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Breath Metabolomics Provides an 
Accurate and Noninvasive Approach 
for Screening Cirrhosis, Primary, and 
Secondary Liver Tumors
Galen Miller-Atkins,1 Lou-Anne Acevedo-Moreno,2 David Grove,3 Raed A. Dweik,4 Adriano R. Tonelli,4 J. Mark Brown,5,6  
Daniela S. Allende,7 Federico Aucejo,2 and Daniel M. Rotroff1

Hepatocellular carcinoma (HCC) and secondary liver tumors, such as colorectal cancer liver metastases are significant 
contributors to the overall burden of cancer-related morality. Current biomarkers, such as alpha-fetoprotein (AFP) for 
HCC, result in too many false negatives, necessitating noninvasive approaches with improved sensitivity. Volatile or-
ganic compounds (VOCs) detected in the breath of patients can provide valuable insight into disease processes and 
can differentiate patients by disease status. Here, we investigate whether 22 VOCs from the breath of 296 patients can 
distinguish those with no liver disease (n  =  54), cirrhosis (n  =  30), HCC (n  =  112), pulmonary hypertension (n  =  49), 
or colorectal cancer liver metastases (n  =  51). This work extends previous studies by evaluating the ability for VOC 
signatures to differentiate multiple diseases in a large cohort of patients. Pairwise disease comparisons demonstrated 
that most of the VOCs tested are present in significantly different relative abundances (false discovery rate P  <  0.1), 
indicating broad impacts on the breath metabolome across diseases. A predictive model developed using random forest 
machine learning and cross validation classified patients with 85% classification accuracy and 75% balanced accuracy. 
Importantly, the model detected HCC with 73% sensitivity compared with 53% for AFP in the same cohort. An 
added value of this approach is that influential VOCs in the predictive model may provide insight into disease etiology. 
Acetaldehyde and acetone, both of which have roles in tumor promotion, were considered important VOCs for differ-
entiating disease groups in the predictive model and were increased in patients with cirrhosis and HCC compared to 
patients with no liver disease (false discovery rate P  <  0.1). Conclusion: The use of machine learning and breath VOCs 
shows promise as an approach to develop improved, noninvasive screening tools for chronic liver disease and primary 
and secondary liver tumors. (Hepatology Communications 2020;4:1041-1055).

Liver cancer is currently the fifth leading cause 
of cancer mortality among males, with an 
estimated 30,200 individuals succumbing 

annually in the United States.(1) Hepatocellular car-
cinoma (HCC) accounts for 80% of all primary liver 
cancers, and the global incidence of HCC has tripled 

Abbreviations: AFP, alpha-fetoprotein; ALDH, alcohol dehydrogenase; BA, balanced accuracy; CRLM, colorectal cancer liver metastases; FDR, 
false discovery rate; HCC, hepatocellular carcinoma; LOOCV, leave-one-out cross-validation; NASH, nonalcoholic steatohepatitis; NPV, negative 
predictive value; PPV, positive predictive value; SIFT-MS, Selective Ion Flow Tube Mass Spectrometer; VOC, volatile organic compound.
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in the past 40 years due to nonalcoholic steatohepa-
titis (NASH), hepatitis C, and excessive alcohol con-
sumption.(2) In the United States, 2-year survival with 
HCC ranges from 30% to 44%.(1,3) Early diagnosis 
and treatment is essential to curbing the high mor-
tality associated with HCC and other liver tumors. 
Ultrasound imaging and measuring alpha-fetoprotein 
(AFP) are two commonly used approaches to screen 
for HCC; however, there are important limitations 
to both of these methodologies. While some patients 
with HCC may exhibit increased levels of AFP, it 
is estimated that 30%-50% of HCCs do not pres-
ent with elevated AFP levels, resulting in too many 
false-negative diagnoses.(4) Furthermore, AFP cannot 
differentiate HCC from other metastatic tumors that 
may also express AFP, such as germ cell tumors.(5)

The liver remains a common site of metastasis for 
certain cancers such as colorectal cancer, also a lead-
ing cause of cancer deaths in the United States.(1,6) 
Only 20%-30% of patients with colorectal cancer liver 
metastases (CRLM) are candidates for resection due 
to extrahepatic disease and other complicating fac-
tors.(6) Therefore, it is critical that noninvasive, accu-
rate, and cost-effective tools are developed that can 
diagnose chronic liver diseases, detect cancer in the 
liver, and track disease progression. In addition, the 
more accessible these tools are, the more they can be 
used to monitor signs of early disease development 
and response to treatment.

