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Abstract 

Background:  Huntington’s disease (HD) is a neurodegenerative disorder caused by the expansion of the CAG repeat 
in the huntingtin (HTT) gene. When the number of CAG repeats exceeds 36, the translated expanded polyglutamine-
containing HTT protein (mutant HTT [mHTT]) interferes with the normal functions of many cellular proteins and sub‑
sequently jeopardizes important cellular machineries in major types of brain cells, including neurons, astrocytes, and 
microglia. The NACHT, LRR, and PYD domain-containing protein 3 (NLRP3) inflammasome, which comprises NLRP3, 
ASC, and caspase-1, is involved in the activation of IL-1β and IL-18 and has been implicated in various biological func‑
tions. Although the existence of the NLRP3 inflammasome in the brain has been documented, the roles of the NLRP3 
inflammasome in HD remain largely uncharacterized. MCC950 is a highly selective and potent small-molecule inhibi‑
tor of NLRP3 that has been used for the treatment of several diseases such as Alzheimer’s disease. However, whether 
MCC950 is also beneficial in HD remains unknown. Therefore, we hypothesized that MCC950 exerts beneficial effects 
in a transgenic mouse model of HD.

Methods:  To evaluate the effects of MCC950 in HD, we used the R6/2 (B6CBA-Tg[HDexon1]62Gpb/1J) transgenic 
mouse model of HD, which expresses exon 1 of the human HTT gene carrying 120 ± 5 CAG repeats. Male transgenic 
R6/2 mice were treated daily with MCC950 (10 mg/kg of body weight; oral administration) or water for 5 weeks from 
the age of 7 weeks. We examined neuronal density, neuroinflammation, and mHTT aggregation in the striatum of 
R6/2 mice vs. their wild-type littermates. We also evaluated the motor function, body weight, and lifespan of R6/2 
mice.

Results:  Systematic administration of MCC950 to R6/2 mice suppressed the NLRP3 inflammasome, decreased 
IL-1β and reactive oxygen species production, and reduced neuronal toxicity, as assessed based on increased neu‑
ronal density and upregulation of the NeuN and PSD-95 proteins. Most importantly, oral administration of MCC950 
increased neuronal survival, reduced neuroinflammation, extended lifespan, and improved motor dysfunction in R6/2 
mice.
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Background
Huntington’s disease (HD) is a neurodegenerative dis-
ease that is inherited in an autosomal dominant manner 
and mainly affects neurons in the brain, particularly in 
the striatum. HD also affects the cortex, which controls 
thinking, comprehension, and memory. Therefore, HD 
is often accompanied by progressive cognitive, motor, 
and mental impairment [1, 2]. The cause of HD is the 
abnormal expansion of the CAG repeat located in the 
first exon of the huntingtin (HTT) gene on chromosome 
4, resulting in an abnormal gene product (mutated HTT 
[mHTT]) [3–5]. mHTT accumulates abnormally in neu-
rons and neuroglial cells [3, 6–8]. Therefore, the cellular 
physiological characteristics of HD include excitotoxicity, 
dysregulated energy metabolism, transcriptional changes, 
mitochondrial dysfunction, impaired autophagy, axonal 
degeneration, oxidative stress, and increased inflamma-
tion [2, 6, 9–11].

The NACHT, LRR, and PYD domain-containing pro-
tein 3 (NLRP3) inflammasome is an intracellular protein 
complex that activates caspases. Currently, NLRP3 is one 
of the most studied NLR family members. The NLRP3 
inflammasome consists of three components. The first 
component is NLRP3, which mainly controls inflamma-
some specificity and activity. The NLRP protein contains 
leucine-rich repeats and functions similarly to Toll-like 
receptors. The second component is the scaffold pro-
tein ASC. NLRP3 binds to ASC, and ASC binds to the 
third component of the inflammasome, pro-caspase-1 
[12]. These three components combine to form the 
NLRP3 inflammasome. In turn, activation of the NLRP3 
inflammasome leads to the cleavage of pro-caspase-1 
into caspase-1, before the cleavage of pro-interleukin-1β 
(pro-IL-1β) and pro-IL-18 into interleukin-1β (IL-1β) and 
IL-18, respectively [13]. Therefore, IL-1β and IL-18 are 
the final products of the activity of the NLRP3 inflamma-
some. NLRP3 inflammasome activation requires two sig-
nals, namely the priming signal and the activation signal. 
The priming signal mainly stems from the Toll-like recep-
tor and is responsible for producing the proteins that 
are required for NLRP3 inflammasome activation, such 
as NLRP3 and pro-IL-1β. Previous studies found that 
the activation signal may be caused by metabolic abnor-
malities or protein aggregation, such as hyperglycemia, 
hyperlipidemia, hypercholesterolemia, and hyperurice-
mia [14–16]. More importantly, activation of the NLRP3 

inflammasome is also associated with neurodegenerative 
diseases, such as Alzheimer’s disease (AD) and Parkin-
son’s disease (PD). Many recent studies found that key 
factors that cause neurodegenerative diseases, such as 
1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), 
amyloid-β (Aβ), and Tau, are also activation signals for 
the NLRP3 inflammasome [17–20]. Regulation of the 
NLRP3 inflammasome can alleviate the disease course to 
varying degrees, and even block key mechanisms in cer-
tain diseases. This shows that the NLRP3 inflammasome 
may be an important marker in the treatment of neuro-
degenerative diseases.

