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Stochastic dynamics of gene switching and energy dissipation for gene expression are

largely unknown, mainly due to the complexity of non-equilibrium mechanisms. Here,

based on an important double-deck loop model, the stochastic mechanisms of gene

switching and energy dissipation are studied. First, the probability distributions of steady

states are calculated theoretically. It is found that the signal can strengthen the choice of

gene switching between the “off” and “on” states. Our analysis of energy consumption

illustrates that, compared with the synthesis and degradation of proteins, the process

of gene switching costs little energy. Our theoretical analysis reveals some interesting

insights into the determination of cell state and energy dissipation for gene expression.

Keywords: non-equilibrium mechanisms, stochastic dynamics, gene switching, energy dissipation, chemical

master equations

1. INTRODUCTION

Signal pathways play vital roles in life by cooperating to control more than one biochemical process
while consuming free energy supplied by ATP or high-energy bonds to carry out different vital
functions. Based on the core negative feedback control loop shared by various adaption biological
systems, Lan et al. show that energy dissipation is indicated to stabilize the adapted state against
noise (Lan et al., 2012). Further study explores the present analytic results on the non-equilibrium
steady-state (NESS) of the model through mapping to a one-dimensional birth-death process, and
the result suggests that the adaptation error can be reduced exponentially as the methylation range
increases (Wang et al., 2015). In recent research, the number of phase coherent periods is found to
be proportional to the free energy consumed per period (Cao et al., 2015). Increasingly numerous
theoretical studies focus on the role of energy in biological information processes and biochemical
signal transduction (Lan and Tu, 2013; Endres, 2017).

Biological information processes are complex. In the process of skeletal development,
extracellular signals activate RhoA, and control the state of downstream genes mainly through
two pathways: RhoA/SRF and RhoA/ROCK (Charrasse et al., 2002; Sordella et al., 2003; Tsai et al.,
2013; Matsuoka and Yashiro, 2014). The marvelous phenomenon in this signal cascade is that those
two pathways exert the opposite effects, as shown in Figure 1. Hence, such a signal cascade is
composed of two competitive pathways and possesses the ability to accurately control the vital
bio-processes (Wei et al., 1998, 2000, 2001; Meriane et al., 2000; Beqaj et al., 2002; Castellani
et al., 2006; Charrasse et al., 2006). The study of stochastic dynamics and energy dissipation in
this biological system represents an interesting topic. The competitive networks may present two
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kinetic characteristics: oscillation and bistable state. Ouyang et al.
show a series of works on the non-equilibrium thermodynamics
of oscillations within cells and their results revealed that the
critical energy dissipation per period depends on both the
frequency and strength of the exchange reaction which gave an
optimal design for achieving maximum synchronization with a
fixed energy budget (Cao et al., 2015; Fei et al., 2018; Zhang et al.,
2020). Gene switch as another kind of competitive networks is
a representative bistable state system and will be the focus of
our study.

FIGURE 1 | Signal pathways from RhoA to the target gene in the development of skeletal muscle. RhoA-GDP is activated by extracellular signals to RhoA-GTP (RhoA*)

while RhoA* is deactivated back to RhoA-GDP as well. RhoA* contributes to the development of skeletal muscles through two signal pathways: RhoA/ROCK regulates

the target gene myoD negatively which is corresponding to the blue cascade, and RhoA/SRF regulates myoD positively which is corresponding to the red cascade.

FIGURE 2 | The detailed cascades in the double-deck loop (DDL) which is a simplified model based on the biochemical reaction networks in Figure 1. The orange

stick is the gene in the “on” state and the blue one is the gene in the “off” state; ROCK is represented as the small green ball; Arrow 1 corresponds to the Rho/ROCK

pathway in Figure 1 and Arrow 2 corresponds to the Rho/SRF pathway. The negative regulation from ROCK can push down the state of gene from the “on” state to

the “off” state along Arrow 1 with rate k2. The positive regulation from RhoA* can also push up the state of gene along Arrow 2 with rate ak1. The Arrow 3 and 4

represent the basic switching of gene’s state with rates kon and koff respectively. The synthesis and degradation of ROCK will drive the system move along the

horizontal directions (i.e., Arrow 5 and 6) with rates ak3 and k4, respectively. Since two parallel loops (i.e., the blue and red loops) can be found in our model, it is so

called DDL.

In this paper, we propose a double-deck loop (DDL) model
to describe signal cascades which are similar to those found
in the development of skeletal muscle, as shown in Figure 2.
By virtue of non-equilibrium statistical physics theory and
stochastic dynamics, exact analytical solutions to the steady-state
probability distribution are obtained and energy dissipation in
the DDL is derived, which allows for many deeper discussions.
Our aims are to reveal (i) the crucial factors that determine
the state of gene switching in our model and (ii) the energy
dissipation in biochemical reactions. We expect that these
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theoretical results could help us to understand the general
principles of signaling selectivity and energy dissipation in gene
regulation networks.

