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Simple Summary: Cervical cancer is the most commonly diagnosed gynecological malignant carci-
noma worldwide. It is crucial to develop reliable prognostic models to predict clinical outcomes and
identify patients who will benefit from different treatment strategies. In current study, we identified
a reliable metabolism-related signature composed of ALOX12B, CA9, FAR2, F5 and TDO2 for the
prognosis and anti-tumor immunity in cervical cancer. Patients with high-risk score underwent
apparently worse prognosis and displayed lower infiltration of tumor infiltrating lymphocytes. Addi-
tionally, the metabolism-based risk score could also predict the prognosis of patients with cervical
cancer based on the expression of immune checkpoints. Since this risk score signature achieves a
good performance in predicting clinical outcome, we genuinely expect that our study could provide
an effective prognostic tool for guidance of personalized treatment of cervical cancer patients.

Abstract: Cervical cancer is the most frequently diagnosed malignancy in the female reproductive
system. Conventional stratification of patients based on clinicopathological characters has gradually
been outpaced by a molecular profiling strategy. Our study aimed to identify a reliable metabolism-
related predictive signature for the prognosis and anti-tumor immunity in cervical cancer. In this
study, we extracted five metabolism-related hub genes, including ALOX12B, CA9, FAR2, F5 and
TDO2, for the establishment of the risk score model. The Kaplan-Meier curve suggested that patients
with a high-risk score apparently had a worse prognosis in the cervical cancer training cohort (TCGA,
n = 304, p < 0.0001), validation cohort (GSE44001, n = 300, p = 0.0059) and pan-cancer cohorts
(including nine TCGA tumors). Using a gene set enrichment analysis (GSEA), we observed that
the model was correlated with various immune-regulation-related pathways. Furthermore, pan-
cancer cohorts and immunohistochemical analysis showed that the infiltration of tumor infiltrating
lymphocytes (TILs) was lower in the high-score group. Additionally, the model could also predict the
prognosis of patients with cervical cancer based on the expression of immune checkpoints (ICPs) in
both the discovery and validation cohorts. Our study established and validated a metabolism-related
prognostic model, which might improve the accuracy of predicting the clinical outcome of patients
with cervical cancer and provide guidance for personalized treatment.

Keywords: cervical cancer; metabolism-related genes; risk score signature; prognostic model; im-
mune infiltration

1. Background

Cervical cancer is the most commonly diagnosed gynecological malignant carcinoma
and accounts for an estimated 604,000 new cases and 342,000 deaths annually worldwide [1].
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During the past few decades, although cervical cancer screening programs and comprehen-
sive treatment strategies, including emerging anti-tumor immunotherapy, have reduced
the incidence and mortality rates in most areas of the world, the prognosis of advanced
cervical cancer patients is still not improved. Therefore, it is crucial to develop reliable
prognostic models to predict clinical outcomes and identify patients who will benefit from
different treatment strategies.

Metabolic reprogramming in cells and changes in energy metabolism levels have been
identified as an emerging hallmark of cancer [2,3]. Increased aerobic glycolysis, fatty acid
(FA) metabolism and glutamine decomposition contribute to malignant transformation,
the invasion-metastasis cascade, tumor microenvironment (TME) stress and the treatment
resistance of cancers [4–7]. Previous studies have shown that the Warburg effect and
mitochondrial dysfunction favored the metabolic adaptation and survival of cervical cancer
cells [8], and that reprogramming of fatty acid metabolism was associated with lymph
node metastasis of cervical cancer [9]. Meanwhile, metabolic profiles could also distinguish
cervical precancerous lesions from the normal cervical epithelium [10].

It is increasingly clear that crosstalk between abnormal metabolism and immune
escape assumes a key role in the process of tumor progression [11,12]. For instance,
cervical cancer cells can secrete lactate to convert the phenotype of tumor macrophages [13].
Recently, the application of bioinformatic analysis in predicting the prognosis and treatment
response of patients with a malignant tumor has attracted rising attention. Within the
context, some researchers have combined metabolomics with genomics to demonstrate the
relationship between metabolism and immune infiltration [14–16]. However, to date, the
association between the metabolism-based risk score model and TME landscape in cervical
cancer remains uncharted territory.

