the communication overhead of NAS and MHDA+, that is 4τ.
For MHDA⊕, the overhead of MU increases linearly with the growing of w. Namely, the longer the
message, the larger the communication overhead. Thus, NAS and PAAS are more practical when the
message’s size is large.
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Figure 5. The communication overhead of MU in MHDA+ [6], MHDA⊕ [6], PAAS and NAS.

6.4. Error Analysis

In our additive schemes, we directly add noiseZ to the result M. Then, we obtain the noisy answer
M̃ = M +Z , where Z ∼ Lap(∆ f

ε ). In this section, we use ∆ f to represent any aggregation function’s
sensitivity. Thus, the mathematical expectation of the square difference of the Laplace mechanism is
error(M̃) = E(M̃−M)2, which simplifies to: error(M̃) = E(M +Z −M)2 = E(Z2) = Var(Lap(∆ f

ε )).

Since Var(Lap(∆ f
ε )) = 2 ∆ f 2

ε2 , we have error(M̃) = 2 ∆ f 2

ε2 . As discussed in Section 4.1, the aggregation
functions of BAAS and PAAS are the same, and the sensitivity of both functions is ∆ f = T

k−1 . In WAAS,

∆ f = T·wmax
∑weight −wmax

. Thus, the errors of BAAS and PAAS are error(BAAS) = error(PAAS) = 2T2

ε2(k−1)2 .

We also have error(WAAS) = 2T2w2
max

ε2(∑weight −wmax)2 .

Table 5. Comparison of the error.

BAAS PAAS WAAS HMH MHDA+

error 2T2

ε2(k−1)2
2T2

ε2(k−1)2
2T2w2

max
ε2(∑weight −wmax)2

2mt2

ε2
2e

kε
T

e2 kε
T −2e

kε
T +1
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Table 6. List of error values.

w 12 13 14 15 16 17 18 19 20 21

k 10,000 20,000 30,000 40,000 50,000 60,000 70,000 80,000 90,000 100,000

BAAS/PAAS 33.54 33.55 59.65 134.21 343.59 954.42 2804.86 8589.90 27148.38 87960.85

MHDA+ 33.37 33.38 59.48 134.04 343.42 954.26 2804.69 8589.75 27148.25 87960.80

In our non-additive scheme, we choose not to add noise to the result of max/min and median
aggregations; because the sensitivity of the function will be too large and is irrelevant to k, that is
∆ f = T. However, in MHDA⊕, the authors choose to add noises with a large scale. Therefore,
we can deduce that the error of max/min and median aggregation in MHDA⊕ is 2T2

ε2 . In the reality,
the number of the users (k) is much larger than 10,000 or even more. Therefore, the error of max/min
and median in MHDA⊕ should be larger than 108 error(BAAS), which is unacceptable. For our
histogram aggregation scheme HMH, the sensitivity is ∆ f = t, where t is the level of the query tree T.
Thus, we have error(HMH) = 2mt2

ε2 , where m is the length of the query vectorH.
In MHDA+, the authors directly add noise to the sum of the health data. Therefore, the sensitivity

is T. However, in MHDA+, the noisy sum is divided by k to acquire the noisy average. Therefore, we
can deduce that the sensitivity of the mean value function in MHDA+ is ∆ f = T

k . Note that the noises
in MHDA+ are sampled from the geometric distribution Geom(α). Its probability density function is:

Pr(X = x) =
1− α

1 + α
α|x| (26)

where α = e−
ε

∆ f and 0 < α < 1. Let X be the noise sampled from Geom(α). Then, the error of MHDA+

is error(MHDA+) = E(X2), which is calculated as follows.

E(X2) =
+∞

∑
x=−∞

x2 1− α

1 + α
α|x| = 2

+∞

∑
x=1

x2 1− α

1 + α
αx =

2
1 + α

(
+∞

∑
x=1

x2αx −
+∞

∑
x=1

x2αx+1)

=
2

1 + α
(
+∞

∑
x=1

(2x− 1)αx) =
2

1 + α
(
+∞

∑
x=1

2xαx −
+∞

∑
x=1

αx)

(27)

Let u =
+∞
∑

x=1
2xαx, and v =

+∞
∑

x=1
αx = α

1−α . We can deduce u = 2α( dv
dα ) = 2α( α

1−α )
′ = 2α

(1−α)2 .

