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Stress is an integral part of life. While acute responses to stress are generally
regarded as beneficial in dealing with immediate threats, chronic exposure to
threatening stimuli exerts deleterious effects and can be either a contributing or an
aggravating factor for many chronic diseases including cancer. Chronic
psychological stress has been identified as a significant factor contributing to
the development and progression of cancer, but the mechanisms that link chronic
stress to cancer remain incompletely understood. Psychological stressors initiate
multiple physiological responses that result in the activation of the hypothalamic-
pituitary-adrenal (HPA) axis, sympathetic nervous system, and the subsequent
changes in immune function. Chronic stress exposure disrupts the homeostatic
communication between the neuroendocrine and immune systems, shifting
immune signaling toward a proinflammatory state. Stress-induced chronic
low-grade inflammation and a decline in immune surveillance are both
implicated in cancer development and progression. Conversely, tumor-
induced inflammatory cytokines, apart from driving a tumor-supportive
inflammatory microenvironment, can also exert their biological actions
distantly via circulation and therefore adversely affect the stress response. In
this minireview, we summarize the current findings on the relationship between
stress and cancer, focusing on the role of inflammation in stress-induced
neuroendocrine-immune  crosstalk. We also discuss the underlying
mechanisms and their potential for cancer treatment and prevention.

KEYWORDS
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Introduction

Stress is an inevitable component of daily life that can affect health in a variety of ways. In
order to survive, any individual is required to adequately respond and adapt to an
everchanging environment. Physical or psychological stimuli that disrupt homeostasis
are known as stressors. The exposure to stressors results in complex interactions among
nervous, endocrine, and immune systems, regarded as a stress response. The initial response
to a stressful stimulus is adaptive and encompasses the activation of the sympathetic-adreno-
medullar (SAM) system, the hypothalamic-pituitary-adrenal (HPA) axis, and the immune
system (Godoy et al., 2018). Hence, in response to real or perceived threats to homeostasis,
the information about the stressor is processed by an intricate network of brain circuitry that
includes the hippocampus, amygdala, and prefrontal cortex (McEwen and Gianaros, 2010),
subsequently initiating the physiological mechanisms of adaptation mediated mainly by
catecholamines and glucocorticoids. Adrenal medullary hormones—epinephrine as well as
norepinephrine, which is also synthetized in the locus coeruleus and released by sympathetic
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nerve terminals, orchestrate the ‘fight or flight' response during
stress. In addition to the autonomic nervous system, HPA axis acts
as the key player of stress response via the regulation of
glucocorticoid secretion (Godoy et al., 2018). This HPA-mediated
stress response is characterized by hypothalamic release of
corticotropin-releasing hormone (CRH) that acts on the anterior
pituitary to stimulate the secretion of adrenocorticotropic hormone
(ACTH), which in turn leads to the adrenal secretion of cortisol
(human) or corticosterone (rodents). Synergically, the activation of
HPA axis and SAM system results in increased breakdown of
glucose and promotes redistribution of energy in a wide range of
tissues/organs, including the brain (Godoy et al., 2018). New data
reveals that distinct brain regions drive the specific leukocyte
trafficking pattern during acute psychological stress, therefore
modulating the immune function (Poller et al, 2022). This
highly
dependent on stressor intensity and duration (Dhabhar, 2014). In

stress-induced modulation of immune function is
addition, stress experienced prior to novel antigen exposure or
during early stages of immune activation results in a significant
immunoenhancement, while immunosuppression may be observed
at late stages of an immune response (Dhabhar, 2008).

Unlike acute stress response, prolonged or repeated exposure to
stressors may lead to a maladaptive response and can be detrimental
to health. However, it is important to emphasize that stress
responses in an individual is likely to be a continuum ranging
from potentially adaptive to predominantly maladaptive state,
deeply affected by the intensity, duration, predictability, and
controllability of the stressor (Suri and Vaidya, 2015). Apart
from these factors related to the stressor itself, the factors
intrinsic to the individuals, such as age, sex and genetic
background, significantly shape the stress response (Novais et al.,
2016). Thus, psychological stressors induce robust increases in
circulating inflammatory factors and emerging evidence suggests
that sex differences in stress-induced inflammatory response may
have therapeutic implications (Martinez-Muniz and Wood, 2020).
Furthermore, short-term exposure to psychological stressors mainly
enhances the immune response, whereas repeated/chronic exposure
results in suppression of immune function (Dhabhar, 2014). Acute
stress response induces a rapid redistribution of immune cells
among different body compartments, which is similar across
species, suggesting an evolutionarily conserved mechanism that
confer an adaptive advantage (Dhabhar, 2018). Stress hormones
norepinephrine and epinephrine mobilize immune cells from the
bone marrow, spleen, lung, lymph nodes into the bloodstream soon
after the beginning of stress (within 30 min). Later during stress
(30 min to a few hours), glucocorticoids and epinephrine drive
immune cell migration out of the blood to target tissues such as
the skin, secondary lymphoid tissues, sites of ongoing or de novo
immune activation, thus significantly enhancing the speed and
efficacy of the immune response. Functional implications of
stress-induced immune cells redistribution are reflected in
significantly enhanced immune responses within target tissues
which are enriched with leukocytes during stress. It is important
that leukocytes exhibit
redistribution kinetics in response to each stress hormone,