In the current study, we established a novel prognostic metabolism-related risk score
based on cancer genomics, bioinformatics and immunohistochemical analysis. The associa-
tion between the risk score and infiltration of tumor infiltrating lymphocytes (TILs) was
explored in a cervical cancer training cohort, a validation cohort and pan-cancer cohorts.
Moreover, we also utilized the risk score to predict the prognosis of cervical cancer patients
in the context of different expression of immune checkpoints.

2. Materials and Methods
2.1. Data Retrieval and Identification of Differentially Expressed Metabolism-Related Genes

The metabolism-related gene sets were downloaded from the Molecular Signature
Database (MSigDB) via the Gene Set Enrichment Analysis tool (GSEA, http://software.
broadinstitute.org/gsea/index.jsp (accessed on 3 May 2021)). The RNA sequencing tran-
scriptomics data and corresponding clinical information were retrieved for a total of
304 cervical cancer tissues and another 32 cancer types from the TCGA database (https:
//tcga-data.nci.nih.gov/tcga/ (accessed on 3 November 2020)). We excluded samples
whose overall survival (OS) or survival status were not available. We also obtained GTF
files from Ensembl (http://asia.ensembl.org (accessed on 3 November 2020)) for annotation
of the mRNA. Besides, 24 normal and 28 cervical cancer samples (GSE63514) based on the
GPL570 (Affymetrix Human Genome U133 Plus 2.0 Array) platform, as well as 300 early
cervical cancer tissues (GSE44001) based on the GPL14951 (Illumina HumanHT-12 WG-
DASL V4.0 R2 expression beadchip) platform were, respectively, collected from the GEO
database (http://www.ncbi.nlm.nih.gov/geo (accessed on 3 May 2021)).

The differentially expressed genes (DEGs) were identified using the R package limma.
The volcano plot of DEGs was plotted and visualized with the R package ggplot2. Mean-
while, the overlapping genes of DEGs and metabolism-related gene sets were presented
using the Venn diagram online tool (http://www.bioinformatics.com.cn/static/others/
jvenn/example.html (accessed on 4 May 2021)).

http://software.broadinstitute.org/gsea/index.jsp
http://software.broadinstitute.org/gsea/index.jsp
https://tcga-data.nci.nih.gov/tcga/
https://tcga-data.nci.nih.gov/tcga/
http://asia.ensembl.org
http://www.ncbi.nlm.nih.gov/geo
http://www.bioinformatics.com.cn/static/others/jvenn/example.html
http://www.bioinformatics.com.cn/static/others/jvenn/example.html
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2.2. Functional Enrichment Analysis

Gene ontology (GO) analysis was performed using the R package clusterProfiler based
on the DEGs between high- and low-score groups to speculate the possible function
terms. The p values were adjusted via the BH method and an adjusted p value < 0.05
was considered statistically significant. Herein, we displayed some significant enrichment
outcomes in the aspect of the biological process (BP). Furthermore, we also evaluate the
enrichment levels of 50 hallmark pathways using R packages GSVA and msigdbr. Based on
the GSVA score, we conducted the differential analysis for these hallmark pathways with
the R package limma between high- and low-score groups. In addition, we also resorted
to the online tool EMTome (www.emtome.org (accessed on 19 May 2021)) to obtain the
enriched networks of five metabolism-related hub genes.

2.3. Construction of the Metabolism-Related Risk Score Signature

The association of the 211 overlapped genes with clinical outcomes of cervical cancer
patients was analyzed via univariate Cox regression analysis. Those genes with a p value
less than 0.05 were selected for further multivariate Cox regression analysis. In this manner,
we identified five hub genes that had independent prognostic values. In this step, the
R packages plyr and survival were applied. Then we developed the risk score signature
consisting of the five hub genes, and the total risk score of this biosignature was calculated
as the following formula: Risk Score = ∑N

i=1 βi · Genei, where N is the number of hub
metabolism-related genes, βi refers to the regression coefficient and Genei represents the
expression level of each gene identified by multivariate Cox analysis. The cut-off for this risk
model was defined as its median value. Subsequently, the patients were classified into high-
risk and low-risk groups according to the median threshold. The ROC curve was plotted
via the R package timeROC to assess the predictive potential of this signature for overall
survival. The Kaplan-Meier survival curve was also conducted to evaluate the difference in
patient prognosis of two subgroups using the R packages survival and survminer.