Metabolomics, the study of the biochemical 
products of metabolic processes, has shown prom-
ise in detecting metabolite biomarkers that can 
diagnose and predict disease, as well as assess treat-
ment response.(7-10) In addition, metabolomics has 
the ability to rapidly assess many metabolites from 

various noninvasive biospecimens (e.g., blood, saliva, 
breath, urine), which could provide biomarkers that 
are useful for screening diseases. Several metabolites 
have been found to be important in detecting oral 
cancers, cardiovascular disease, and predicting drug 
response.(11-13) These studies indicate that metabo-
lite profiles can detect disease from a variety of dif-
ferent biospecimens. This may be particularly relevant 
for HCC and other liver diseases in which metabolic 
alternations from liver damage may be reflected in 
detectable biochemical changes. Several studies have 
demonstrated the ability to discriminate people with 
healthy livers from those with liver disease(s) through 
principal component analysis (PCA), multiple logistic 
regression, or machine learning approaches.(14-17) For 
example, Fitian et al. compared random forest, multi-
variate statistics, and other methodologies to identify 
and predict HCC in patients with hepatitis C virus 
and cirrhosis,(18) and Liu et al.(19) used a random for-
est model to predict HCC from serum and achieved 
100% sensitivity despite some AFP values lower than 
20  ng/mL. Breath metabolomics has also shown 
promising results for detecting colon cancer, breast 
cancer, infectious disease, asthma, and others.(19-25)

Here, we present a model developed from breath-
based metabolites (volatile organic compounds 
[VOCs]) to classify patients as being healthy, having 
pulmonary hypertension (as a disease control), cirrho-
sis, HCC, or CRLM in a large and well-characterized  
cohort of patients with liver disease. We compare 
and contrast our model’s prediction accuracy for 
detecting HCC to the current clinical standard, AFP, 
and examine the potential for breath metabolomics 
as a noninvasive screening tool for detecting liver 
diseases. Our hypothesis is that the combination of 
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metabolomics and machine learning can be a pow-
erful tool to screen individuals for liver disease and 
liver cancers with high sensitivity and specificity.

Materials and Methods
STUDY PARTICIPANTS

Breath samples were collected from a total of 296 
patients seen at the Cleveland Clinic (Cleveland, 
Ohio). Eligible participants were adult patients 
(>18 years of age) who underwent liver transplanta-
tion for HCC, surgical resection for liver tumors, or 
liver biopsy. In addition, we included patients with 
pulmonary hypertension who underwent right heart 
catheterization, patients attending treatment for her-
nia without history of liver disease or liver cancer 
(healthy control subjects), or family relatives without 
history of liver disease or liver cancer (for healthy 
control subjects). Importantly, initial disease diag-
noses, made from clinical presentation, imaging and 
laboratory techniques, underwent a secondary confir-
matory pathological diagnosis after tumor resection, 
rendering accuracy to initial disease classifications. 
Written informed consent was provided by all partic-
ipants, and the study was approved by the Cleveland 
Clinic internal review board (IRB #10-347).

BREATH SAMPLE PROCUREMENT 
AND PROCESSING

Some subjects were nil per os for 2-8  hours prior 
to breath collection; however, no statistically signifi-
cant differences in VOC profiles between fasting and 
nonfasting individuals were observed (data not shown). 
All subjects had a mouth rinse with tap water imme-
diately before obtaining the breath sample to elimi-
nate contamination from oral bacteria. Subjects were 
encouraged to exhale followed by inhalation to total 
lung capacity through a disposable mouth filter. The 
inhaled ambient air was filtered through a N7500-2 
acid gas cartridge (North Safety Products, Smithfield, 
RI). The subjects then exhaled into a Mylar bag 
(Convertidora Industrial, Jalisco, Mexico) at a steady 
flow rate. Breath samples were analyzed within 2 hours 
of collection after incubation to 37°C for 10 minutes 
using the Selective Ion Flow Tube Mass Spectrometer 
(SIFT-MS) (Syft Technologies Ltd., Christchurch, 
New Zealand).

SIFT-MS
SIFT-MS works by creating reagent ions like 

H3O+, NO+, and O2+ in a microwave source. The 
reagent ions are selected individually by a quadru-
pole mass analyzer, and then ionize individual gases 
of a complex gaseous mixture like the breath. Here, 
we measured the relative concentrations of 22 VOCs 
in exhaled breath: 2-propanol, acetaldehyde, acetone, 
acetonitrile, acrylonitrile, benzene, carbon disulphide, 
dimethyl sulphide, ethanol, isoprene, pentane, 1-decene, 
1-heptene, 1-nonene, 1-octene, 3-methylhexane,  
(E)-2-nonene, ammonia, ethane, hydrogen sulphide, 
triethylamine, and trimethylamine. The VOCs ana-
lyzed here are common compounds found in the 
human breath metabolome,(26) and therefore should 
be easy to detect across platforms. Several of the 
22 VOCs have previously been found to be associ-
ated with renal failure,(27) alcoholic hepatitis,(26) and 
inflammatory bowel disease.(27)

METABOLITE DATA PROCESSING
Histograms were plotted for each metabolite to 

assess parametric assumptions. Because most metabo-
lites demonstrated right skew and long tails, log trans-
formation was used to normalize the data. PCA was 
performed to detect potential batch effects or outlying 
samples. Seven outlying samples were removed from fur-
ther analyses and are described in Supporting Fig. S1. To 
avoid bias in model training, samples were also removed 
from the machine-learning analysis if they were miss-
ing data on more than 20% of the 22 metabolites. Any 
remaining missing metabolite data were mean-imputed 
before being used in the machine-learning models. All  
P values from the covariate and metabolite-disease 
association tests were adjusted for multiple compari-
sons using the Benjamini-Hochberg false-discovery rate 
(FDR) approach.(28)

METABOLITE-DISEASE 
ASSOCIATIONS

A workflow describing the statistical analysis can 
be found in Fig. 1. Each of the 22 metabolites was 
tested for association with each patient cohort using 
logistic regression. Significant demographic variables 
and laboratory tests common between groups were 
included as model covariates to correct for potential 
confounding (Supporting Tables S1-S9). Association 
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tests were performed using both the original data set 
and an imputed data set, in which missing values were 
replaced with the mean of each feature. The imputed 
results are provided in Supporting Tables S17-S23. 
Metabolites and covariates with an FDR P value < 
0.1 were considered to be statistically significant.