MCC950 is a highly selective and potent small-mole-
cule inhibitor of NLRP3 that was first applied to attenu-
ate experimental autoimmune encephalomyelitis [21]. 
However, MCC950 is not currently used in the treat-
ment of HD. The mean life expectancy of patients with 
HD after diagnosis is 15–18 years, and the disease course 
cannot be stopped or reversed after its onset. At present, 
there is no treatment for HD. In 2008, the U.S. Food and 
Drug Administration (FDA) approved Nitoman® (generic 
name: tetrabenazine; Apotex Inc., Headquarters Toronto, 
Ontario, Canada) for the treatment of involuntary move-
ments in HD. This medication was the first drug to be 
approved for the treatment of this disease and can effec-
tively treat abnormal limb movements. Two pharmaceu-
tical antisense oligonucleotides (ASOs) have been used 
in HD research, and dose-dependent reductions in the 
concentrations of mHTT have been reported [22]. How-
ever, phase III clinical trials on ASOs have been halted in 
relation to gene-targeting therapies for HD. In addition 
to tetrabenazine and ASOs, other drugs have been sug-
gested for use in HD; however, the existing drugs can 
only alleviate, rather than stop, neuro degeneration. The 
main mechanisms of action of these drugs involve the 
inhibition of monoamines such as serotonin, dopamine, 
and norepinephrine, release from nerve terminals, and 
the inhibition of vesicular monoamine transporter 2, 
which subsequently reduces uptake of monoamines into 
synaptic vesicles along with depletion of monoamine 
storage.

As the mechanisms of neurodegeneration in HD are 
still not completely clear, it is extremely important to 
further examine the pathogenesis of HD. An excessive 
inflammatory reaction is one of the important factors 
that cause cell death in HD. The NLRP3 inflammasome 

Conclusions:  Collectively, our findings indicate that MCC950 exerts beneficial effects in a transgenic mouse model of 
HD and has therapeutic potential for treatment of this devastating neurodegenerative disease.
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plays an important role in inflammatory reactions and 
is involved in the pathogenesis of several neurodegen-
erative diseases such as AD and PD. However, the direct 
role of the NLRP3 inflammasome in HD has not been 
explored. Therefore, the NLRP3 inflammasome inhibitor 
MCC950 was selected in this study to determine the role 
of the NLRP3 inflammasome in HD pathogenesis. The 
results of this study will aid future basic medical studies 
of neurodegenerative diseases and the R&D of clinical 
drugs.

Materials and methods
Cell culture
Striatal progenitor cell lines (STHdhQ7 and STHdhQ109) 
were generous gifts from Dr. Elena Cattaneo (Depart-
ment of Pharmacological Sciences and Centre for Stem 
Cell Research, University of Milano, Italy) and Yijuang 
Chern (Institute of Biomedical Sciences, Academia 
Sinica, Nankang, Taipei, Taiwan). The conditionally 
immortalized striatal neuronal progenitor cells STHdhQ7, 
which express endogenous normal HTT comprising 
seven glutamine residues and are referred to as wild-
type (WT) striatal cells, and STHdhQ109 cells, which are 
derived from homozygous STHdhQ109 knock-in mice 
expressing mHTT containing 109 glutamine residues and 
are referred to as mutant striatal cells, were maintained 
in an incubation chamber at 33  °C and 5% CO2 in Dul-
becco’s modified Eagle’s medium (DMEM; Thermo Fisher 
Scientific Inc., Waltham, MA, USA) supplemented with 
10% fetal bovine serum (FBS; Thermo Fisher Scientific 
Inc., Waltham, MA, USA) [23, 24]. Cells with a passage 
number < 20 were exclusively used in the present study. 
BV2 cells (mouse, C57BL/6; brain, microglial cells) were 
purchased from the American Type Culture Collection 
(Rockville, MD). Cells were propagated in DMEM sup-
plemented with 10% FBS at 37 °C in a 5% CO2 incubator.

Cell death assays
The death of STHdhQ7 and STHdhQ109 cells was quan-
tified using the Cell Counting Kit-8 (CCK-8; Thermo 
Fisher Scientific Inc., Waltham, MA, USA). For the 
CCK-8 assay, a volume of CCK-8 reagent correspond-
ing to 10% of the volume of the medium in the well was 
added, followed by incubation at 33 °C in a 5% CO2 incu-
bator for 1  h. The absorbance was measured at 450  nm 
using a microplate reader (OPTImax tunable plate 
reader; Molecular Devices, Wokingham, UK).