to note distinct sensitivities and
depending on the type of cell and its functional characteristics
(Dhabhar et al., 2012). In addition, the magnitude of stress-

induced immune cell redistribution is largely dependent on
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stressor characteristics including its duration. In contrast to acute

stress-elicited ~ immunoenhancement  in  target  tissues/

compartments, chronic stress generally suppresses and/or
dysregulates immune responses (Dhabhar, 2008). Exposure to
chronic stress commonly leads to a decrease in immune cell
numbers and function, a signiﬁcant immunosuppression, as well
as to an altered type 1/type 2 cytokine balance. Stress-induced
immune dysfunction contributes to sustained low-grade
inflammation that is closely associated with common chronic
diseases including cancer. On the other hand, cancer itself leads
to an inflammatory milieu with systemic manifestations (Demers
et al,, 2018), thus altering HPA axis activation and appropriate
stress-induced cortisol secretion (Nolten et al., 1993). In this
minireview we will discuss a mutual crosstalk between stress and
cancer, focusing on the role of inflammation as a potential

therapeutic target in stress/cancer relationship.

Chronic stress and cancer—A
bidirectional relationship

Epidemiological and clinical studies have provided strong
evidence for links between chronic stress and increased risk of
cancer incidence and mortality (Moore et al., 2022). On the
other hand, coping with cancer and going through intensive anti-
cancer treatment is a significant cause of chronic stress for cancer
patients. Under chronic stress conditions, a region-specific neuronal
remodeling has been demonstrated in multiple brain regions
including the hippocampus, amygdala, and prefrontal cortex
(McEwen et al., 2016). Thus, repeated stress exposure induces
sustained synaptic plasticity in the prefrontal cortex (Colyn et al.,
2019) and elicits contrasting patterns of dendritic alterations in the
(Patel et al, 2018).
Furthermore, repeated exposure to the most stressors increase

amygdala and hippocampal neurons

hypothalamic CRH gene and protein expression, enhance cellular
excitability by increasing the density of catecholaminergic and
glutamatergic terminals on CRH neurons, thus leading to chronic
of HPA axis with
hypersecretion and sensitized stress responses (Herman and

activation subsequent  glucocorticoid
Tasker, 2016). In addition to prolonged HPA axis activation,
chronic exposure to stressors causes the alterations in locus
coeruleus-norepinephrine function and growing evidence suggests
that the enhanced sympathetic activity also contributes to
glucocorticoid hypersecretion following chronic stress (Lowrance
et al.,, 2016).

Chronic stress can promote cancer development, progression
and therapy resistance via multiple mediators and underlying
mechanisms, such as continuous release of stress hormones,
immune suppression, and persistent low-grade inflammation (Dai
et al,, 2020). Both HPA and SAM systems are persistently activated
during chronic stress, resulting in high levels of stress hormones in
different tissues including the solid tumors (Tian et al., 2021). Stress
hormones may promote tumorigenesis by inducing DNA damage
and suppressing protein p53 function, and support cancer growth
and/or progression directly or indirectly by influencing the tumor
microenvironment (Figure 1). Thus, treatment of human oral
epithelial cells with either norepinephrine or cortisol leads to
single-strand breaks and alkali-label side breaks in the DNA, and
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FIGURE 1

Bidirectional relationship between chronic stress and cancer. Chronic stress persistently activates hypothalamus-pituitary-adrenal (HPA) axis and
sympathetic-adreno-medullar (SAM) system. Stress hormones can promote tumorigenesis, suport cancer growth and/or progression, and regulate
tumor microinvironment. Both, chronic stress and tumor, induce production of proinflammatory cytokines, which may cause neuroinflammation and
thereby altering stress responses. Anti-cancer therapy may also contribute to a persistant proinflammatory state.