Then, we have E(X2) = 2
1+α [

2α
(1−α)2 − α

1−α ] =
2α

(1−α)2 . Since α = e−
ε

∆ f and ∆ f = T
k , the final result can

be calculated as:

error(MHDA+) = E(X2) =
2e

kε
T

e2 kε
T − 2e

kε
T + 1

(28)

The errors of PMHA-DP and MHDA+ [6] are clearly listed in Table 5.
In Table 5, wmax is the largest weight of all of the mobile users. Therefore, wmax must be larger than

the average of all of the users’ weights. Then, (k− 1)wmax ≥ ∑weight−wmax, which can be transformed
into wmax

∑weight −wmax
≥ 1

k−1 . Therefore, the error of WAAS is greater than or equal to that of PAAS and

BAAS. The noise of MHDA+ is sampled from the symmetric geometric distribution, which is a discrete
approximation of the Laplace distribution. Consequently, the errors of MHDA+, BAAS and PAAS can
be considered equivalent approximate. Let ε = 0.1. We vary k from {10,000, 20,000, 30,000, 40,000, 50,000,
60,000, 70,000, 80,000, 90,000, 100,000} and vary w (T = 2w − 1) from {12,13,14,15,16,17,18,19,20,21} to
calculate the error of MHDA+ and BAAS/PAAS. All of the error values of MHDA+ and BAAS/PAAS
are listed in Table 6. Apparently, the difference between error(BAAS/PAAS) and error(MHDA+)

is negligible.
Here, we give a detailed discussion on the dataset. As mentioned above, the sensitivity of the

average aggregation function and the number of the messages are the only parameters that can directly
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affect the noise scale. In reality, there are many different health data, such as blood pressure, body
temperature, heart rate, and so on. Different data types lead to different data ranges and typical sizes.
For instance, usually, the body temperature is within the range 35 ◦C–45 ◦C. For a common person,
the mean value of the body temperature is 36.9 ◦C. However, for another kind of health data, such as
blood pressure, the data range must be totally different from the body temperature. The maximum of
blood pressure should be less than 180 mmHg. In this paper, the maximum of the message should be
less than T. We only consider the size of the largest message to evaluate the sensitivity and the error
of the result. Therefore, the error listed in Table 6 is irrelevant to the type of data. Specifically, once
the maximum value and the message amount are both established, we can calculate the mathematical
expectation of the square difference of the Laplace mechanism.

In HMH, we improve the accuracy of the query through consistency. According to [12],
error(H) = O(t3/ε2) for all query sequences, and there exists a query sequence with
error(H) ≤ 3

2(t−1)(s−1)−s error(H̃). As depicted in Figure 6 and Figure 7, the error of H changes

significantly along with the level and branch of query tree T, when ε = 1.0 and error(H̃) = 1000.
Thus, post-processing makesH more accurate on some query sequences.

Table 7. Comparison of the relative error.

BAAS PAAS WAAS MHDA+

relative error T
(k−1)Mε

T
(k−1)Mε

Twmax
(∑weight −wmax)Mε

2e−
kε
T

M(1−e−
2kε
T )

Another typical way to evaluate the error is to issue queries on the data before and after using
differential privacy and measuring the difference between these query results. Therefore, we also give
a further analysis of the error by leveraging a popular metric called the relative error [6]. This metric can
directly reflect the difference between the original result and the permutated result. The mathematical
expectation of the relative error η is calculated as follows.