Sodium dodecyl sulfate polyacrylamide gel 
electrophoresis and Western blotting
Western blot analysis was performed as described pre-
viously [11]. Briefly, cellular proteins were extracted in 
TNE buffer (50 mM Tris–HCl [pH 7.4], 100 mM NaCl, 

0.1  mM EDTA, and 1% Triton X-100). Proteins were 
separated by electrophoresis in 10–15% polyacrylamide 
gels and transferred onto polyvinylidene difluoride mem-
branes (Millipore, Billerica, MA, USA). The dilutions of 
the primary antibodies used in the present study were 
as follows: anti-NLRP3, anti-ASC, anti-caspase-1, anti-
PSD-95, and anti-NeuN antibodies at 1:1000 (all from 
Cell Signaling Technology, Danvers, MA, USA); anti-
glial fibrillary acidic protein (1:1000, GFAP), anti-ionized 
calcium-binding adaptor molecule-1 (1:500, Iba-1), and 
anti-mHTT antibodies (1:500 all from Millipore, Biller-
ica, MA, USA). The immunoreactive signals on the blots 
were detected using an enhanced chemiluminescence 
detection system (PerkinElmer Life and Analytical Sci-
ences, Boston, MA, USA).

Animals and treatment
Male transgenic R6/2 mice (B6CBA-
Tg[HDexon1]62Gpb/1J) expressing exon 1 of the human 
HTT gene carrying 120 ± 5 CAG repeats were obtained 
from the Jackson Laboratories (Bar Harbor, ME, USA). 
Posterity was identified using PCR genotyping and 
sequencing of genomic DNA using primers located in 
the transgene (5′-CCG​CTC​AGG​TTC​TGC​TTT​TA-3′ 
and 5′-GGC​TGA​GGA​AGC​TGA​GGA​G-3′). All animal 
experiments were approved by the Tunghai University 
Animal Ethics Committee (approval number 108–39). 
Animals were reared at the Tunghai University Animal 
Care Facility under a 12 h light/dark cycle. The ambient 
temperature was maintained at 25 °C ± 2 °C and the ani-
mals had ad libitum access to food and water. All animal 
experiments were performed according to good labora-
tory practice. Experiments were planned and performed 
according to the 3Rs principle, which comprise the 
reduction of animal suffering and number of mice used. 
Each group of 16–20 mice received daily treatment with 
water (control group) or MCC950 (10  mg/kg of body 
weight, oral administration) for 5  weeks from the age 
of 7  weeks. Mice were weighed every week. Behavioral 
assays were performed between 5 and 12  weeks of age. 
After the experiment, the weight-loss trends and survival 
rate of mice were analyzed. Animals were killed and tis-
sues were collected for subsequent analyses.

Behavioral tests
Rotarod performance
Motor coordination was assessed using a rotarod appa-
ratus (UGO BASILE, Comerio, Italy) at a constant speed 
[25, 26]. All mice were tested three times per week. Each 
test session comprised three trials for each mouse. The 
latency to fall from the rotating rod, up to a maximum of 
2 min, was recorded for each trial. The weekly maximum 
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performance for each mouse was used for statistical anal-
ysis [11].

Clasping
At 12 weeks of age, the positioning of the limb-clasping 
response was tested. Briefly, mice were suspended by 
their tails from a height of 50 cm for 30 s [27, 28]. A limb-
clasping response was defined as the withdrawal of any 
limb to the torso for > 2 s. A score of 0 was assigned if the 
hind limbs were consistently splayed outward, away from 
the abdomen. A score of 1 was assigned if one hind limb 
was retracted toward the abdomen for more than 50% of 
the 10-s observation period. A score of 2 was assigned if 
both hind limbs were partially retracted toward the abdo-
men for more than 50% of the 10-s observation period. 
Finally, a score of 3 was assigned if the hind limbs were 
entirely retracted and touching the abdomen for more 
than 50% of the 10-s observation period [29].

Enzyme‑linked immunosorbent assay
BV2 microglia cells were treated with lipopolysaccharide 
(LPS; 1 µg/mL) for 4 h, after which they were incubated 
with or without MCC950 for 2 h before stimulation with 
ATP (1  mM) for 24  h. Levels of IL-1β, IL-18, and TNF 
in the culture medium were measured using an enzyme-
linked immunosorbent assay (ELISA) according to the 
manufacturer’s protocol. Briefly, the 96-well microplates 
were coated overnight with anti-IL-1β, anti-IL-18, or 
anti-TNF antibody then blocked with 1% bovine serum 
albumin (BSA). Standards or culture medium (100 µL) 
were added to the microplates and incubated at room 
temperature for 2 h; this was followed first by incubation 
for 2  h with the biotin-conjugated detection antibody 
then by incubation for 30  min with 100 µL of strepta-
vidin–horseradish peroxidase plus substrate for signal 
development. Finally, 100 µL of stop solution was added 
to each well and the OD450 was measured using an ELISA 
microplate reader (Bio-Tek Instruments, Winooski, VT, 
USA) [30].

Measurement of glutathione levels
The cells were washed twice in phosphate-buffered saline 
and lysed in 15 mM Tris, pH 7.4 before the intracellular 
levels of glutathione were determined using a fluorimet-
ric assay. Glutathione levels were measured in samples 
after the addition of ortho-phthalaldehyde (1  mg/mL of 
methanol) and 100 mM NaH2PO4. After a 15-min incu-
bation, the fluorescence was measured using an excita-
tion wavelength of 350 nm and an emission wavelength 
of 420 nm. The results were calculated as relative fluores-
cence units per mg of protein and are expressed as a per-
centage of the WT cells or control.