2.4. Predictive Power of This Signature in the Validation Cohort and Pan-Cancer Cohorts

The predictive performance of the risk score derived from the set of five metabolic
genes was evaluated in the training cohort, as well as the validation cohorts. The multi-
variate Cox regression analysis demonstrated that the risk score served as an independent
prognostic factor and, subsequently, we constructed an OS-related nomogram with this
score using the R package rms. Furthermore, the C-index of this model was measured
and the result suggested that the signature had reliable predictive power. Moreover, the
calibration plots of this nomogram were presented to measure its predictive accuracy in
comparison to the actual curve of the survival time.

The expression profile of early cervical cancer patients in GSE44001 was retrieved as
a testing cohort to validate the model externally. The Kaplan-Meier analysis was used to
explore the universality of this signature, while the ROC curve was also plotted via the
R package timeROC. Moreover, we validated the predictive power of this model in other
cancer types. We performed a pan-cancer analysis in 33 cancer types from the TCGA project
by univariate Cox regression analysis, taking advantage of this risk score. The R packages
survival and plyr were applied in this step.

2.5. Measurement of Tumor-Infiltrating Immune Cells and the Potential Response of Patients for
Immunotherapy

An integrated list of representative marker genes of tumor-infiltrating immune cell
types was acquired from Charoentong’s research, which involved a total of 366 microarrays
of immune cells summarized from 37 previous studies [17]. To evaluate the infiltration
of immune cells, we conducted the single-sample gene set enrichment analysis (ssGSEA)
algorithm using these marker gene sets of different immune cells with the R package GSVA,
which could measure the normalized enrichment score of multiple immune cell types.
The tumor abundance of these immune cells between high-and low-risk groups was also

www.emtome.org
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plotted using the ggplot2 package. In the meantime, we downloaded the enriched results
from ImmuCellAI, which estimated the abundance of 24 immune cells in the TCGA-CESC
cohort [18]. The immune network of 24 ImmuCellAI cell types in the TCGA cohort was
illustrated by the R packages reshape2, corrplot and igraph. In this Circos plot, we shed
light on the correlation among these cell types and their survival impact by Spearman
correlation analyses and univariate Cox regression analyses. Correlation between the
established signature and these immune cells was also calculated by Spearman analyses
using the R software.

Kaplan-Meier analysis was carried out to clarify the relationship between the prognosis
of patients with similar expression levels of immune checkpoints and the established
signature. The R packages survival and survminer were utilized to draw the plot and
conduct multiple comparisons between different survival curves.

2.6. Tissue Microarray and Immunohistochemical (IHC) Staining

The study was approved by the Institutional Ethics Committee of Shanghai General
Hospital. Cervical cancer (n = 32) and normal cervix (n = 32) tissue microarrays were
purchased from Shanghai Zuocheng Biotech (Shanghai, China). We performed the IHC
analysis as previously described [19]. The antibodies used in the study were listed as
follows: anti-ALOX12B rabbit polyclonal antibody (NBP1-89409, Novus Biologicals, Col-
orado, CO, USA), anti-FAR2 rabbit polyclonal antibody (NBP1-90435, Novus Biologicals,
Colorado, CO, USA), anti-F5 rabbit polyclonal antibody (20963-1-AP, Proteintech, Wuhan,
China), anti-CA9 rabbit polyclonal antibody (11071-1-AP, Proteintech, Wuhan, China),
anti-TDO2 rabbit polyclonal antibody (15880-1-AP, Proteintech, Wuhan, China), anti-CD4
mouse monoclonal antibody (67786-1-Ig, Proteintech, Wuhan, China), anti-CD8 mouse
monoclonal antibody (66868-1-Ig, Proteintech, Wuhan, China), anti-CD57 rabbit polyclonal
antibody (19401-1-AP, Proteintech, Wuhan, China) and anti-CD68 mouse monoclonal an-
tibody (66231-2-Ig, Proteintech, Wuhan, China). The immunoreactivity score (IRS) was
used to evaluate the expression level of each protein. The staining intensity was scored as:
negative = 0, weak = 1, moderate = 2 and strong = 3. The staining extent was scored as:
0 (no positive cells), 1 (≤25% positive cells), 2 (26–49% positive cells), 3 (50–74% positive
cells) and 4 (≥75% positive cells). IRS = extent score × intensity score. The numbers of
CD4+ cells, CD8+ cells, CD57+ cells and CD68+ cells at the tumor site were counted under
five randomly selected microscopic fields.