2. THE MODEL

In the process of skeletal development, RhoA is activated by
extracellular signals from RhoA-GDP to RhoA-GTP (RhoA⋆),
and RhoA⋆ is deactivated back to RhoA-GDP as well. RhoA⋆

plays a key role in process of skeletal development and
contributes to the regulation of the expression of muscle-
specific genes both through RhoA/SRF and RhoA/ROCK
signal pathways. RhoA/ROCK pathway triggers a negative
control function on the target gene while RhoA/SRF pathway
induces a positive regulation. The relevant biochemical
processes are shown in Figure 1. The red signal cascade
represents RhoA/SRF pathway and the blue one represents
RhoA/Rock pathway.

To derive our mathematical model, some assumptions are
put forward. (i) The switching dynamics between GTP and
GDP have been discussed thoroughly (Lan and Tu, 2013)
which has the same dynamic mechanism with the switching
between RhoA⋆ and RhoA-GDP. This aspect is neglected in
our model, since we focus on the selectivity between different
gene’s state modes and energy dissipation of RhoA/ROCK and
RhoA/SRF signal pathways. These two pathways are adopted
to regulate the development of skeletal muscle. (ii) It is well-
known that a large number of genes are involved in this
biological process (Matsui et al., 1996). If all genes are considered,
it will complicate the modeling and theoretical analysis. We
hypothesize that the development state of skeletal muscle
can be represented with the state of gene myoD. Muscle-
specific genes begin to be expressed when the state of gene
myoD is “on”, otherwise these genes are closed when the
state of gene myoD is “off”. (iii) Since the role of ROCK
in biological activities is vital (Leung et al., 1995; Aelst and
D’Souza-Schorey, 1997; Kaibuchi et al., 1999; Cloutier et al.,
2010), the detailed biochemical process of RhoA/SRF pathway
is neglected and the regulation of RhoA/SRF pathway is
simplified to the direct regulation of RhoA∗ on gene myoD
as shown in Figure 1. Therefore, we mainly aim to discuss
the biochemical reactions including the switch of myoD state
and synthesis/degradation of ROCK. Based on the above
assumptions, the detailed biochemical equations are as follows:

RhoA∗ k3
−→ RhoA∗

+ ROCK, ROCK
k4

−→ ∅

Goff + RhoA∗ k1
−→ Gon + RhoA∗,Goff

kon
−→ Gon

Gon + ROCK
k2

−→ Goff + ROCK,Gon
koff
−→ Goff. (1)

The “on” state of myoD is indicated as Gon in Equation
(1), while the “off” one is Goff. k1 is the transition rate
of gene state under the positive control and k2 is the
transition rate of gene under the negative control. The basic
switching rates between Gon and Goff are koff and kon. k3 is

the synthesis rate of ROCK and k4 is the degradation rate
of it.

As shown in Equation (1), every state of gene can be
achieved through two ways: Gon can be achieved both through
the promotion of RhoA∗ and the basic switching; Goff can be
achieved both through the repressive control of ROCK and the
basic switching. Considering the synthesis and degradation of
ROCK which correspond to the increasing and decreasing of the
small green balls in Figure 2, two parallel loops can be found.

One is clockwise [i.e., Gon(m)
ak3
−→ Gon(m + 1)

k2
−→ Goff(m +

1)
k4

−→ Goff(m)
ak1
−→ Gon(m)] which is represented as a blue

loop in Figure 2. The other one is anticlockwise [i.e.,Gon(m)
koff
−→

Goff(m)
ak3
−→ Goff(m + 1)

kon
−→ Gon(m + 1)

k4
−→ Gon(m)] which

is represented as red loop in Figure 2. Since these two loops are
two parallel decks between Gon and Goff, this theoretical model
is called “double-deck loop (DDL)” in this paper. Moreover,m is
the number of ROCK, and a is the concentration of RhoA∗. Based
on above biochemical equations, the chemical master equations
(i.e., CME) can be presented as

dP0(m, t)

dt
= koffP1(m, t)− konP0(m, t)+mk2P1(m, t)

−ak1P0(m, t)+ ak3P0(m− 1, t)− ak3P0(m, t)

+(m+ 1)k4P0(m+ 1, t)−mk4P0(m, t);

dP1(m, t)

dt
= −koffP1(m, t)+ konP0(m, t)−mk2P1(m, t)

+ak1P0(m, t)+ ak3P1(m− 1, t)− ak3P1(m, t)

+(m+ 1)k4P1(m+ 1, t)−mk4P1(m, t) (2)

where P0(m, t) is the probability of the gene “off” state and
P1(m, t) are the probability of the gene “on” states.