Immunohistochemistry and quantitation
Brain sections were cut and stored as described above 
for the reactive oxygen species (ROS) measurements fol-
lowed by immunohistochemical staining as described 
previously [31]. Briefly, brain sections were incubated 
overnight with the appropriate primary antibody in 
phosphate-buffered saline containing 5% normal goat 
serum at 4 °C; this was followed by incubation with the 
corresponding secondary antibody for 2 h at room tem-
perature. The following primary antibodies and concen-
trations were used: anti-NLRP3 (Adipogen International, 
San Diego, CA, USA), anti-NeuN (Cell Signaling Tech-
nology, Danvers, MA, USA), anti-GFAP, anti-Iba I, and 
anti-EM48 (all from Millipore, Billerica, MA, USA). The 
secondary antibodies were conjugated to Alexa Fluor 
488, Alexa Fluor 568, or Alexa Fluor 633 (Thermo Fisher 
Scientific Inc., Waltham, MA, USA). Nuclei were stained 
with 4′,6-diamidino-2-phenylindole (DAPI). Slides were 
mounted using Vectashield (Vector Laboratories, Burl-
ingame, CA, USA). To determine the number of neurons 
in the striatum, nine frames from three sections spaced 
evenly throughout the striatum (interaural 5.34  mm/
bregma 1.54 mm to interaural 3.7 mm/bregma − 0.1 mm) 
were analyzed for each animal by an investigator blinded 
to the experimental conditions; at least 500 cells from 
each animal were counted and measured. For quantita-
tion of mHTT, images were acquired using laser confocal 
microscopy (LSM810; Carl Zeiss MicroImaging, Thorn-
wood, NY, USA) and analyzed using the MetaMorph 
imaging system (Universal Imaging, Westchester, PA, 
USA).

Statistical analysis
The results are expressed as the mean ± standard error 
of the mean (SEM) of triplicate measurements. Each 
experiment was repeated at least three times to confirm 
the reproducibility of the findings. Comparisons among 
multiple groups were analyzed by one-way analysis of 
variance followed by Dunnett’s post hoc test. Differences 
between treatment means were considered statistically 
significant at P < 0.05.

Results
MCC950 significantly reduces cytotoxicity in striatal 
progenitor and BV2 cells
Previous studies showed that MCC950 has extremely 
high specificity and is capable of effectively inhibiting 
NLRP3 and its downstream products [21]. Therefore, we 
used MCC950 to inhibit NLRP3 expression in HD mod-
els. Extracellular ligands (such as LPS and ATP) can acti-
vate the NLRP3 inflammasome [32, 33]. Thus, we treated 
mouse BV2 cells (mouse, C57BL/6; brain, microglial 
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cells) that were LPS-primed by incubation with MCC950 
before stimulation with a P2X7 activator (ATP) of the 
NLRP3 inflammasome. MCC950 was found to inhibit 