RANDOM FOREST ENSEMBLE 
CLASSIFICATION

A random forest ensemble classification approach 
was implemented to determine whether combinations 
of metabolites, with age and sex, could accurately 
classify patients by disease status. A description of the 
random forest model is provided in the Supporting 
Information. Models were developed that included (1) 
metabolites only, (2) demographic variables only (i.e., 
age, sex), and (3) metabolites and demographic vari-
ables. Random forest was implemented using the R 
package, RandomForest.(29)

First, we randomly selected 5% of the patients from 
each group to be excluded from model training to be 
used as a test set to assess model performance (n = 12). 
The remaining subjects were incorporated into a train-
ing and validation cohort. A grid search was performed 
on these remaining subjects to optimize the random 
forest hyperparameters. A leave-one-out cross validation 
(LOOCV) approach was implemented during the grid 
search, which iteratively removed an individual subject 
from the model training and then tested the model on 
the withheld subject. This process was repeated until 
each sample was used as a validation case. The grid 
search evaluated the optimal number of decision trees 
(ntrees) and the number of randomly selected variables 
to choose from at each node in the decision tree (mtry). 
Additional details regarding the grid search can be 
found in the Supporting Information. Hyperparameters 
16 and 100 for mtry and ntrees, respectively, produced 
the highest classification accuracy and were subse-
quently used to develop the final model. The classifi-
cation accuracy for each mtry and ntrees combination 
value is shown in Supporting Fig. S2.

Mean classification accuracy, sensitivity, specificity, 
and balanced accuracy (BA) on the withheld validation 
subjects were used to evaluate the model’s predictive 
performance. Classification accuracy refers to the pro-
portion of correctly identified subjects (true positives 
and true negatives) out of the total number of subjects. 

The best performing model was then evaluated  
using the withheld test cohort. There were not enough 
individuals in the test set (n = 12) to evaluate sensi-
tivity and specificity. However, the classification accu-
racy of the test set was used to evaluate whether the 
LOOCV approach was overfit. The mean decrease 
Gini estimates across the cross-validation procedure 
were used to provide an estimate of the importance of 
each feature to the performance of the model.

Results
PATIENT CHARACTERISTICS

Cohort descriptions and summary statistics are 
provided in Table 1. The cohort included healthy con-
trols (n = 54), patients with cirrhosis (n = 30), HCC 
(n = 112), CRLM (n = 51), and pulmonary hyperten-
sion (n = 49). The mean age for each patient cohort 
were 58.8, 59.6, 66.7, 55.9, and 61.9 for healthy 
controls and patients with cirrhosis, HCC, CRLM, 
and pulmonary hypertension, respectively. The per-
cent of females in each group ranged from 25% for 
patients with HCC to 71% for patients with pulmo-
nary hypertension. Data on race were not collected 
for patients with pulmonary hypertension or healthy 
controls, but most patients with cirrhosis, HCC, and 
CRLM self-reported as Caucasian (83%, 71%, and 
90%, respectively).

METABOLITE-DISEASE 
ASSOCIATIONS

Individual metabolite differences between healthy 
control subjects and subjects in each disease cate-
gory were tested. In addition, metabolite differences 
between individuals with cirrhosis and HCC, indi-
viduals with cirrhosis and CRLM, and between 
individuals with HCC and CRLM, were also tested. 
All associations were adjusted for any significant 
clinical covariates between the two groups, such as 
age or sex, to account for any confounding factors. 
The full list of covariate association results is pro-
vided in Supporting Tables S1-S9. A table with the 
three most significant metabolite associations for 
each disease comparison are presented in Table 2. 
Sample sizes in Table 2 reflect the data after filtering 
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TABLE 1. STUDY COHORT SUMMARY

Characteristic Cirrhosis HCC CRLM Healthy Control Pulmonary Hypertension

Total (n) 30 112 51 54 49

Mean age (min-max) 59.6 (37-79) 66.7 (25-95) 55.9 (26-82) 58.8 (36-80) 61.9 (45-85)

Sex

Male (%) 14 (46%) 84 (75%) 27 (50%) 27 (50%) 14 (29%)

Female (%) 16 (53%) 28 (25%) 14 (26%) 14 (26%) 35 (71%)

Race

Caucasian (%) 25 (83%) 80 (71%)

Black (%) 3 (10%) 21 (19%)

Hispanic (%) 1 (3%) 1 (1%)

Other (%) 1 (3%) 4 (4%) 2 (4%)

Mean BMI (min-max) 27.66 (12.54-40.17) 28.61 (15.6-50.76) 26.3 (17.71-47.46)

Cirrhosis

Yes (%) 30 (100%) 75 (67%) 1 (2%)