3. RESULTS

3.1. The Analytical Solutions of the DDL
Model
Regulatory networks generally consist of interactional signal
pathways. Different signal pathways may dominate cell fate
in different circumstances. Based on the biology processes in
the development of skeletal (Wei et al., 1998, 2000, 2001;
Meriane et al., 2000; Beqaj et al., 2002; Castellani et al., 2006;
Charrasse et al., 2006), the DDL model has both activation
and inhibitory signal pathways originating from the same input.
Therefore, it is interesting to identify the crucial factors in
the selection of different signaling pathways. To address this
problem, the probability distributions under different a are
derived. In response to a persistent input, the synthesis and
degradation of ROCK induce the evolution of ROCK, resulting
in a steady state of the number of ROCKm. Using the method of
probability-generating functions (Qian, 2007; Huang et al., 2015),
the analytical expressions of steady-state probability distributions
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P0(m) and P1(m) are obtained

P0(m) =
1

kon + ak1

(

ak2k3

k2 + 1
+ koff

)

A0
1

m!

(

ak3

k2 + 1

)m

×

m
∑

l=0

kl2C
l
m

(α)l

(β)l
1F1(α + l,β + l;ω2)

−
1

kon + ak1

ak2k3

k2 + 1

α

β
A0

1

m!

(

ak3

k2 + 1

)m

×

m
∑

l=0

kl2C
l
m

(α + 1)l

(β + 1)l
1F1(α + 1+ l,β + 1+ l;ω2)

+
ak2k3

kon + ak1

α

β
A0

1

(m− 1)!

(

ak3

k2 + 1

)m−1

×

m−1
∑

l=0

kl2C
l
m−1

(α + 1)l

(β + 1)l
1F1(α + 1+ l,β + 1+ l;ω2);

P1(m) = A0
1

m!

(

ak3

k2 + 1

)m

×

m
∑

l=0

kl2C
l
m

(α)l

(β)l
1F1(α + l,β + l;ω2) (3)

where α = ak2k3/(k2 + 1)2 + (kon + koff + ak1)/(k2 + 1),β =

α + 1, and ω2 = −ak2k3/(k2 + 1)2. Here, all the parameters
are normalized by k4, i.e., ki = ki/k4 which is different with
Equation (2). Cl

m is the binomial coefficient in Equation (3), (γ )l
is the Pochhammer symbol defined as (γ )l = Ŵ(γ + l)/Ŵ(γ )
with Ŵ(γ ) being the Gamma function, and 1F1(α,β;ω2) is a
confluent hypergeometric function (Huang et al., 2015). A0 is the
normalization constant as follows

A−1
0 = e

ak3
k2+1 [

1

kon + ak1

(

ak2k3

k2 + 1
+ koff

)

1F1(α,β;ω1) (4)

−
1

kon + ak1

ak2k3

k2 + 1

α

β
1F1(α + 1,β + 1;ω1)

+
ak2k3

kon + ak1

α

β
1F1(α + 1,β + 1;ω1)]+ e

ak3
k2+1

1F1(α,β;ω1)

where ω1 is a constant with the expression ω1 = ak2k3/(k2 +

1)− ak2k3/(k2 + 1)2. The details of analysis for chemical master
equations are presented in the Supplementary Material of this
paper. The above results will be checked through the structure of
our model in the following part.

The character of signaling cascades in the development of
skeletal muscle can provide us with information to verify our
analytical solutions. The changes of ROCK, as an upstream
component of the signaling cascades, follow a basic process of
birth and death. The statistical law of a birth and death process
is that the probability distribution about m is a standard Poisson
distribution. In order to test this, we calculate the total probability
P(m) which is provided by P0(m) + P1(m). This represents the
statistical law of ROCK and can be simplified from Equation
(3) as:

P(m) =
1

m!
(ak3)

me−ak3 . (5)

This is a standard Poisson distribution. Furthermore, ROCK
should be in its steady state ms = ak3 most of the time. This
means that the peaks of P0(m) and P1(m) focus onms. According
to Equation (3), the values of P0(m) and P1(m) with different
parameters are computed through “Mathematica” which are
shown in Figure 3. It is obvious that the peaks of distributions
occur at the steady state value of ms. It’s worth mentioning
that the roughness of the curves shown in Figures 3a,c,d is
caused by the computational accuracy of “Mathematica” when
it is used to calculate the confluent hypergeometric function
rather than biological or physical factors. We can also get
these curves through “Matlab” which appear very smooth.
However, compared with “Mathematica”, “Matlab” fails to
calculate confluent hypergeometric function whenm is too large.
In order to verify these curves, the corresponding curves with the
same parameters obtained by Monte Carlo simulation are shown
in Figures S1a,b. It is obviously that the curves in Figures S1a,b

closely resemble the ones in Figures 3a,b, respectively.
The above discussion confirms the reliability of our theoretical

results in Equation (3). Based on those results, we will try
to explore the selectivity of different pathways and energy
consumption in the following section.