NLRP3 expression in BV2 cells (Fig. 1A, B). To determine 
whether NLRP3 activation was detrimental, we evaluated 
whether inhibition of NLRP3 by MCC950 affected BV2 
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Fig. 1  MCC950 markedly reduces cytotoxicity in striatal progenitor cells and BV2 microglial cells. A, B BV2 microglia were incubated for 4 h with LPS 
(1 μg/mL) followed by incubation with MCC950 (1 μM) for 2 h. The cells were then incubated with ATP (1 mM, 24 h). Total lysates of BV2 microglial 
cells were assessed by Western blot analysis to determine the levels of the NLRP3 and actin proteins. The molecular mass is indicated in kilodaltons. 
C, D BV2 microglia were incubated for 4 h with LPS (1 μg/mL) followed by incubation with MCC950 (1 μM) for 2 h. The cells were then incubated 
with ATP (1 mM for 24 h). Cell survival (C) and IL-1β expression levels (D) were measured using the CCK-8 assay and ELISA, respectively. The values 
of the indicated cells were normalized to those of untreated BV2 cells. *P < 0.05 compared to LPS/ATP treated cells (n = 3). E, F STHdhQ109 cells were 
incubated for 24 h with MCC950 (1 μM). Total lysates of STHdhQ7 and STHdhQ109 cells were assessed using Western blot analysis. G STHdhQ7 and 
STHdhQ109 cells were incubated for 24 h with MCC950 (1 μM). Cell death was quantified using the CCK-8 assay; the values of the indicated cells 
were normalized to those of untreated STHdhQ7 cells. The data are presented as the mean ± SEM from three independent experiments. *P < 0.05, 
STHdhQ7 vs. STHdhQ109 cells; #P < 0.05 vs. untreated STHdhQ109 cells. H BV2 cells were incubated with LPS (1 µg/mL for 4 h) with or without MCC950 
for 2 h before stimulation with ATP (1 mM for 24 h). The BV2 medium was then collected and used to culture the STHdhQ109 cells for an additional 
24 h. STHdhQ7 and STHdhQ109 cell viability was determined by CCK-8 assay. The data are presented as the mean ± SEM from three independent 
experiments. *P < 0.05, STHdhQ7 vs. STHdhQ109 cells; #P < 0.05 vs. untreated STHdhQ109 cells. I BV2 cells were treated with or without MCC950 (1 μM) 
and 3-NP (5, 10, and 20 mM) for 24 h. The cell viability was determined using the CCK-8 assay. Data are presented as the mean ± SEM from three 
independent experiments. *P < 0.05 compared with controls (n = 3)
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cell viability using a CCK-8 assay. As shown in Fig.  1C 
and D, an ELISA indicated that inhibition of NLRP3 by 
MCC950 enhanced BV2 microglial cell viability and 
reduced IL-1β production. In addition, we used striatal 
progenitor cells to analyze the function of NLRP3 in HD. 
Expression of NLRP3 was greatly enhanced in STHdhQ109 
cells compared with STHdhQ7 cells. We then investi-
gated the influences of MCC950 on cell viability using 
the CCK-8 assay. STHdhQ109 cells were incubated with 
or without 0.1, 1, 2, or 5  μm MCC950 for 24  h (Addi-
tional file 1: Fig. S1). As predicted, MCC950 significantly 
reduced the NLRP3 levels in STHdhQ109 cells (Fig.  1E, 
F, and Additional file  1: Fig. S1). To determine whether 
NLRP3 plays a detrimental role in HD, we next evaluated 
whether inhibition of NLRP3 by MCC950 affected the 
viability of striatal progenitor cells. As shown in Fig. 1G, 
inhibition of NLRP3 by MCC950 increased the survival 
of STHdhQ109 cells. However, a high dose of MCC950 
enhanced the death of STHdhQ109 cells (Fig. 1H). We then 
tested whether the activation of NLRP3 with the release 
of cytokines (IL-1β) by BV2 cells altered the viability of 
striatal progenitor cells. We collected the BV2 medium 
and cultured STHdhQ7 and STHdhQ109 cells in this 
medium. LPS-stimulated BV2 medium led to STHdhQ109 
cell death, which was inhibited by MCC950 (Fig.  1H). 
Subsequently, we treated BV2 cells with 3-nitropropi-
onic acid (3-NP), an irreversible inhibitor of mitochon-
drial complex II to induce HD in BV2 cells. As shown in 
Fig. 1I, MCC950 blocked the death of BV2 cells induced 
by 3-NP. Thus, MCC950 not only inhibited the NLRP3 
inflammasome but also protected striatal cells from 
mHTT-mediated toxicity. Overall, these results highlight 
a relationship between mHTT and NLRP3 and dem-
onstrate that inhibition of the NLRP3 inflammasome 
by MCC950 is beneficial to HD striatal progenitor cells 
in vitro.

MCC950 inhibits NLRP3 inflammasome assembly 
in a transgenic mouse model (R6/2) of HD
To characterize the expression level of NLRP3 in HD, we 
first evaluated the expression of NLRP3 in the brains of 
HD mice using an immunofluorescence staining tech-
nique. We found that the expression level of NLRP3 was 
significantly increased in the striatum of R6/2 mice, but 
not in that of the WT mice. MCC950 is a small-mol-
ecule inhibitor of the NLRP3 inflammasome that can 
freely cross the blood–brain barrier. To evaluate whether 
NLRP3 is an important pathogenic factor in HD, R6/2 
mice (7 weeks of age, n = 16–20 per group) were treated 
daily with MCC950 (10 mg/kg of body weight) or water 
via oral administration for 5  weeks from the age of 
7 weeks. Consistent with the findings obtained for STH-
dhQ109 cells, oral administration of MCC950 suppressed 

the elevated NLRP3 levels in the striatum of R6/2 mice 
(Fig.  2A, B, E,  H). Activation of the NLRP3 inflamma-
some results in the release of high levels of IL-1β and 
IL-18, thereby worsening neuroinflammation. Long-
term neuroinflammation activates microglia to produce 
a considerable amount of IL-1β, resulting in neurotoxic-
ity and accelerating neuronal death [34]. Therefore, we 
next assessed the IL‐1β level in the serum and striatum 
of HD mice. Oral administration of MCC950 blocked 
IL-1β secretion in the serum (Fig.  2C) and striatum of 
R6/2 mice (Fig.  2D). In addition, MCC950 markedly 
reduced IL-18 secretion in R6/2 mice (Additional file 1: 
Fig. S2). As shown in Fig. 2F and I, inhibition of NLRP3 
by MCC950 significantly reduced the expression level 
of ASC in the striatum of R6/2 mice. It has been dem-
onstrated that the NLRP3 inflammasome particles are 
released from caspase‐1-activated macrophages and act 
as a particulate danger signal that amplifies the inflam-
matory response [35]. Consistent with the importance 
of caspase‐1 in the activation of NLRP3, we found that 
MCC950 significantly reduced the activation of caspase‐1 
in R6/2 mice (Fig. 2G, J). Taken together, these data sug-
gest that MCC950 significantly inhibits the production of 
components of the NLRP3 inflammasome (i.e., NLRP3, 
ASC, and caspase‐1) in R6/2 mice.