2.7. Scoring of Immune Cell Infiltration

We performed the scoring of immune cell infiltration (CD4+ cells, CD8+ cells, CD57+

cells and CD68+ cells) according to the methods used in the previous study [20]. Briefly,
stained samples were assessed and scored on a five-point scale for the infiltration level of
cells into epithelial or stromal areas, with regard to the range of infiltration, as the following
scale: no positive events found on slide = 1, rare positive events observed = 2, low density
of infiltration = 3, medium density of infiltration = 4 and high density of infiltration = 5.

2.8. Statistical Analysis

All of the statistical process was completed within the R software (version 4.0.4). The
Wilcoxon test was applied to compare between two groups, while the Kruskal-Wallis test
was used to compare among more than two groups. The Kaplan-Meier plot was performed
to present survival curves for different groups, and the log-rank test was employed to
evaluate the significance of statistical differences. Spearman analysis was carried out to
determine the correlation coefficient. For all the analyses above, a two-tailed p < 0.05 was
considered as statistically significant.
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3. Results
3.1. Construction of a Metabolism-Related Risk Score Signature in Cervical Cancer

The whole flow diagram of this study is presented in Figure 1A. To screen differentially
expressed metabolism-related genes in cervical cancer, we extracted the expression profiling
data of a cohort from GSE63514 and collected a panel of 1378 metabolism-related genes
from MSigDB. As demonstrated in Figure 1B,C, the volcano plot visualized the DEGs
and a total of 211 metabolism-related DEGs showed significant dysregulation in the GEO
dataset. After being intersected with the expression profile of the TCGA-CESC cohort,
206 overlapping genes were taken into account for further study.
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(DEGs) between tumor and normal samples using GEO dataset (GSE63514) and annotation of GPL570
platform. The volcano plot (B) and Venn diagram (C) are shown. (D) The uni- and multi-variate Cox
regression analysis results of the five metabolism-related hub genes in TCGA-CESC cohort. (E,F) The
association between risk score and clinicopathological characters as well as enrichment scores of
specific gene sets, including EMT, angiogenesis and hypoxia, of patients in TCGA cohort. The
statistical difference of two groups was compared through the Wilcoxon test. * p < 0.05; **** p < 0.0001.
(G) Representative immunostaining pictures of the five hub genes (ALOX12B, FAR2, F5, CA9 and
TDO2) in tumor and normal tissues. Scale bar = 50 µm. The protein levels were plotted as a boxplot.
* p < 0.05. MRGs, metabolism-related genes; ANT, adjacent non-tumor tissue; SCC, squamous
cell carcinoma.

The univariate Cox regression was implemented to examine the prognostic value of
metabolism-related DEGs based on the transcriptome data from the TCGA-CESC project.
Those DEGs whose p < 0.05 subsequently underwent a multivariate Cox regression. Eventu-
ally, five genes (ALOX12B, CA9, F5, FAR2 and TDO2) with significant regression coefficients
were incorporated to set up a prognostic risk model (Figure 1D and Supplementary Table
S1). The risk score based on the set of the five metabolic genes was calculated with the
following formula: risk score = −0.1083206 × ALOX12B + 0.1375361 × CA9 − 0.3202668 ×
F5 + 0.2241991 × FAR2 + 0.2649977 × TDO2.

The relationship between the risk score and clinicopathological characteristics was
explored. We found that patients with a more advanced clinical stage displayed higher
risk scores (p = 0.0244), whereas there was no significant association between the signature
and the histological grade of TCGA-CESC patients (Figure 1E). There were also statistically
significant differences between the high- and low-risk groups in terms of the enrichment
score of gene sets correlated with hypoxia, EMT and angiogenesis (p < 0.0001, Figure 1F).
Among the five genes, the expression of ALOX12B and F5 was decreased, while that of
CA9, FAR2 and TDO2 was relatively elevated in cervical cancer samples, as indicated by
the IHC results (Figure 1G).