3.2. Stochastic Dynamics of Gene
Switching in DDL
The steady-state probability distributions with different
stimulation strength are displayed in Figure 3.

∑

m P0(m) and
∑

m P1(m) which correspond to the areas under the curves
of P0(m) and P1(m) are respectively the probabilities of the
gene’s “off” state and “on” state. We use them to define two
gene modes: Mode I and Mode II. Mode I denotes that the
probability of the gene’s “off” state is larger than the one of
the “on” state, and Mode II denotes that the probability of
the gene ’s “on” state is larger than the one of the “off” state.
As shown in Figures 3a,b, when k3 = 5, the gene’s state is
Mode I. Conversely, if k3 = 1.5, the gene’s state becomes
Mode II shown in Figures 3c,d. Compared with k3, even if
the parameter a varies widely, the gene’s state mode is not
changed. Figure 4A shows the areas of these two modes. It is
obviously that the boundary between them is almost a horizontal
line where k3 ≈ 2.1. This means that the mode of the gene’s
state is determined primarily by k3 and the parameter a has
little effect on the selection of gene’s state modes. Since k3
and a represent the synthesis rate of the negative controller
ROCK and the strength of external stimulations, respectively,
the gene’s state mode depends almost exclusively on the
synthesis rate of the negative controller ROCK rather than the
external stimulations.

By the definition of Mode I, the gene is more likely to be
in the “off” state than the “on” state. In other words, the ‘off”
state of gene is dominant in Mode I. Similarly, the “on” state
of gene is dominant in Mode II. To quantify the dominance of
the gene’s state, we define a gene’s state dominance factor δ =

|P0,max − P1,max|/P1,max. The larger peak in Pi(m) (i = 1, 2)
means more dominance as shown in Figure 3. Therefore, δ can
be used to measure the dominance of the gene’s state. Next, we
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FIGURE 3 | Distributions of probability as a function of m. The synthetic rate of ROCK k3 = 5 in (a,b) and k3 = 1.5 in (c,d). The value of other parameters can be

found in Table S1. P0(m) is the probability of the gene “off” state indicated with orange curve, P1(m) is the probability of gene “on” state indicated with blue curve.

FIGURE 4 | The influences of k3 and a on gene’s “off” and “on” states. (A) The areas of Mode I and Mode II in a-k3 plane; (B) The heat map of gene’s state

dominance factor δ in a-k3 plane. The black line is the boundary between Mode I and Mode II; (C) The curve between δ and a in Mode I; (D) The curve between δ and

a in Mode II. The values of other parameters are listed in Table S1.
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will discuss the influences of the synthesis rate of the negative
controller ROCK and the external stimulations on gene’s state
dominance. The values of δ in a-k3 plane correspond to the scale
values of the color bar in Figure 4B. As shown in Figure 4B, with
increasing k3 (i.e., the synthesis rate of the negative controller
ROCK), δ (i.e., the dominance of the gene’s “off” state) increases
in Mode I. Conversely, as k3 increases, δ decreases in Mode
II. That suggests that when the synthesis rate of the negative
controller ROCK increases, the dominance of the gene’s “off”
state is gradually weakening in Mode II, until the mode of the
gene’s state changes to Mode I and the dominance of the gene’s
“on” state increases gradually. Compared with k3, the influence
of the strength of external stimulations RhoA∗ (i.e., a) on the
dominance of the gene’s state (i.e., δ) is not obvious enough in
Figure 4B. Therefore, the relation between a and δ with different
parameters k3 which correspond respectively to Mode I and
Mode II is shown in Figures 4C,D (Note that we also use Monte
Carlo simulation to verify the trend of δ with a in Mode I
which is shown in Figure S2). Similar to the case of k3, with
increasing the strength of external stimulations RhoA∗ (i.e., a),
the dominance of the gene’s state (i.e., δ) increases in Mode I
and decreases in Mode II. That means that although external
stimulations RhoA∗ has little effect on the selection of gene’s state
modes, it can fine-tune the dominance of the gene’s state in its
respective modes.

In summary, the core factor for the stochastic dynamics
of gene switching in DDL-type biochemical networks is
identified in our work. Reaction rates are responsible for the
selectivity between different gene’s states, while the external signal
stimulation fine-tunes the choice in its respective modes. The
cooperation between signals and network maintains the vital
process in an orderly manner.