Blockage of the NLRP3 inflammasome delays disease 
progression in a transgenic mouse model (R6/2) of HD
To assess whether NLRP3 is an important pathogenic 
factor for HD, we examined the effect of long-term treat-
ment with MCC950 on disease progression in a trans-
genic mouse model (R6/2) of HD. R6/2 mice received 
oral administration of MCC950 (10  mg/kg of body 
weight) or water for 5  weeks from the age of 7  weeks. 
Disease progression was assessed based on rotarod per-
formance, body weight, clasping score, and lifespan. 
As shown in Fig.  3, oral administration of MCC950 
markedly mitigated the motor dysfunction, as assessed 
by rotarod performance (Fig.  3A) and clasping score 
(Fig.  3B) in R6/2 mice. Most importantly, long-term 
treatment with MCC950 significantly increased the body 
weight (Fig.  3C) and extended the lifespan (Fig.  3D) of 
R6/2 mice. These findings support the hypothesis that 
elevated NLRP3 plays an important pathogenic role in a 
transgenic mouse model of HD.

Blockage of the NLRP3 inflammasome in R6/2 mice 
reduces neuronal toxicity and mHTT aggregation
Consistent with the improved lifespan and motor dys-
function, the number of neurons in the striatum was 
also markedly increased in the striatum of MCC950-
treated R6/2 mice (Fig.  4A, B). Immunofluorescence 
staining showed that long-term treatment with MCC950 
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significantly reduced the number of mHTT aggregates 
in the striatum of HD mice (Fig.  4A, C). As shown in 
Fig. 4D–G, inhibition of NLRP3 by MCC950 significantly 
enhanced the expression levels of NeuN and PSD-95 in 
R6/2 mice. Taken together, these data suggest that NLRP3 

plays a critical role in a transgenic mouse model of HD. 
Previous studies found that mitochondrial ROS synthesis 
is involved in the NLRP3 inflammasome activation path-
ways [12, 36, 37]. Therefore, we performed experiments 
to detect ROS production in striatal cells and R6/2 mice. 
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Our findings were consistent with those of several pre-
vious studies that showed more severe oxidative damage 
in the brains of HD mice [38, 39]; daily treatment with 
the NLRP3 inhibitor MCC950 for 5 weeks from the age 
of 7  weeks markedly enhanced the level of glutathione 
in the striatum of R6/2 mice (Fig.  4H). Taken together, 
our data suggest that MCC950 protects striatal neurons 
against mHTT-mediated toxicity by interfering with the 
detrimental action of the NLRP3 inflammasome activa-
tion pathways in a transgenic mouse model of HD.

Inhibition of NLRP3 reduces microglial and astrocytic 
activation in a transgenic mouse model (R6/2) of HD
Previous studies reported that microglia are the primary 
mediators of neuroinflammation [40, 41]. In addition, 
neuroglia are key players in the pathogenesis of neuro-
degenerative diseases [42]. In turn, mHTT accumula-
tion in neuronal cells has been linked to the activation of 
microglia [43]. R6/2 mice exhibit expression of mHTT in 
astrocytes, which reduced the neuroprotective effect and 
enhanced the TNF production of the astrocytes [44, 45]. 
Therefore, we examined the activation effect of long-term 
treatment with MCC950 on microgliosis and astrocy-
tosis in HD. Immunofluorescence staining showed that 
inhibition of NLRP3 significantly reduced the number of 
Iba-1- (Fig.  5A, B) and GFAP-positive cells (Fig.  6A, B) 
in the striatum of HD mice. As shown in Figs. 5C, D, and 
6D, E, Western blot analyses revealed that the elevated 
levels of Iba-1 and GFAP detected in R6/2 mice were 
reduced by MCC950. In addition, MCC950 reduced 
TNF production in the striatum of R6/2 mice (Fig. 6C). 
Collectively, these data suggest that the oral administra-
tion of MCC950 reduces neuroinflammation in a mouse 
model of HD. These observations support our hypothesis 
that the NLRP3 inflammasome plays an important role 
in microglial activation and astrocytosis and regulates 
mHTT-mediated cytokine secretion (i.e., IL-1β and TNF) 
in HD. The oral administration of an NLRP3 inhibitor 
(MCC950) increased neuronal density and reduced neu-
roinflammation, which were accompanied by extended 
lifespan and improved motor dysfunction in R6/2 mice.

Discussion
Our results indicated that the expression of mHTT in a 
striatal progenitor cell and in a transgenic mouse model 
of HD (R6/2) enhanced the expression the NLRP3 
inflammasome. To evaluate the impact of MCC950 in 
HD, R6/2 mice were treated daily with MCC950 (10 mg/
kg of body weight; oral administration) or water for 
5  weeks from the age of 7  weeks. The oral administra-
tion of MCC950 inhibits NLRP3 inflammasome assem-
bly, reduces gliosis, and increases neuronal density in the 
striatum of R6/2 mice. Moreover, MCC950 improved 

the motor dysfunction and extended the lifespan of R6/2 
mice. Our results collectively suggest that the NLRP3 
inflammasome plays a critical role in the pathogenesis 
of HD and that MCC950 may be a potential therapeutic 
compound for the treatment of HD.