NASH (%) 2 (6%) 14 (13%) 0

EtOH (%) 8 (26%) 26 (23%) 0

HCV (%) 8 (26%) 52 (46%) 0

HBV (%) 2 (6%) 2 (2%) 0

Hemochromatosis (%) 4 (13%) 0

Alpha 1 antitypsin deficiency 
(%)

1 (1%) 0

Wilson’s disease (%) 0

Other (%) 9 (90%) 15 (13%) 1 (2%)

No (%) 31 28%) 48 (94%)

Child-Pugh score

1 1 (3%)

5 1 (3%) 8 (7%) 14 (27%)

6 3 (3%) 1 (1%)

7 1 (1%) 1 (1%)

8 1 (1%)

Diabetes mellitus (%) 10 (33%) 37 (33%) 1 (1%)

Hypertension (%) 14 (46%) 62 (55%) 12 (24%)

Coronary artery disease (%) 5 (16%) 17 (15%) 2 (2%)

Hyperlipidemia (%) 8 (26%) 28 (25%) 6 (12%)

Psychiatric disorder (%) 10 (33%) 14 (13%) 5 (10%)

Other cancer history

B-cell lymphoma (%) 2 (6%)

Granulosa cell tumor (%) 1 (3%)

COPD/Asthma/OSA 8 (26%) 22 (20%) 5 (10%)

Thyroid 4 (13%) 8 (7%) 2 (2%)

Other PH 3 (10%) 43 (38%) 16 (31%)

Encephalopathy

Grade 1-2 (%) 27 (90%) 1 (1%) 1 (2%)

Grade 3-4 (%) 1 (3%)

None (%) 1 (3%) 103 (92%) 43 84%)

Mean hemoglobin (SEM) 11.6 (0.403) 12.7 (0.222) 12.1 (0.339)

Mean platelets (SEM) 142 (15.8) 180 (10.5) 188 (11.9)

Mean ALP (SEM) 163 (20.6) 141 (9.7) 142 (19.7)

Mean AST (SEM) 43.8 (3.77) 78.6 (10.7) 71.9 (24.2)

Mean ALT (SEM) 32 (4.46) 76.3 (11.7) 58.4 (17.4)

Mean bilirubin (SEM) 1.12 (0.17) 0.998 (0.09) 0.929 (0.259)
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for outliers and removing missing data. The full list 
of association results is given in Supporting Tables 
S10-S16. Association tests were also performed 
using an imputed data set. The association results 
for the imputed data set are provided in Supporting 
Tables S17-S23.

Healthy Versus HCC
All of the results between healthy controls and 

HCC described subsequently were adjusted for age. 
Interestingly, 18 of the 22 identified metabolites were 
significantly increased in patients with HCC compared 

Characteristic Cirrhosis HCC CRLM Healthy Control Pulmonary Hypertension

Mean albumin (SEM) 3.52 (0.11) 3.58 (0.06) 3.97 (0.07)

Mean INR (SEM) 1.2 (0.09) 1.19 (0.04) 1.10 (0.04)

Mean glucose (SEM) 122 (9.81) 128 (6.61) 107 (4.78)

Mean creatinine (SEM) 1.51 (0.26) 1.02 (0.06) 0.863 (0.06)

Note: Sample size (n) and summary statistics are presented, grouped by diagnosis.
Abbreviations: ALP, alkaline phosphatase; ALT, alanine aminotransferase; AST, aspartate aminotransferase; BMI, body mass index; 
COPD, chronic obstructive pulmonary disease; EtOH, alcoholic hepatitis; HBV, hepatitis B virus; HCV, hepatitis C virus; INR, interna-
tional normalized ratio; OSA, obstructive sleep apnea; PH, pulmonary hypertension.

TABLE 1. Continued

TABLE 2. TOP 3 ASSOCIATION RESULTS BETWEEN METABOLITES AND EACH PAIRWISE COMBINATION 
OF DISEASE STATUSES

Comparison N* Metabolite
Mean Difference in 
Relative Abundance

Log (Odds 
Ratio [SEM]) OR (95% CI) P Value FDR P Value

Healthy vs. HCC† 136 (E)-2-Nonene 0.35 7.4 (1.4) 1,600 (100-25,000) 1.53 × 10−7 3.36 × 10−6

Ethane 15.52 9.4 (2) 12,000 (250-560,000) 1.84 × 10−6 1.69 × 10−5

Benzene 1.13 2.3 (0.49) 10 (3.9-27) 2.3 × 10−6 1.69 × 10−5

Healthy versus cirrhosis 77 Methylhexane 10.07 6.3 (1.3) 540 (40-7,300) 2.12 × 10−6 2.65 × 10−5

Decene 0.49 6.8 (1.5) 900 (52-15,000) 2.73 × 10−6 2.65 × 10−5

Acrylonitrile 0.39 5.7 (1.2) 310 (27-3,700) 3.99 × 10−6 2.65 × 10−5

Healthy versus PH‡ 85 (E)-2-Nonene 0.26 5.7 (1.2) 310 (27-3,600) 3.77 × 10−6 8.29 × 10−5

Acetaldehyde 9.92 6.9 (1.6) 1000 (47-23,000) 1.11 × 10−5 8.87 × 10−5

Ethane 10.85 8.2 (1.9) 3500 (91-140,000) 1.12 × 10−5 8.87 × 10−5

Healthy versus CRLM 97 (E)-2-Nonene 0.35 2.8 (0.67) 16 (4.3-59) 3.29 × 10−5 0.0007238