3.3. Energy Dissipation in DDL
It is intuitively obvious that living biochemical systems need
free energy (Gui et al., 2016, 2018). From the viewpoint
of thermodynamics, gene expression is essentially a non-
equilibrium process due to feedback or feedforward regulation
that breaks detailed balance and thus necessarily consumes
energy (Lu et al., 2017). But how is energy actually utilized
during the regulation of gene expression in the development
of skeletal muscle? To our knowledge, few works have touched
upon this point. The composition of total energy consumption
may help us grasp the selection mechanism between different
biochemical processes.

From the definition of entropy S(Pi) = kBT
∑

i Pi ln Pi, the
entropy production rate εp(t) is given as follows (Ge and Qian,
2010):

εP(t) =
∑

i,j

(Pi(t)qij − Pj(t)qji) ln

(

qij

qji

)

. (6)

Pi(t) is the probability of the system in state i at time t, while
qji is the transport rate from state j to i. kBT is set to be
1 for convenience in our work. εp(t) is the sum of energy
dissipated in the biochemical network. Furthermore, the entropy

production rate for a non-equilibrium steady-state system can be
calculated as

EP =
∑

(σ ,σ ′)

P(σ )k(σ , σ ′) log

(

k(σ , σ ′)

k(σ ′, σ )

)

(7)

where k(σ , σ ′) is the transition probability from state σ to σ ′.
Considering the detailed biochemical reactions in our model,

we derive the EP of the DDL network as

EP =
∑

m[P0(m)ak3 ln
(

ak3
m+1

)

+ P0(m)m ln
(

m
ak3

)

+P0(m)(ak1 + kon) ln
(

ak1+kon
koff+mk2

)

+P1(m)ak3 ln
(

ak3
m+1

)

+ P1(m)m ln
(

m
ak3

)

+P1(m)(koff +mk2) ln
(

koff+mk2
ak1+kon

)

]. (8)

Next, we discuss the influences of the strength of external
stimulation on the total energy dissipation EP in Mode I and
Mode II respectively. As shown in Figure 5A, EP increases and
its rate of increase decreases with increasing a in Mode I. This
suggests that when the strength of external stimulation increases,
the system consumes more and more energy to response it.
Compared with the small strengthen of external stimulation,
there is less growth of energy for the system corresponding to
the large one in Mode I. In contrast to Mode I, both EP and its
reduction rate decrease in Mode II as a increases (Figure 5B).
This means although the system requires less and less energy with
the increase of the strengthen of external stimulation, a small
amount of energy is still needed to sustain it in Mode II.

Since the control ofMyoD gene expression can be divided into
two parts: one is the synthesis and degradation of ROCK and
the second is the switching of gene state, the process of energy
dissipation can be decomposed into three state transitions: (m−

1, off) ⇋ (m, off) ⇋ (m + 1, off), (m − 1, on) ⇋ (m, on) ⇋

(m + 1, on) and (m, on) ⇋ (m, off). Here, (m, on) represents the
state when the gene is “on” and the level of ROCK ism. Note that
the first two formulas are related to the synthesis and degradation
of ROCK. According to these three state transitions, the total
energy dissipation EP is decomposed into three terms as follows:

EP1 =
∑

m

[P0(m)ak3 log

(

ak3

m+ 1

)

+ P0(m)m log

(

m

ak3

)

]

EP2 =
∑

m

[P1(m)ak3 log

(

ak3

m+ 1

)

+ P1(m)m log

(

m

ak3

)

]

EP3 =
∑

m

[P0(m)(ak1 + kon) log

(

ak1 + kon

koff +mk2

)

+P1(m)(koff +mk2) log

(

koff +mk2

ak1 + kon

)

]. (9)

Since the synthetic rate of ROCK k3 which has been normalized
by its degradation rate k4 just appears in the formulas of EP1
and EP2, we define EPm = EP1 + EP2 and use it to represent
the energy dissipation in the synthesis-degradation process of
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FIGURE 5 | The influences of the strength of external stimulation on energy dissipation in Mode I and II. The values of all parameters are listed in Table S1. (A,B) The

relation curves between total energy dissipation EP and a in Mode I and II; (C,D) The relation curves between the percentages of energy dissipation in the

synthesis-degradation process of ROCK (i.e., EPm) in total energy dissipation (i.e., EP) and a in Mode I and II.

ROCK. In the following part, we will study the allocation of
total energy dissipation corresponding to different strengthen of
external stimulations by the comparison between EP and EPm.
The Figure S3 shows the trends of the total energy dissipation
(i.e., EP) and the energy dissipation in the synthesis-degradation
process of ROCK (i.e., EPm) with the increase of the strengthen
of external stimulations (i.e., a) in Mode I and II. It is obviously
that their trends are consistent as a increases in its respective
modes. Specifically, EP and EPm increase simultaneously in
Mode I and decrease simultaneously in Mode II with the
enhancing of the strengthen of external stimulations (i.e., a).
Moreover, the difference between EP and EPm diminishes both
in Mode I and Mode II when a increases. The percentages
of energy dissipation in the synthesis-degradation process of
ROCK (i.e., EPm) in total energy dissipation (i.e., EP) shown in
Figures 5C,D are more than 60% both in Mode I and Mode II
with different strengthen of external stimulations. In other words,
the synthesis-degradation process of ROCK consume more
energy than the third state transitions (i.e., EP3) with different
strengthen of external stimulations. Furthermore, Figures 5C,D
also show that the percentage of energy which is consumed
by the synthesis-degradation process of ROCK increases as the
strengthen of external stimulations increases until almost no

energy is consumed in process of the third state transitions both
in Mode I and Mode II.