An excessive inflammatory reaction is one of the 
important factors causing neuronal death in HD. Mul-
tiple studies have shown that an exacerbated inflamma-
tory reaction was present in patients with HD as well 
as mouse models of HD [25, 46, 47]. However, much of 
the pathological mechanisms and pathophysiological 
outcome of the neuronal inflammation observed in HD 
remain unknown. LPS was injected intraperitoneally 
into HD transgenic (R6/2) and WT mice, and the results 
showed that higher levels of TNF were produced in the 
plasma, liver, and brain in the LPS-stimulated R6/2 mice 
compared with WT mice [26]. In addition, more acti-
vated caspases were present in R6/2 mice after intraperi-
toneal injection of LPS compared with WT mice. IκB 
kinase (IKK) expression, which activates NF-κB and pro-
motes an inflammatory reaction, was also increased in 
primary cultures of astrocytes from HD mice [26]. NF-κB 
is an essential molecule in inflammatory reactions. 
NLRP3 inflammasome activation requires two signals, 
the priming signal and the activation signal. We specu-
late that the mHTT-mediated activation of NF-κB may 
function as a priming signal, whereas the massive ATP 
release detected in degenerating neurons may function 
as an activation signal, which results in the activation of 
the NLRP3 inflammasome in the striatum of HD. ATP 
has been shown to stimulate the release and processing 
of IL-1β and to induce cell death in macrophages [48]. 
High levels of extracellular ATP lead to P2X7R-mediated 
glial activation and neuron–glia cross-talk. In astrocytes 
and microglia, large amounts of extracellular ATP induce 
the release of cytokines and ROS, which trigger neuroin-
flammation. In neuronal cells, high levels of extracellular 
ATP induce ion influx and neuronal cell death; moreover, 
additional ATP is released from neuronal presynaptic 
terminals into the extracellular space [49]. Extracellu-
lar ATP has recently been shown to cause neuronal cell 
death through stimulation of P2X7 receptors. SH-SY5Y 
cells treated with 6-OHDA (30  μM) triggered a rapid 
and sustained increase in extracellular levels of ATP. Rats 
treated with 6-OHDA in the striatum for 19 days showed 
an increase in the evoked release of ATP [50]. P2X7R 
stimulation is known to cause K+ efflux, which may trig-
ger NLRP3 inflammasome activation and secretion of 
inflammatory cytokines (e.g., IL-1β, IL-18, and TNF-α) 
from astrocytes and microglia. Moreover, stimulation of 
P2X7R increases Ca2+ influx and leads to ATP and gluta-
mate release from nerve terminals and astrocytes, which 
is responsible for excitotoxicity [49]. Increased protein 
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levels of the P2X7 receptor in the striatum have been 
reported in two different HD mouse models, namely 
R6/2 and Tet/HD94 [51], and in patients with HD [52]. 
P2X7R is considered a potential target for therapeutic 

intervention in HD; indeed, in  vivo administration of a 
P2X7R antagonist (Brilliant Blue-G) has been shown to 
prevent neuronal cell death and attenuate body-weight 
loss and motor-coordination deficits [51]. However, ATP 
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release in HD is yet to be explored. To address this, fur-
ther research in this area is required.

Three neurodegenerative diseases are characterized 
by the abnormal aggregation of proteins in the central 
nervous system (CNS), i.e., Aβ, α-synuclein, and mHTT, 
which cause the pathogenesis of IL-1β in and progres-
sion of AD, PD, and HD, respectively. In HD and other 
neurodegenerative diseases caused by aberrant aggre-
gation of proteins including AD and PD, the NLRP3 
inflammasome participates in disease progression. In 
AD, Aβ induces NLRP3 inflammasome activation in pri-
mary microglia, which is required for the Aβ-induced 
activation of caspase-1 and release of IL-1β [17, 53]. 
Moreover, α-synuclein aggregates have been suggested 
to be a potential activator of the NLRP3 inflammasome 
[54]. NLRP3 and caspase-1 are significantly enhanced 
in 13-week-old R6/2 mice and mediate pyroptotic cell 
death in HD [55]. This is consistent with our finding that 
mHTT is involved in the activation of the NLRP3 inflam-
masome in HD (Figs. 1E, 2A, E). Inhibition of the NLRP3 
inflammasome using an NLRP3 inhibitor reduced the 
expression of ASC, cleavage of caspase-1, and produc-
tion of IL-1β in R6/2 mice (Fig.  2C–J). The activation 
of caspase-1 was shown both in  vitro [56] and in  vivo 
[57], potentially contributing to the neurodegeneration 
observed in HD. Ona et al. found that caspase-1 inhibi-
tion in R6/2 mice can alleviate the disease course [57]. 
Inhibition of microglial galectin-3 expression can effec-
tively decrease inflammatory responses in cells, alleviate 
the symptoms of neurodegenerative diseases in animal 
models, and increase the lifespan of R6/2 mice. Previous 
studies found a high level of galectin-3 and damaged lys-
osomes in the microglia of HD mice [25], which induces 
an increase in downstream NLRP3 expression and results 
in the release of IL-1β, thereby worsening neuroinflam-
mation. Galectin-3 inhibition can effectively improve 
lysosome clearance in cells and decrease the inflamma-
tory reaction in microglial cells [25]. These results sug-
gest that the NLRP3 inflammasome is one of the factors 
that worsen disease progression in neurodegenerative 
diseases.