3.2. Verification of the Metabolism-Related Risk Score Signature

Then we calculated the metabolism-related risk score of all the CESC patients according
to the formula and re-divided them into high-risk and low-risk groups based on the median
cut-off value. Evidently, the high-risk group comprised more death cases than the low-risk
group, and the differential expression levels of these genes conformed to their prognostic
impact (Figure 2A). A Kaplan-Meier survival analysis revealed that patients in the high-
risk group exhibited significantly worse clinical outcomes (p < 0.0001, Figure 2A). The
time-dependent ROC curve indicated that the risk score had a relatively higher accuracy
in predicting the 3-year (AUC = 0.767, NPV = 0.846, PPV = 0.583) and 5-year OS (AUC =
0.779, NPV = 0.901, PPV = 0.514) (Figure 2A). A prognostic nomogram was also established
based on the predictive indicator of the risk score, which proved to be an independent
prognostic factor in CESC patients (Figure S1A). The c-index of this model was 0.742 and
the calibration curve demonstrated that the nomogram-predicted overall survival was close
to the actual values of the 1-, 3- and 5-year survival rates (Figure S1B). The decision curve
analysis (DCA) further indicated that the risk score benefited patients with CESC in clinical
practice (Figure S1C).
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heatmap of expression profiles of the five hub genes. The middle panel displays the results of
Kaplan-Meier analysis. The 3- and 5-year ROC curves curves of this optimal model (the right panel)
revealed the AUC values. (B) The risk curve, heatmap of expression profiles (the left panel), results
of Kaplan-Meier analysis (the middle panel) and ROC curves at 3 and 5 years (the right panel) of
patients in GSE44001 cohort. (C) Forest plot of the univariate Cox regression analyses results of this
risk score signature in all 33 types of cancer from TCGA database (the left panel). The Kaplan-Meier
survival analyses and ROC curves of TCGA-HNSC and TCGA-LGG cohorts were plotted on the
right panel. AUC, area under curve; ROC, receiver operating characteristic. * p < 0.05; ** p < 0.01;
*** p < 0.001, **** p < 0.0001.

An independent GEO dataset (GSE44001) was used to validate the aforementioned
risk score. Three hundred early cervical cancer patients were categorized into low- and
high-risk groups based on the median cut-off value, and the heatmap of expression levels
of the five hub genes validated their differential distribution between the two subgroups
(Figure 2B). Similarly, the Kaplan-Meier survival analysis revealed that patients in the
high-risk group displayed significantly worse clinical outcomes (p = 0.0059, Figure 2B), and
the time-dependent ROC curve also suggested that the risk score had a relatively higher
reliability in predicting the 3-year (AUC = 0.582, NPV = 0.938, PPV = 0.13) and 5-year DFS
(AUC = 0.642, NPV = 0.921, PPV = 0.238) (Figure 2B).

Meanwhile, the pan-cancer validation analysis in the other 32 cancer types of the
TCGA project revealed that the risk score composed of the five metabolism-related genes
could successfully discriminate between patients with better or worse clinical outcomes
in the other eight cancer types (Figure 2C), such as breast invasive carcinoma (BRCA),
head and neck squamous cell carcinoma (HNSC), brain lower grade glioma (LGG), liver
hepatocellular carcinoma (LIHC), pancreatic adenocarcinoma (PAAD), etc. Therefore, these
results suggested that the metabolism-based risk score might be a promising prognostic
classifier, which could be applied to predict the clinical outcome of patients with various
types of malignancy.

3.3. Functional Enrichment Analysis of the Metabolism-Related Risk Score Signature

According to the estimated infiltration levels of 24 immune cells from the ImmuCellAI
database, we visualized the immune landscape of patients in the TCGA-CESC cohort via
an immune network (Figure 3A). Among the 24 immune cells, B cells, Tfh cells, CD4 T cells
and CD8 T cells were protective factors with significance, while neutrophils and monocytes
were significant risk factors. Our established signature showed a positive correlation
with these risk factors but it was negatively correlated with the protective immune cells
(Figure 3B).

GO and GSEA analyses were conducted to shed light on the possible function of
these DEGs and the underlying mechanism. As shown in Figure 3C, significantly enriched
GO terms involved ‘T cell mediated immunity’, ‘humoral immune response’ and ‘antigen
processing and presentation via MHC class Ib’. In addition, GSEA analysis suggested a
series of enriched hallmark pathways that were activated in the high-score group compared
with the low-score group (Figure 3D). For instance, the upregulated pathways involved
‘glycolysis’, ‘DNA repair’, ‘epithelial-mesenchymal transition’ and ‘TGFβ signaling’, while
the suppressed pathways included ‘inflammatory response’, ‘IL6-JAK-STAT3 signaling’
and ‘IFNα response’. These results suggested that the risk score might play a crucial role in
the regulation of the immune response.