4. DISCUSSION AND CONCLUSION

In our work, a double-deck loop model is constructed. Due
to the stochastic nature of bio-processes (Wang et al., 2017;
Yao et al., 2018a,b), we have calculated the steady-state
probability distributions of ROCK protein through themethod of
probability-generating functions for chemical master equations.
The crucial factors in the stochastic dynamics of gene switching
are identified. It is found that the weights between different
pathways (i.e., the internal reaction rates) in DDL are the key
point governing the state of gene switching, while an external
stimulus fine-tunes this choice preference. Furthermore, the
energy consumption in DDL is also discussed. Our results show
that most of the energy is required for synthesis and degradation
of ROCK, however, a very small amount of energy consumption
is required for the basic transition processes of downstream
genes between “on” and “off” states. This is because the ROCK
processes are not in equilibrium and do not follow detailed
balance. But the inter-conversion between “on” state and “off”
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state is indeed in equilibrium and follows detailed balance. In
other words, the two terms in EP3 defined in Equation (8)
cancel each other out because of detailed balance. The theoretical
findings about selectivity between different gene states and energy
dissipation will be advantageous for our understanding of cell
fate determination. Our next steps are to conduct closely related
experiments about the development of skeletal muscle and to
combine our theoretical study with experimental observations
and data.

DATA AVAILABILITY STATEMENT

The datasets generated for this study are available on request to
the corresponding author.

AUTHOR CONTRIBUTIONS

QL, MY, and JS conceived and designed the work. QL, JS,
FY, LY, YG, and RG carried out computer implementation and

theoretical analysis. QL, JS, FY, LY, YG, and RG interpreted
the simulation results. MY supervised the project. QL, FY,
LY, YG, JS, and RG wrote the original manuscript. QL,
MY, and JS contributed to the writing of final manuscript.
All authors contributed to the article and approved the
submitted version.

FUNDING

This work was supported by the National Natural Science
Foundation of China (Grant Nos. 11675060, 91730301,
11804111, and 11805091).

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fgene.
2020.00676/full#supplementary-material

REFERENCES

Aelst, L. V., and D’Souza-Schorey, C. (1997). Rho GTPases and signaling networks.

Genes Dev. 11, 2295–2322. doi: 10.1101/gad.11.18.2295

Beqaj, S., Jakkaraju, S., Mattingly, R. R., Pan, D., and Schuger, L. (2002).

High RhoA activity maintains the undifferentiated mesenchymal cell

phenotype, whereas RhoA down-regulation by laminin-2 induces

smooth muscle myogenesis. J. Cell Biol. 156, 893–903. doi: 10.1083/jcb.

200107049

Cao, Y., Wang, H., Ouyang, Q., and Tu, Y. (2015). The free-energy cost of accurate

biochemical oscillations. Nat. Phys. 11, 772–778. doi: 10.1038/nphys3412

Castellani, L., Salvati, E., Alema, S., and Falcone, G. (2006). Fine regulation of

RhoA and rock is required for skeletal muscle differentiation. J. Biol. Chem.

281, 15249–15257. doi: 10.1074/jbc.M601390200

Charrasse, S., Comunale, F., Grumbach, Y., Poulat, F., Blangy, A., and Gauthier-

Rouviere, C. (2006). RhoA GTPase regulates M-cadherin activity and myoblast

fusion.Mol. Biol. Cell 17, 749–759. doi: 10.1091/mbc.e05-04-0284

Charrasse, S., Meriane, M., Comunale, F., Blangy, A., and Gauthier-Rouviere, C.

(2002). N-cadherin-dependent cell-cell contact regulates rho GTPases and β-

catenin localization in mouse C2C12 myoblasts. J. Cell Biol. 158, 953–965.

doi: 10.1083/jcb.200202034

Cloutier, M., Tremblay, M., and Piedboeuf, B. (2010). ROCK2 is involved in

accelerated fetal lung development induced by in vivo lung distension. Pediatr.