Acetaldehyde 2.31 3.6 (1) 8 (5.3-270) 0.0003 0.003355

Triethyl amine 0.07 3 (0.89) 21 (3.6-120) 0.00066 0.00484

Cirrhosis versus HCC§ 128 Acetone −344.03 −1.3 (0.32) 0.267 (0.14-0.5) 3.53 × 10−5 0.0006

Acetaldehyde −14.07 −2 (0.51) 0.13 (0.048-0.35) 6.5 × 10−5 0.0006

Dimethyl 
Sulfide

−4.55 −1.4 (0.35) 0.25 (0.12-0.5) 8.19 × 10−5 0.0006

HCC versus CRLM|| 136 Isoprene −16.86 −1.5 (0.47) 0.21 (0.085-0.54) 0.00117 0.013

Pentane −6.39 −2.2 (0.67) 0.12 (0.031-0.43) 0.00131 0.013

Acetone −113.01 −0.93 (0.31) 0.39 (0.22-0.72) 0.0024 0.013

Cirrhosis versus CRLM¶ 71 Methylhexane −8.97 −4.9 (1.2) 0.0076 (0.0007-0.088) 9.31 × 10−5 0.0008

Isoprene −42.52 −3.2 (0.84) 0.041 (0.008-0.21) 0.00015 0.0008

Trimethyl 
amine

−0.07 −2.8 (0.74) 0.062 (0.014-0.26) 0.000167 0.0008

*Sample sizes reflect data after removing outliers and missing data.
†Age was included as a covariate.
‡Sex was included as a covariate.
§Age and sex were included as covariates.
||Age, hypertension, and albumin were included as covariates.
¶Albumin and diabetes mellitus were included as covariates.
Abbreviations: CI, confidence interval; OR, odds ratio; PH, portal hypertension.
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to healthy control subjects (FDR P  <  0.1). Of these 
18 metabolites, (E)-2-nonene (FDR P = 3.03 × 10−5), 
ethane (FDR P  =  1.08  ×  10−4), and benzene (FDR 
P = 1.08 × 10−4) were the most significantly increased. 
Hydrogen sulfide (FDR P = 1.12 × 10−3) was the only 
metabolite that was significantly decreased in patients 
with HCC compared to healthy control subjects.

Healthy Versus Cirrhosis
Eighteen of the 19 metabolites associated with 

HCC were also significantly different between 
healthy controls and patients with cirrhosis. However, 
unlike patients with HCC, trimethylamine (FDR 
P = 2.8 × 10−4) and propanol (FDR P = 2.35 × 10−3) 
were significantly increased in patients with cirrhosis 
compared to healthy controls.

Healthy Versus Pulmonary 
Hypertension

For healthy controls and patients with pulmonary 
hypertension, 16 of 22 metabolites were significantly 
different between these groups (FDR P < 0.1). (E)-2-
nonene (FDR P  =  1.13  ×  10−4), acetaldehyde (FDR 
P = 1.94 × 10−4), and ethane (FDR P = 1.94 × 10−4) 
were the most significantly increased in patients with 
pulmonary hypertension compared to healthy con-
trols. Hydrogen sulfide (FDR P  =  0.0354) was the 
only metabolite significantly decreased in patients 
with pulmonary hypertension compared to healthy 
controls.

Healthy Versus CRLM
Of the 11 metabolites that were significantly 

increased in patients with CRLM compared to healthy 
controls, (E)-2-nonene (FDR P = 2.80 × 10−4), acet-
aldehyde (FDR P = 0.001), and triethyl amine (FDR 
P  =  0.002) were the most significantly increased. 
Hydrogen sulfide (FDR P = 0.003), trimethylamine 
(FDR P  =  0.062), and acetone (FDR P  =  0.086) 
were significantly decreased in patients with CRLM 
compared to healthy controls.

Cirrhosis Versus HCC
Eighteen of 22 metabolites were significantly differ-

ent between individuals with cirrhosis and those with 

HCC (FDR P < 0.1). Acetone (FDR P = 6.7 × 10−4), 
acetaldehyde (FDR P = 6.7 × 10−4), and dimethyl sul-
fide (FDR P  =  6.7  ×  10−4) were the three most sig-
nificantly enriched in patients with cirrhosis. Ethanol 
(FDR P  =  0.089) was the only metabolite that was 
significantly enriched in patients with HCC com-
pared to those with cirrhosis.

RANDOM FOREST MODEL 
PERFORMANCE

Three separate random forest models were con-
structed: (1) metabolites only, (2) age and sex only, 
and (3) metabolites, age, and sex. Model predictivity 
was assessed using classification accuracy, sensitivity, 
specificity, and BA for each disease category (Fig. 2).  
Models with metabolites, age, and sex (over-
all BA  =  75%) broadly outperformed models with 
metabolites only (overall BA  =  68%) or age and sex 
only (overall BA = 63%) for each disease category, and 
had an overall classification accuracy of 85%. The one 
exception was for cirrhosis, which was worse with both 
metabolites and demographic variables (BA  =  68%) 
than the model with only metabolites (BA  =  68%) 
(Table 3). The results of the model combining metab-
olites, age, and sex for each specific disease group are 
detailed next.