Furthermore, we also obtained the enrichment terms of the five metabolism-related
hub genes via the online tool EMTome and the enriched networks are shown in
Supplemental Figure S2. Moreover, we quantified the enrichment score of the metabolic-
related pathways, and plotted their abundance in high- and low-risk groups
(Supplemental Figure S3A,B).
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the formula log10 (p-values of univariate Cox regression analyses). The color of each cell was used to
represent the different survival impact of these cell types. The thickness of the lines estimated by
Spearman correlation analyses depicted the strength of correlation between diverse cell types. Red
represents positive correlation whereas negative is in blue. (B) Correlation between these cell types
and our established risk score in the TCGA cohort. Spearman analyses were applied to calculate the
correlation coefficients and p-value < 0.05 was enrolled. (C) Gene ontology (GO) enrichment analysis
of the differentially expressed genes between high- and low-risk groups in the TCGA-CESC cohort.
Adjusted p-value < 0.05 was considered statistically significant. (D) GSVA analysis of hallmark
pathways in the TCGA cohort was performed. Differential analysis of GSVA score between high-
and low-risk groups was displayed. (E) Patients in the high-risk group were associated with lower
infiltrating density of most cell types according to Charoentong’s research. * p < 0.05; ** p < 0.01;
*** p < 0.001.

3.4. Correlation between the Metabolism-Related Risk Score and Immune Landscape

The normalized enrichment scores (NES) of different immune cells in the TCGA-CESC
project were calculated based on the gene expression profiles via the ssGSEA algorithm
(Figure 3E). We found that specimens in the high-risk group were conferred a significantly
lower infiltrating density of various immune cells, such as activated CD4 T cells, activated
CD8 T cells, macrophages and CD56dim natural killer cells. In addition, we performed
Spearman correlation analyses and found that the risk score and five hub genes were closely
linked to the immune landscape (Supplementary Figure S4).

To verify the difference in infiltration levels of immune cells, we stained histology
sections for immune markers including CD4, CD8, CD57 and CD68, and scored for the
extent of infiltration both in the epithelial and stromal tumor compartments based on
the density of positive staining for immune cell populations (Figure 4A). The IHC results
revealed that in the high-risk group, CD4 T cells, CD8 T cells, macrophages and NK cells
exhibited consistently significantly lower densities of infiltration both in the stromal and
epithelial content. The outcome suggested that detectable differences in immune cell
recruitment was correlated with our established risk score.

In the pan-cancer cohorts, our conclusion was also validated in a number of cancer
types, as shown in Figure 4B and Supplementary Figure S5. It was obvious that patients
with higher levels of our established risk score tended to exhibit lower infiltration of diverse
immune cells across several cancer types.

3.5. Prognostic Value of the Established Signature in Cervical Cancer Patients for Immunotherapies

Meanwhile, we retrieved the list of genes encoding immunostimulators, immunoin-
hibitors, chemokines and receptors from the TISIDB website [21]. Notably, the high- and
low-risk groups displayed distinct expression patterns of these immune-related molecules,
which also depicted their disparity in the immune landscape (Figure 5). For instance, the
expression levels of most immunostimulators, involving ICOS and TNFRSF members, were
augmented in the low-risk group rather than the high-risk group (Figure 5A).

Furthermore, we stratified patients in the training cohort, as well as the validation
cohort, with our established signature based on the expression levels of different immune
checkpoints (ICPs), and found that a higher risk score indicated a worse prognosis in
patients with similar levels of ICPs (Figure 6). Consistently, we observed that patients with
a lower risk score on the basis of similar expression of ICPs experienced a more favorable
clinical outcome. For example, patients with a high risk score and high PD-1 displayed a
shortened OS or DFS time compared to those with a low risk score and high PD-1 (p < 0.001).
Similar survival patterns could be also observed using the risk score and PD-L1, CTLA-4,
CD47, CD38, CD28 and BTLA (Figure 6 and Supplementary Figure S6). These observations
suggested that the risk score might serve as a predictive biomarker of treatment response
to immunotherapies.