Pulmonol. 45, 966–976. doi: 10.1002/ppul.21266

Endres, R. G. (2017). Entropy production selects nonequilibrium states in

multistable systems. Sci. Rep. 7:14437. doi: 10.1038/s41598-017-14485-8

Fei C., Cao Y., Ouyang, Q., and Tu, Y. (2018). Design principles

for enhancing phase sensitivity and suppressing phase fluctuations

simultaneously in biochemical oscillatory systems. Nat. Commun. 9:1434.

doi: 10.1038/s41467-018-03826-4

Ge, H., and Qian, H. (2010). Physical origins of entropy production, free energy

dissipation, and their mathematical representations. Phys. Rev. E 81:051133.

doi: 10.1103/PhysRevE.81.051133

Gui, R., Li, Z., Hu, L., Cheng, G., Liu, Q., Xiong, J., et al. (2018).

Noise decomposition algorithm and propagation mechanism in feed-

forward gene transcriptional regulatory loop. Chin. Phys. B 27, 92–103.

doi: 10.1088/1674-1056/27/2/028706

Gui, R., Liu, Q., Yao, Y., Deng, H., Ma, C., Jia, Y., et al. (2016). Noise

decomposition principle in a coherent feed-forward transcriptional

regulatory loop. Front. Physiol. 30:600. doi: 10.3389/fphys.2016.

00600

Huang, L., Yuan, Z., Yu, J., and Zhou, T. (2015). Fundamental principles of

energy consumption for gene expression. Chaos 25:123101. doi: 10.1063/1.4

936670

Kaibuchi, K., Kuroda, S., and Amano1, M. (1999). Regulation of the cytoskeleton

and cell adhesion by the rho family GTPases in mammalian cells. Annu. Rev.

Biochem. 68, 459–486. doi: 10.1146/annurev.biochem.68.1.459

Lan, G., Sartori, P., Neumann, S., Sourjik, V., and Tu, Y. (2012). The energy–

speed–accuracy trade-off in sensory adaptation. Nat. Phys. 8, 422–428.

doi: 10.1038/nphys2276

Lan, G., and Tu, Y. (2013). The cost of sensitive response and accurate adaptation

in networks with an incoherent type-1 feed-forward loop. J. R. Soc. Interface

10:20130489. doi: 10.1098/rsif.2013.0489

Leung, T., Manser, E., Tan, L., and Lim, L. (1995). A novel serine/threonine

kinase binding the Ras-related RhoA GTPase which translocates the

kinase to peripheral membranes. J. Biol. Chem. 270, 29051–29054.

doi: 10.1074/jbc.270.49.29051

Lu, L., Jia, Y., Liu, W., and Yang, L. (2017). Mixed stimulus-induced

mode selection in neural activity driven by high and low frequency

current under electromagnetic radiation. Complexity. 2017:7628537.

doi: 10.1155/2017/7628537

Matsui, T., Amano, M., Yamamoto, T., Chihara, K., Nakafuku, M., Ito, M.,

et al. (1996). Rho-associated kinase, a novel serine/threonine kinase, as a

putative target for small GTP binding protein rho. EMBO J. 15, 2208–2216.

doi: 10.1002/j.1460-2075.1996.tb00574.x

Matsuoka, T., and Yashiro, M. (2014). Rho/rock signaling in motility and

metastasis of gastric cancer. World J. Gastroenterol. 20, 13756–13766.

doi: 10.3748/wjg.v20.i38.13756

Meriane, M., Roux, P., Primig, M., Fort, P., and Gauthier-Rouviere, C.

(2000). Critical activities of rac1 and Cdc42Hs in skeletal myogenesis:

antagonistic effects of JNK and p38 pathways. Mol. Biol. Cell 11, 2513–2831.

doi: 10.1091/mbc.11.8.2513

Qian, H. (2007). Phosphorylation energy hypothesis: open chemical systems

and their biological functions. Annu. Rev. Phys. Chem. 58, 113–142.

doi: 10.1146/annurev.physchem.58.032806.104550

Sordella, R., Jiang, W., Chen, G.-C., Curto, M., and Settleman, J. (2003).

Modulation of rho gtpase signaling regulates a switch between adipogenesis and

myogenesis. Cell 113, 147–158. doi: 10.1016/S0092-8674(03)00271-X

Tsai, S. H., Huang, P. H., Peng, Y. J., Chang, W. C., Tsai, H. Y., Leu, H. B.,

et al. (2013). Zoledronate attenuates angiotensin ii-induced abdominal aortic

aneurysm through inactivation of Rho/ROCK-dependent JNK and NF-kB

pathway. Cardiovasc. Res. 100, 501–510. doi: 10.1093/cvr/cvt230

Frontiers in Genetics | www.frontiersin.org 8 July 2020 | Volume 11 | Article 676