η =
E|M̃−M|

M
=

E|Z|
M

s.t. Z ∼ Lap(
∆ f
ε
). (29)

where E|Z| = 2
∫ +∞

0 z · Lap(∆ f
ε )dz = 2

∫ +∞
0 z · ε

2∆ f · e
− z·ε

∆ f dz = ∆ f
ε . Therefore, the relative error

is η = ∆ f
ε·M . As the sensitivity of the aggregation functions are already discussed, we can easily

calculate η. Additionally, the relative errors of each scheme are listed in Table 7.
As analyzed above, the error of WAAS is greater than or equal to that of PAAS and BAAS.

Moreover, the errors of MHDA+, BAAS and PAAS can be considered equivalent approximately.
Here, we assume that the data type is the body temperature. Let ε = 0.1, T = 45 ◦C (i.e., the maximum
temperature of human) and the average temperature M = 37 ◦C. Suppose the number of users is
k = 10, 000. Then, the relative error of BAAS/PAAS is 0.1216%, which is almost the same as MHDA+,
that is 0.1217%. Therefore, the difference between BAAS/PAAS and MHDA+ is negligible.



Sensors 2016, 16, 1463 23 of 27

0 10 20 30 40 50 60 70 80
0

500

1000

1500

Level t of the tree T

E
rr

or

 

 

error(H)

error(H̃)

Figure 6. Error varies with the level.

0 10 20 30 40 50 60 70 80
0

500

1000

1500

Branch factor s of the tree T

E
rr

or

 

 

error(H)

error(H̃)
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7. Further Discussion

In this section, we will discuss four special issues related to our work.
The first issue is temporal aggregation, which is the aggregation of the same user’s data at

different time points. In this paper, we recognize the average aggregation as a representative function
of additive aggregation. Specifically, we only give the spatial aggregation schemes, which is the
aggregation of the different users at the same time point. Actually, the temporal aggregation is similar
to spatial aggregation. The servers can just multiply all of the corresponding user’s encrypted health
data to obtain the encrypted sum. Moreover, the jointly decryption of the encrypted sum is exactly the
same as the spatial aggregation.

The second issue is fault tolerance. The computational missions are assigned to l + 1 CSs in
PMHA-DP, and the total number of CSs is more than 2l + 1. According to the adversary model,
no more than l servers could be compromised. Therefore, at least l + 1 servers can accomplish
computational tasks. Hence, our scheme supports fault tolerance of CS failures. BAAS supports the
user failures. When some users refuse to report their health data, the CSs only need to record the
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number of normal users and calculate the encrypted sum as usual. Then, TA divides the sum by the
number of normal users to acquire the average value. Our non-additive schemes also support fault
tolerance of user failures. In WAAS, CSs can report the abnormal users’ weights to TA. Then, TA is able
to figure out the total weight of the normal users. Thus, the weighted average of normal users can be
calculated by TA. Therefore, both WAAS and PAAS support fault tolerance of user failures; because TA
can still obtain the normal users’ sum through solving Equation (19). In a word, PMHA-DP achieves
some functions and supports fault tolerance simultaneously.

The third issue is data type. PMHA-DP can be extended to some other scenarios with different
data types; such as salary, age, height and some other short personal record. As we know, the
Boneh–Goh–Nissim cryptosystem applied in this scheme is a homomorphic public key encryption
scheme. The same as the other public key cryptosystem, it also suffers from low efficiency of encryption
and decryption. Thus, it is often used to encrypt some short messages. Moreover, the proposed solution
cannot be adapted to the scenario of file encryption and some other kinds of huge messages. If a user
wants to encrypt one’s own video file before outsourcing it to the cloud, the secret key cryptosystem
may be a better choice.

The fourth issue is data tampering. The compromised users may send tampered data to the cloud
servers. For instance, a malicious user may send some abnormal data to the cloud (e.g., a compromised
user may set his or her temperature as 100 ◦C), which directly impacts the aggregation result. These
abnormal data are not easy to detect under the ciphertext environment, and it will indeed decrease the
accuracy of the statistics. How to kick out the compromised users and detect the tampered data are
both challengeable problems. Several data aggregation schemes [6] are suffering from these problems,
as well. At present, we have no practical solution. Therefore, these problems are important, and we
will push a further study them in future work.