Cancers 2022, 14, 2399 11 of 18Cancers 2022, 14, x FOR PEER REVIEW 12 of 19 
 

 

 
Figure 4. Correlation between the metabolism-related risk score and immune landscape. (A) Repre-
sentative immunostaining pictures of the five hub genes and four cell types (CD4+, CD8+, CD57+ Figure 4. Correlation between the metabolism-related risk score and immune landscape. (A) Repre-

sentative immunostaining pictures of the five hub genes and four cell types (CD4+, CD8+, CD57+ and
CD68+ cells). The upper panel comprises images of five hub genes, images of four cell types were in



Cancers 2022, 14, 2399 12 of 18

the middle panel. Scale bar: 50 µm. The lower panel illustrates the infiltration scores of tumor-
infiltrating CD4+, CD8+, CD57+ and CD68+ cells in the epithelial or stromal cell compartments.
* p < 0.05. (B) Differences in the infiltration levels of 28 immune cells between high- and low-score
groups in the pan-cancer validation cohorts. * p < 0.05; ** p < 0.01; *** p < 0.001.
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cervical cancer patients. (A) Kaplan-Meier curves for patients in the TCGA-CESC cohort stratified by
the risk score and expressions of immune checkpoints, such as PD1, PD-L1, CTLA-4, CD28, CD38
and CD47. * p < 0.05; ** p < 0.01; *** p < 0.001; **** p < 0.0001. (B) Kaplan-Meier curves for patients in
the GSE44001 validation cohort stratified by the risk score and expressions of immune checkpoints,
such as PD1, PD-L1, CTLA-4, CD28, CD38 and CD47. * p < 0.05; ** p < 0.01.
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4. Discussion

Previous studies have established metabolism-related signatures for the survival
prediction of patients with several types of cancer [14,22]. Herein, we developed a novel
risk score signature based on the expression of five metabolism-related hub genes and
evaluated its prognostic value in cervical cancer patients. This prognostic score model was
confirmed in an independent cervical cancer validation cohort and pan-cancer cohorts.
Furthermore, we validated the correlation between this risk score and immunologic features,
which might potentially improve the accuracy of predicting the clinical outcome of patients,
in combination with the conventional clinical staging. To our knowledge, this is the first
study to establish a metabolism-related risk score model in cervical cancer patients, which
could also be testified in various kinds of cancers simultaneously.

The TME is a complicated system which undergoes dynamic changes [23]. The com-
plex components of the TME nurture the surrounding environment that is essential for
tumor growth. More and more studies have revealed that specific metabolic patterns of the
TME potentiate tumor progression or treatment resistance [24–26]. Under specific condi-
tions such as hypoxia, metabolic reprogramming occurs to enhance cellular proliferation,
and cancer cells have been proven to facilitate the metabolism of reactive oxygen species,
lactate, lipids, glutamine and glucose, as well as amino acids [27]. For instance, rather than
the oxidative phosphorylation conducted by normal cells, cancer cells are inclined to adopt
lactate metabolism and glycolysis [28]. Besides, atypical lipid metabolism has also been
linked to tumor recurrence and CD8+ T cell exhaustion, giving rise to post-chemotherapy
evasion of immune surveillance [29,30]. Metabolic reprogramming and redox imbalances
were also revealed to mediate the development and maintenance of dormant cancer cells in
various malignancies, which was caused by endoplasmic reticulum (ER) stress responses
and oxidative stress [31]. As a result, exploring the specific metabolic disorders and deter-
mining several metabolism-related genes that were implicated in tumorigenesis would help
to predict the prognosis and therapeutic responsiveness. To this end, we developed and val-
idated a novel metabolism-related risk score signature consisting of five metabolism-related
hub genes to predict the clinical outcomes of cervical cancer patients. The AUC of the ROC
curves of the TCGA cohort, based on this risk score signature model, was higher than 0.76
at the 3- and 5-year OS. Importantly, our results pinpointed that the high-risk group was
characterized by a lower extent of immune infiltration. Bioinformatic enrichment analyses
also identified several immune-related signaling pathways as potentially relevant path-
ways between the high- and low-score groups. Considering that the immunosuppressive
microenvironment could facilitate tumor progression, the high-risk score patients were
presumed to bear a higher tumor burden.

Biomarker-based patient stratification has gained much attention, which calls for more
accurate evaluation of these molecular properties. Especially for those patients who receive
immunotherapy, the comprehensive analysis of the risk score, as well as immune checkpoint
expression, could hopefully foretell the reactivity of these patients and therefore screen
out the appropriate patients for immunotherapy [32–34]. Immune checkpoints expressed
on cancer cells or cancer-associated immune cells have drawn substantial attention as
promising treatment targets nowadays [35]. A mounting number of studies have attempted
to develop immune-based biomarker signatures to depict the survival rate and tumor
progression of patients [35–39]. In this study, we analyzed the expression levels of these
immune checkpoints in the context of cervical cancer. As Figure 6 shows, patients in the
high-risk group exhibited shorter overall survival or disease-free survival on the condition
that they had similar expression levels of ICPs. This exploration may potentially guide a
more personalized treatment for immunotherapies.