https://www.frontiersin.org/articles/10.3389/fgene.2020.00676/full#supplementary-material
https://doi.org/10.1101/gad.11.18.2295
https://doi.org/10.1083/jcb.200107049
https://doi.org/10.1038/nphys3412
https://doi.org/10.1074/jbc.M601390200
https://doi.org/10.1091/mbc.e05-04-0284
https://doi.org/10.1083/jcb.200202034
https://doi.org/10.1002/ppul.21266
https://doi.org/10.1038/s41598-017-14485-8
https://doi.org/10.1038/s41467-018-03826-4
https://doi.org/10.1103/PhysRevE.81.051133
https://doi.org/10.1088/1674-1056/27/2/028706
https://doi.org/10.3389/fphys.2016.00600
https://doi.org/10.1063/1.4936670
https://doi.org/10.1146/annurev.biochem.68.1.459
https://doi.org/10.1038/nphys2276
https://doi.org/10.1098/rsif.2013.0489
https://doi.org/10.1074/jbc.270.49.29051
https://doi.org/10.1155/2017/7628537
https://doi.org/10.1002/j.1460-2075.1996.tb00574.x
https://doi.org/10.3748/wjg.v20.i38.13756
https://doi.org/10.1091/mbc.11.8.2513
https://doi.org/10.1146/annurev.physchem.58.032806.104550
https://doi.org/10.1016/S0092-8674(03)00271-X
https://doi.org/10.1093/cvr/cvt230
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Liu et al. Stochastic Dynamics of Gene Switching

Wang, L.-F., Qiu, K., and Jia, Y. (2017). Effects of time delays in a mathematical

bone model. Chin. Phys. B 26, 251–257. doi: 10.1088/1674-1056/26/3/030503

Wang, S., Lan, Y., and Tang, L. (2015). Energy dissipation in an adaptive molecular

circuit. J. Stat. Mech. 2015:P07025. doi: 10.1088/1742-5468/2015/00/P07025

Wei, L., Roberts, W., Wang, L., Yamada, M., Zhang, S., Zhao, Z., et al. (2001).

Rho kinases play an obligatory role in vertebrate embryonic organogenesis.

Development 128, 2953–2962.

Wei, L., Zhou, W., Croissant, J. D., Johansen, F.-E., Prywes, R., Balasubramanyam,

A., et al. (1998). Rhoa signaling via serum response factor plays an

obligatory role in myogenic differentiation. J. Biol. Chem. 273, 30287–30294.

doi: 10.1074/jbc.273.46.30287

Wei, L., Zhou, W., Wang, L., and Schwartz, R. J. (2000). β1-integrin

and pi 3-kinase regulate rhoa-dependent activation of skeletal α-actin

promoter in myoblasts. J. Physiol. Heart Circ. Physiol. 278, H1736–H1743.

doi: 10.1152/ajpheart.2000.278.6.H1736

Yao, Y., Cao, W., Pei, Q., Ma, C., and Yi, M. (2018a). Break up of spiral wave and

order-disorder spatial pattern transition induced by spatially uniform cross-

correlated sine-wiener noises in a regular network of hodgkin-huxley neurons.

Complexity 2018:8793928. doi: 10.1155/2018/8793298

Yao, Y., Yang, L., Wang, C., Liu, Q., Gui, R., Xiong, J., et al. (2018b). Subthreshold

periodic signal detection by bounded noise-induced resonance in the Fitzhugh–

nagumo neuron. Complexity 2018:5632650. doi: 10.1155/2018/5632650

Zhang, D., Cao, Y., Ouyang, Q., and Y., T. (2020). The energy cost

and optimal design for synchronization of coupled molecular

oscillators. Nat. Phys. 16, 95–100. doi: 10.1038/s41567-019-

0701-7

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Copyright © 2020 Liu, Yu, Yi, Gao, Gui, Yi and Sun. This is an open-access article

distributed under the terms of the Creative Commons Attribution License (CC BY).

The use, distribution or reproduction in other forums is permitted, provided the

original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Genetics | www.frontiersin.org 9 July 2020 | Volume 11 | Article 676

https://doi.org/10.1088/1674-1056/26/3/030503
https://doi.org/10.1088/1742-5468/2015/00/P07025
https://doi.org/10.1074/jbc.273.46.30287
https://doi.org/10.1152/ajpheart.2000.278.6.H1736
https://doi.org/10.1155/2018/8793298
https://doi.org/10.1155/2018/5632650
https://doi.org/10.1038/s41567-019-0701-7
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles

	Stochastic Dynamics of Gene Switching and Energy Dissipation for Gene Expression
	1. Introduction
	2. The Model
	3. Results
	3.1. The Analytical Solutions of the DDL Model
	3.2. Stochastic Dynamics of Gene Switching in DDL
	3.3. Energy Dissipation in DDL

	4. Discussion and Conclusion
	Data Availability Statement
	Author Contributions
	Funding
	Supplementary Material
	References