8. Related Work

Cloud-assited WBANs is evolved from the traditional wireless sensor networks (WSNs) [20–22],
which is widely used in healthcare applications. Actually, some cryptology-based techniques, such as
key evolution [23], public verification [24], searchable encryption [25] and user authentication [26], can
also be applied in the cloud-assisted WBANs. We will make in-depth study on these techniques in the
future. However, in this section, we mainly introduce the state-of-the-art works closely related to our
paper. We first review the privacy-preserving data aggregation schemes and then recall some about
differential privacy.

Privacy-preserving data aggregation is a kind of cryptology-based technique, which aims at
protecting sensitive data. In [8], Lu et al. provide an efficient aggregation scheme called EPPA.
It structures multi-dimensional data into a ciphertext by utilizing a super-increasing sequence. Due to
the batch verification technique, EPPA significantly decreases the communication and computational
overheads. However, the fault tolerance and differential privacy are not supported. In [9], Chen et al.
present PDAFT , which supports both spatial and temporal aggregation. Moreover, PDAFT also
supports fault tolerance. However, it does not provide multifunctional aggregation and differential
privacy guarantees. In [27], Li et al. leverage a novel key management technique to support
large plaintext space. Their scheme can accomplish min aggregation, which can be extended to
max aggregation. However, it fails to support multifunctional aggregation and fault tolerance.
Chen et al. [10] propose a scheme called MuDA . It supports variance aggregation and one-way
ANOVA aggregation with differential privacy. Besides, MuDA leads to less communication overhead
than the scheme proposed by Shi et al. [28]. However, MuDA cannot support fault tolerance either.

Han et al. [6] present a multifunctional aggregation scheme with fault tolerance called PPM-HDA.
PPM-HDA supports both temporal and spatial aggregation. Besides, the differential privacy
mechanism is also applied. However, there are still some functions, like weighted average and
histogram aggregation, which are not discussed in [6].
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Differential privacy [29–31] is a promising technique that can achieve a mathematically-precise
guarantee of privacy. In [13], Dwork et al. classify data release under differential privacy into
two different models: interactive and non-interactive [32,33]. Dwork et al. [13] proposed the
widely-used Laplace mechanism.

The private histogram reflects the data distribution. The results can be used for statistical query or
other linear queries. Many works are done by using the private histogram. For instance, Blum et al. [32]
construct a one-dimensional histogram by dividing the input counts into several bins, where the counts
in each bin are approximately equal. Meanwhile, Xiao et al. explore a wavelet-based approach to
handle multi-dimensional dataset. In [34], Xu et al. develop several methods of building an optimal
histogram under ε-differential privacy. Multi-dimensional partitioning strategies for differential
private histogram release can be found in [35]. Recently, Li et al. [36] proposed a new histogram
publish scheme that achieve higher accuracy. However, these schemes are lacking efficiency in the
histogram partition and data update.

Some differential privacy mechanisms take post-processing to reduce the noise scale. Boosting the
accuracy of the query through consistency is feasible. Barak et al. [37] firstly make a contribution to it.
Moreover, Hey et al. [12] answered histogram queries by a basic hierarchical method. They also apply
the technique of constrained inference to improve query accuracy. Recently, Lee et al. [38] formulated
the post-processing step as a constrained maximum likelihood estimation problem, which is equivalent
to constrained L1 minimization. The proposed scheme is suitable for a wide variety of applications,
including differential private contingency tables, histograms and linear queries.

9. Conclusions

In this paper, we propose a privacy-enhanced and multifunctional health data aggregation scheme,
which is able to support fault tolerance. Specifically, we utilize the cloud-assisted WBANs system as
our storage, computation and communication supporter. The proposed scheme achieves additive and
non-additive aggregation simultaneously. We provide a few new aggregation functions and protect
the aggregated data from the CSs. The performance evaluation indicates that the communication and
computational overhead is reduced. For the future work, we are going to focus on the data aggregation
techniques in the environment of big data. We will try to achieve some other functions and boost the
efficiency of the scheme.
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