Healthy Controls
The model correctly identified 35 of 46 healthy 

controls and 198 of 205 true negatives, resulting in 
the highest classification accuracy (93%) of all the 
groups tested, with 76% and 97% sensitivity and 
specificity, respectively (BA  =  86%). Although the 
model accurately identified healthy individuals and 
distinguished them from individuals with disease, 
the positive predictive value (PPV), the number of 
true positives out of all identified positives was 83%, 
suggesting that some of the predicted positives were 
false positives. The negative predictive value (NPV), 
the number of true negatives out of all identified neg-
atives was 95%, indicating very few false negatives.

Cirrhosis
The model’s ability to detect cirrhosis was the 

worst of all the groups tested, detecting only 8 of 
27 cases. This resulted in a low sensitivity of 40%, 
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but a high specificity of 96% (BA  =  68%) and an 
overall classification accuracy of 90%. The PPV was 
50%, suggesting that half of those identified as cir-
rhosis by the model were false positives. Of the 10 
false positives predicted to be cirrhosis, 50% of them 
belonged to the HCC group. Overall, the model 
accurately classified true negatives, those without cir-
rhosis (NPV = 94%), but was less able to distinguish 
cirrhosis from HCC and pulmonary hypertension.

HCC
The model identified 67 of the 92 individuals with 

HCC, resulting in an overall classification accuracy 
of 72%. The sensitivity and specificity for HCC was 
73% and 71%, respectively, with an overall BA of 
72%. There were 46 false-positive HCC predictions 
made (PPV = 59%), with 35% of those false positives 
belonging to the CRLM group. The NPV was 82%, 
suggesting that the model correctly identified most of 
the negatives.

CRLM
The model correctly identified 22 of 43 CRLM 

cases and 195 out of 208 true negatives, resulting in an 
overall classification accuracy of 86%. The sensitivity 

and specificity for CRLM were 51% and 94%, yield-
ing a balanced accuracy of 72%. There were 13 false- 
positive CRLM predictions made by the model, 
resulting in a PPV of 63%. Of the 13 false positives, 
69% of them belonged to the healthy group. There 
were 21 false negatives, resulting in a NPV of 90%. 
Similar to other disease categories, the model more 
accurately classified true negatives.

Pulmonary Hypertension
The model identified 26 of 45 pulmonary hyper-

tension cases and 191 of 206 true negatives, result-
ing in an overall classification accuracy of 86%. The 
model had a balanced accuracy for pulmonary hyper-
tension of 75%, with a sensitivity and specificity of 
58% and 93%, respectively. There were 15 false pos-
itives, 33% of which were in the HCC group. The 
model resulted in 19 false negatives, resulting in a 
NPV of 91%. Most of the predicted negatives were 
correctly identified.

Test Set
To evaluate potential overfitting and assess final 

model performance, a hold-out group should be used 
as an independent cohort. To that end, 5% of each 

TABLE 3. RANDOM FOREST RESULTS GROUPED BY MODEL (METABOLITE, AGE, AND SEX; METABOLITE 
ONLY; OR AGE AND SEX ONLY ) AND DISEASE STATUS

Model Disease Status Classification Accuracy Sensitivity Specificity Balanced Accuracy

Metabolites, age, and 
sex

Cirrhosis 0.90 0.40 0.96 0.68

CRLM 0.86 0.51 0.94 0.72

HCC 0.72 0.73 0.71 0.72

Healthy 0.93 0.76 0.97 0.86

Pulmonary hypertension 0.86 0.58 0.93 0.75

Average 0.85 0.60 0.90 0.75

Metabolites only Cirrhosis 0.91 0.40 0.96 0.68

CRLM 0.78 0.28 0.89 0.58

HCC 0.63 0.62 0.64 0.63

Healthy 0.88 0.61 0.94 0.77

Pulmonary hypertension 0.83 0.51 0.90 0.71

Average 0.81 0.48 0.87 0.68

Age and sex only Cirrhosis 0.90 0.00 1.00 0.50

CRLM 0.81 0.37 0.90 0.64

HCC 0.70 0.78 0.65 0.72

Healthy 0.86 0.28 1.00 0.64

Pulmonary hypertension 0.73 0.56 0.77 0.66

Average 0.80 0.40 0.86 0.63
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patient cohort (n  =  12) was withheld from model 
training in order to determine the classification 
accuracy of the LOOCV model. The model com-
bining metabolites, sex, and age classified patients in 
the test set with an accuracy of 83%. The classifica-
tion accuracies for specific groups were 100%, 66%, 
75%, 92%, and 83% for cirrhosis, CRLM, HCC, 
healthy, and pulmonary hypertension, respectively. 
The model performance on the test set did not 

indicate any signs of overfitting from the LOOCV 
model, although larger cohorts are needed to more 
effectively evaluate model performance on an inde-
pendent data set.

Figure 3 shows the relative ranking of each model 
feature based on the mean decrease Gini estimate 
for the model using metabolites, age, and sex. Age 
had the highest mean decrease in Gini score, indi-
cating that it was the most important discriminating 
feature, followed by ethane, (E)-2-nonene, acetal-
dehyde, and acetone. The least important variables 
were ammonia, nonene, triethyl amine, decene, and 
acetonitrile.