MCC950 oral dosing in mice (ED50 of ~ 15  mg/kg) 
attenuated IL-1β secretion in vivo [58]. The in vivo con-
centrations of IL-1β following MCC950 administration 
in mice were attenuated by 50% with 0.4  mg/kg, 90% 
with 1.2 mg/kg, and > 90% with > 4 mg/kg, thereby estab-
lishing the capability of this molecule [59]. Although 
MCC950 is not currently used in the treatment of HD, it 
shows a certain level of protective effect in other neuro-
logical diseases. We searched the literature for the usage 
of MCC950 in mice. We found that MCC950 has been 
used in several CNS diseases, e.g., 10 mg/kg of MCC950 
in AD (for 3  months) [60], 10  mg/kg in aged mice (for 

2 days) [61], 10 mg/kg in EAE (for 9 days) [62], 20 mg/
kg in PD (for 21 days) [63], and 50 mg/kg after traumatic 
brain injury (at 1 and 3 h post-TBI) [64]. Intramuscular 
injection of MCC950 (10  mg/kg) to APP/PS1 mice can 
effectively decrease the production of TNF and IL-1β 
while simultaneously decreasing Aβ accumulation in 
the brain with improved cognitive functions in mice 
[60]. Oral administration of MCC950 (20  mg/kg) pro-
tected the dopaminergic cells in the brains of PD mice 
and improved their behavioral deficits [63]. In our study, 
we administered MCC950 daily for 5  weeks. Since this 
is not a short-term dosing, we used 10 mg/kg MCC950 
in R6/2 mice. We tested two batches of R6/2 mice in our 
experiments and the results were consistent, i.e., system-
atic administration of 10 mg/kg of MCC950 to R6/2 mice 
suppressed the NLRP3 inflammasome, reduced neuroin-
flammation, extended the lifespan, and improved motor 
dysfunction. MCC950 reduces IL-1β production in vivo 
and attenuates the severity of a multiple sclerosis mouse 
model (experimental autoimmune encephalomyelitis 
mice). Furthermore, treatment with MCC950 rescues 
neonatal lethality in a genetic mouse model of cryopy-
rin-associated periodic syndrome [21]. Traumatic brain 
injury (TBI) upregulates NLRP3, ASC, cleaved caspase-1, 
and IL-1β in the perilesional area. MCC950 (50  mg/kg, 
intraperitoneally) treatment resulted in a significant 
improvement in neurological function and reduced cer-
ebral edema in animals with TBI. MCC950 was shown 
to block caspase-1 cleavage and IL-1β production in 
TBI. MCC950 treatment also reduces lesion volume and 
improves motor and cognitive functions after TBI [64, 
65]. MCC950 preserves the blood–brain barrier (BBB) 
and decreases cell death by downregulating NLRP3, cas-
pase-1, and IL-1β production in mice with intracerebral 
hemorrhage. MCC950 has therapeutic potential in in 
mouse model of transient middle cerebral artery occlu-
sion (tMCAO) via the decrease of TNF, caspase-3 cleav-
age, and phosphorylated NFκB–p65 and IκBα levels[66]. 
Our results also indicated that MCC950 downregulated 
the phosphorylation level of IκB and P65 in BV2 cells and 
in the striatum of R6/2 mice (Additional file 1: Fig. S3).

Microglia and astrocytes play an important role as 
the immune effectors in the CNS. Our data showed that 
inhibition of NLRP3 by MCC950 reduced microgliosis 
and astrocytosis in the striatum of R6/2 mice, leading 
to downregulation of IL-1β and TNF (Figs.  2C, D, and 
6C). Fu et al. found that the administration of MCC950 
reduced the surgery-induced increase in GFAP- and 
Iba1-positive cells [61]. In addition, MCC950 administra-
tion also reduced the necrotizing-enterocolitis-enhanced 
Iba-1- and GFAP-positive cells in both the hippocampus 
and cerebral cortex [67]. Taken together, these previous 
results suggest that, as well as microgliosis, inhibition of 
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NLRP3 also reduces astrocytosis in the CNS, consistent 
with our observations that MCC950 not only inhibited 
microglia activation but also reduced astrocytosis in HD 
(Figs.  5, 6). The results presented in this study support 
the hypothesis that the prevention of NLRP3 inflamma-
some activation by MCC950 is beneficial to striatal cells 
in a transgenic mouse model of HD (Fig. 7).

Conclusions
In conclusion, we demonstrated that expression of poly-
glutamine-expanded mHTT enhanced the activation of 
the NLRP3 inflammasome in the striatum of HD mice. 
The NLRP3 inflammasome caused the activation of cas-
pase-1 and the release of IL-1β, resulting in inflamma-
tion and leading to neuronal cell death in HD. Moreover, 
we further demonstrated that long-term treatment of 
HD mice with an NLRP3 inhibitor (MCC950) not only 
reduced the activation of NLRP3 and ROS production, 
but also rescued neuronal survival and attenuated glio-
sis in HD. Oral administration of MCC950 halted the 
disease progression and markedly enhanced lifespan 
in a transgenic mouse model (R6/2) of HD through the 
inhibition of the NLRP3 inflammasome overactivation 

pathway. Collectively, our findings suggest that MCC950 
is a potential therapeutic treatment for HD.
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