As a member of our risk score model, tryptophan 2,3-dioxygenase 2 (TDO2) catalyzes
the commitment step of the KYN metabolic process, which subsequently activates the
AhR and contributes to an immunosuppressive TME, and supports the cancer immune
escape [40,41]. FAR2, namely the fatty acyl-CoA reductase 2, has been found to be localized
in the peroxisome and participate in the first step of wax biosynthesis [42]. Previous studies
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have shown that overexpression of FAR2 induced the upregulation of platelet-activating
factor (PAF) and profibrotic cytokine TGF-β in a mouse mesangial cell line. Another
research revealed that FAR2 mediated the de novo synthesis of PAF, a potent inflammatory
mediator activating platelets, eosinophils, neutrophils and macrophages, in vitro [42,43].
As for carbonic anhydrase 9 (CA9), a pH-regulating transmembrane protein which is
overexpressed in solid tumors, it was proven to repress the mitochondrial biogenesis,
favor the Warburg phenotype and activate glycolysis [44,45]. CA9 equilibrates among
hypoxia, iron metabolism, and redox regulation in tumor cells [46]. Beyond that, CA9
also upregulated amino acid transporters to increase the intracellular content. Ectopic
expression of CA9 is a biomarker of poor prognosis in breast cancer, tongue squamous cell
carcinoma, and pancreatic and lung cancers [47–49].

On the other side, high expression of coagulation factor 5 (F5) was found to be as-
sociated with improved overall survival of patients with breast cancers [50]. Therefore,
tumor-derived F5 appears to be beneficial to patient survival, which is compatible with the
tumor suppressor function proposed by our study. Consistently, the ectopic expression of
F5 in breast tumors could also represent a more infiltrated microenvironment with both
lymphoid and myeloid cells, such as T cells, NK cells and macrophages, according to
a research conducted by Tinholt et al. [51]. ALOX12B encodes an enzyme involved in
the conversion of arachidonic acid to 12R-hydroxyeicosatetraenoic acid, which has been
proposed by Song et al. as a potential protective gene for the overall survival of patients
with esophageal squamous cell carcinoma [52]. Egolf et al. identified ALOX12B as a
driver gene of ferroptosis, a form of programmed tumor suppressive cell death featured by
lipid peroxidation [53]. In the current study, we established the relationship between the
metabolism-related gene signature constructed by these genes and the immune landscape
of patients with cervical cancer, whereas the underlying mechanism of these hub genes still
awaits to be unraveled.

Our study also has its limitations due to objective reasons. We analyzed the expression
levels of metabolism-related hub genes in tumor specimens of the TCGA database, whereas
we could not distinguish the cell origin of these hub genes. This means that our conclusion
only represents the immunity pattern on the macro level. Further, single-cell sequencing
data might better illustrate the complex association between tumor cells and the surround-
ing microenvironment. In the meantime, it has been a controversial issue whether the
relatively small piece of tissues in TMAs could fully represent the characteristics of original
tissues due to tumor heterogeneity, which might give rise to disparities in diagnosis. Since
we affirmed our conclusion with an independent TMA cohort, the experimental results
might also show some technical limitations to a certain extent.

5. Conclusions

In summary, our constructed metabolism-related prognostic model allows for a more
accurate categorization of patients at different risk levels of cervical cancer. We also
determined the infiltration of TILs, the expression pattern of immune-related molecules and
the prognostic value of our signature for immunotherapies. Since this risk score signature
achieves a good performance in predicting clinical outcomes, we genuinely expect that our
study could provide an effective prognostic tool for the guidance of personalized treatment
for cervical cancer patients.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/cancers14102399/s1; Figure S1: Internal validation of the prognostic
potential of the risk score signature; Figure S2: The results of functional enrichment analyses of the
five metabolism-related hub genes; Figure S3: The association between the risk score and metabolism-
related pathways; Figure S4: Spearman correlation analyses of the established risk score as well as
five metabolism-related hub genes (ALOX12B, FAR2, F5, CA9 and TDO2) and tumor-infiltrating cells;
Figure S5: Differences in the infiltration levels of 28 immune cells between high- and low-score groups
in the pan-cancer validation cohorts (LUSC, UCEC and LAML); Figure S6: Kaplan-Meier curves
for patients in the TCGA-CESC and GSE44001 cohorts stratified by the risk score and expressions
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