Discussion
HCC represents a significant burden in global cancer- 

related deaths(1) (same box here for me). Improving 
detection through the identification of new biomark-
ers will be crucial to reducing the incidence of HCC 
and other liver-related comorbidities. Given the met-
abolic role of the liver, metabolomics is an ideal tech-
nology to detect liver diseases through the resulting 
perturbations in metabolic pathways. Metabolomics is 
increasingly being explored as a tool to find diagnostic 
biomarkers from blood, serum, urine, or breath sam-
ples for numerous diseases. Machine learning has the 
potential to discover complex relationships and pat-
terns with metabolites and other features that can be 
used to construct a biomarker signature to detect the 
presence of disease. Discriminatory metabolites from 
breath samples, VOCs, may provide an opportunity for 
a noninvasive approach that could lead to earlier and 
more precise detection. Although previous studies have 
identified biomarker signatures that accurately distin-
guish healthy individuals from patients with HCC or 
cirrhosis, this study develops a model to differentiate 
healthy individuals from chronic liver diseases, a pri-
mary liver cancer, a secondary liver cancer, and a dis-
ease control (pulmonary hypertension). Rather than 
focusing solely on identifying HCC from cirrhosis or 
healthy individuals from those with HCC, the model 
presented here can accurately differentiate among mul-
tiple liver diseases. The addition of more disease cate-
gories broadens the utility of the model and helps us 
understand model limitations and disease misclassifica-
tion that might occur with the real-world deployment 
of a similar screening tool. Effective models must be 

FIG. 3. Bar plots for mean decrease in Gini scores for each variable 
in the random forest model from metabolites, age, and sex. Higher 
scores denote more importance to the model results (e.g., ethane is 
considered the most important VOC).
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sensitive to avoid missing patients with a disease (false 
negatives) and are specific to avoid needless follow-up 
testing (false positives). Given the noninvasive nature 
of breath collection and high specificity of the pro-
posed model, it has the potential to yield clinical util-
ity as a screening tool. By correctly identifying the true 
negatives, the model could identify patients who would 
be unlikely to benefit from additional testing. However, 
it is important to note that our model was also more 
sensitive at detecting HCC than AFP, indicating that 
it may also be better at detecting patients with HCC. 
Those patients who are likely within one of the disease 
cohorts may be followed up with confirmatory testing.

Here, we present a model that uses a signature 
of 22 breath VOCs to distinguish patients who are 
healthy, have HCC, cirrhosis, pulmonary hyperten-
sion, or CRLM. Importantly, the model was 73% 
sensitive for detecting HCC, which was substantially 
better than AFP, the current gold-standard bio-
marker, which had a sensitivity of 53% and specific-
ity of 88% in the same cohort. AFP is a glycoprotein 
and an important biomarker of HCC; however, there 
are important limitations to its use in clinical prac-
tice for screening HCC. First, AFP is only secreted 
in approximately 50% of HCC tumors,(30) resulting 
in too many false negatives. Second, while AFP levels 
above 400 ng/mL are generally considered diagnostic 
of HCC, increased AFP concentrations are also asso-
ciated with viral hepatitis or liver fibrosis,(31) which 
can result in false-positive diagnoses. Here, we used a 
threshold of 11 ng/mL for AFP, which is the current 
value used across all laboratories at the Cleveland 
Clinic. The sensitivity and specificity for AFP 
observed here are consistent with sensitivities and 
specificities reported in the literature, which range 
from 41% to 72%(32-34) and 80%-94%,(4) respectively. 
Although the model specificity (71%) was lower than 
that of AFP (88%), the model’s improved sensitivity 
(73% vs. 53%) addresses a major limitation of AFP 
that results in too many false-negative HCC diag-
noses. Overall, the balanced accuracy of AFP was 
70%, compared with our model’s balanced accuracy 
for HCC of 72%, suggesting an overall improvement. 
In addition, unlike AFP, the model presented here 
is able to simultaneously detect multiple diseases. 
However, additional research is needed to improve 
the specificity of this model, and additional studies 
will be needed to further validate the model for clin-
ical use. Furthermore, the model presented here also 

outperformed reported sensitivities for imaging the 
detection for HCC, even in conjunction with AFP, 
which may be only 60% sensitive.(18,32) Incorporating 
AFP into the model may improve prediction of AFP. 
However, because blood samples were collected as 
part of the patient’s standard of care, AFP is not avail-
able for patients of other disease groups. Although 
age and sex were important variables in the models, 
as shown in the Gini scores (Fig. 3), the predictive 
accuracy increased considerably with the addition of 
metabolites in most cases. Despite controlling for 
confounding factors such as age and sex, significant 
differences in metabolite concentrations were seen 
between disease groups. The association results and 
predictive models both suggest that breath VOCs 
may have important roles as biomarkers.

Ideally, pathway analysis or a similar approach could 
be used to systematically investigate enriched biochem-
ical pathways in certain disease groups that could point 
to a potential mechanism. However, because nearly all 
of the 22 VOCs tested were significantly different 
among groups, we are unable to identify a set of rel-
atively perturbed pathways. Technologies that analyze 
a broader spectrum of VOCs will be needed to gain 
this type of mechanistic insight into these diseases. 
Nevertheless, we can use the Gini scores to approxi-
mate VOC importance, which may point to potential 
biomarkers or underlying disease mechanisms.

Many of the VOCs identified as being important 
contributors to discriminating the disease groups may 
serve a role in neoplastic development or progression, 
or as an indicator of dysfunction in the liver due to the 
presence of a tumor. For example, acetaldehyde, which 
had the third highest Gini score for the VOCs, was 
significantly increased in all disease groups compared 
with healthy controls (FDR P  <  0.1). Acetaldehyde, 
according to the Kyoto Encyclopedia for Genes 
and Genomes, is involved in numerous biochemical 
pathways, including glycolysis/gluconeogenesis, phe-
nylalanine metabolism, pyruvate metabolism, dioxin 
degradation, and others.(35) Interestingly, the World 
Health Organization’s International Agency for 
Research on Cancer considers acetaldehyde a Group 
2B (possibly carcinogenic to humans), and a Group 1 
(carcinogenic to humans) when it is associated with the 
consumption of alcoholic beverages.(36) Acetaldehyde 
is genotoxic and is detoxified by the enzyme acetalde-
hyde dehydrogenase (ALDH), and studies have shown 
that individuals with polymorphisms (e.g., ALDH2*2) 
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have reduced activity of ALDH, resulting in accumu-
lation of acetaldehyde. Furthermore, these individuals 
are known to have significantly higher relative risk 
for developing alcohol-related esophageal cancers and 
upper aerodigestive tract cancers.(37,38)

Sulfur-containing compounds, dimethyl sulfide and 
carbon disulfide, were significantly elevated in patients 
with cirrhosis, HCC, and pulmonary hypertension 
compared with healthy controls (FDR P < 0.1). Carbon 
disulfide was also significantly increased in patients 
with CRLM compared with healthy controls. On the 
other hand, hydrogen sulfide was significantly decreased 
in patients with HCC, pulmonary hypertension, and 
CRLM compared with healthy controls. Decreased 
hydrogen sulfide was also observed in patients with 
cirrhosis compared to healthy controls, but was not 
statistically significant (FDR P = 0.14). Increased con-
centrations of dimethyl sulfide in the breath of patients 
with cirrhosis has been reported previously in multiple  
studies.(39-41) Interestingly, a previous study using the 
same SIFT-MS device found that sulfur-containing  
compounds were decreased in childhood chronic liver 
disease compared with healthy controls.(42) In the 
same study, (E)-2-nonene was significantly decreased 
in children with chronic liver disease compared with 
healthy controls.(42) However, here, (E)-2-nonene was 
significantly increased in all disease groups compared 
with healthy controls (FDR P < 0.1).

Ketones have been shown to play an important 
role in the promotion of tumor growth and metas-
tasis for various cancers.(43-46) Acetone is produced 
during the decarboxylation of ketone bodies, and can 
be increased substantially in individuals with certain 
health conditions, such as alcoholism and diabetes, 
and is not genotoxic.(47) Acetone was considered the 
fourth most important metabolite in our model and 
was significantly increased in cirrhosis, HCC, and pul-
monary hypertension groups compared with healthy 
controls (FDR P < 0.1). However, acetone was signifi-
cantly decreased in patients with CRLM compared to 
healthy controls (FDR P < 0.1).

Although this study represents an important step 
toward using VOC biomarkers for screening of chronic 
liver diseases, additional studies are needed to better 
characterize this technology in the context of these 
diseases. It is not currently known how the concen-
trations of the VOCs detected here change through-
out disease progression. Although this study was not 
powered to investigate associations with comorbidities, 

future work would also benefit from investigating the 
impact of common comorbidities on prediction results. 
Future work would also benefit from comparing and 
contrasting early and late-stage HCC, as well as sam-
ples from individuals before and after resection. These 
additional samples may help predict early metabolom-
ics signs of recurrence and increase the model’s utility 
as a screening tool. Incorporating known biomark-
ers of HCC and colorectal cancer, such as AFP and 
carcinoembryonic antigen, respectively, may improve 
predictions. However, because blood samples for these 
samples were collected as part of their standard of care, 
these markers were not tested for most of the disease 
groups, and this will be an important investigation for 
future work. Because good medical practice involves 
performing tests or collecting information most likely 
to benefit patients, this type of missing data is com-
mon in health care data, and extends to covariates that 
were available for testing here and, like many stud-
ies, may result in bias. Pulmonary hypertension can 
sometimes result in congestive hepatopathy, which 
could potentially affect VOCs related to liver function. 
Future studies may consider a longitudinal design to 
follow up patients over time, although this will be 
challenging due to the slow progression of chronic 
liver disease. In addition, understanding the functional 
roles and biochemical pathways involved in the pro-
duction of these VOCs may yield new biomarkers or 
therapeutic targets. Expanding the cohort to include 
early-stage liver diseases, such as NASH or nonalco-
holic fatty liver disease, will be important, as 25% of 
the population is thought to have these diseases and 
they are often asymptomatic.(48)

The combination of machine learning and VOC 
metabolomics presents a promising approach to bio-
marker discovery and noninvasive disease screening. 
With advancements in breath analysis technology, 
integrating VOC metabolomics and machine learning  
may help to provide accurate and noninvasive 
screening tests for multiple liver diseases and provide  
earlier detection of primary and secondary liver 
cancers.
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