this DNA damage is prevented by pre-treatment with beta-
adrenergic receptor antagonist propranolol and glucocorticoid
receptor antagonist RU486, respectively (Valente et al, 2021).
Furthermore, Feng et al. (2012) have demonstrated that increased
glucocorticoid concentrations during chronic restraint stress
reduced p53 levels and function, which in turn contributed to
irradiation-induced tumorigenesis. Most recently, Zong et al.
(2022) have pointed toward a key role of beta-adrenergic
signaling in chronic stress-induced malignant transformation of
gastric epithelial cells through the induction of p53 protein
degradation. Aside from the impact on tumorigenesis, stress
hormones can stimulate the proliferation of cancer cells by
activating various signaling pathways
division. Experimental data have revealed that catecholamines

and promoting cell

stimulate the proliferation of colorectal carcinoma cells in vitro
and promote tumor growth in vivo via activation of extracellular
signal-regulated kinases-1/2 (ERK1/2) by adrenergic signaling (Lin
et al., 2013). Likewise, treatment with beta-adrenergic receptor
antagonist propranolol inhibits ERK1/2 pathway and induces G1/
S phase cell cycle arrest and apoptosis in gastric cancer cells,
confirming the prominent role of catecholamines in cancer cell
proliferation (Koh et al., 2021). The significant role of adrenergic
signaling has also been recognized in the proliferation of breast
cancer cells (Obeid and Conzen, 2013). Nevertheless, the inhibitory
effect of the beta-adrenergic receptor agonist on breast cancer cells
has also been reported, suggesting that the effects of catecholamines
on cancer cell growth may vary depending on specific tumor type,
receptor expression and selectivity of beta-adrenergic receptor
agonists and antagonists (Yap et al.,, 2018). Glucocorticoids also
increase proliferation in different cancer cell lines by activating the
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AKT and mitogen-activated protein kinase (MAPK) pathways
(Giindisch et al., 2012). In addition to these direct effects on
malignant cells, stress hormones may also regulate tumor
de
angiogenesis, tumor growth and aggressiveness (Calvani et al,
2015; Quatrini et al., 2021; Tian et al., 2021). For example, the
activation of beta-adrenergic receptors in melanoma cells enhances

microenvironment and  consequently  support novo

their response to stromal fibroblasts and macrophages, increases cell
motility and induce stem-like properties. Moreover, beta-adrenergic
signaling in melanoma neighboring cells initiates stromal reactivity,
resulting in de novo angiogenesis and sustained tumor growth
(Calvani et al, 2015). In accordance, the increased stromal
expression of matrix metalloproteases and vascular endothelial
growth factor A, mediated by beta-adrenergic signaling, can
promote tumor invasion and metastasis via extracellular matrix
degradation and angiogenesis (Azevedo Martins et al., 2020; Tian
etal,, 2021). Furthermore, adrenergic receptors activation stimulates
the growth and proliferation of cancer-associated fibroblasts and
subsequently increases the concentration of growth factors in tumor
microenvironment (Tian et al,, 2021). Among the multiple cell types
within tumor microenvironment the immune cells are recognized as
the leading players that possess both pro- and anti-tumor activities.
Chronic stress considerably affects hematopoietic stem/progenitor
cells (Heidt et al., 2014; Vignjevi¢ Petrinovi¢ et al., 2020; Barrett
et al,, 2021) and mature immune cells, altering the hematopoietic
homeostasis and dysregulating both innate and adaptive immune
responses (Dhabhar, 2014). In general, different populations of
hematopoietic cells within tumor microenvironment such as:
myeloid-derived suppressor cells, tumor-associated macrophages
(M2 polarized), polymorphonuclear cells, type 2 and 3 of innate
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lymphoid cells, mast cells, regulatory T cells, and nucleated
erythroid cells are considered to exert the immunosuppressive
effects, whereas tumor-infiltrating lymphocytes, dendritic cells
and natural killer cells are associated with an anti-tumor activity
(Salemme et al.,, 2021; Vignjevi¢ Petrinovi¢ et al.,, 2022). Thus,
chronic stress can promote cancer progression by accumulating
the immune cells that exert immunosuppressive effects (An et al.,
2021) as well as suppressing the number and function of
immunoprotective cells (Dhabhar, 2014). Furthermore, chronic
stress induces sustained production of proinflammatory
cytokines, such as: interleukin (IL)-6, IL-1P, or tumor necrosis
factor (TNF)a, and emerging evidence suggests that prolonged
exposure to psychological stress triggers the reprogramming of
myeloid cells towards a hyperinflammatory state (Barrett et al.,
2021).

Inflammation is now considered as a hallmark of cancer. A role
of inflammation has been widely studied in many aspects of cancer
development including initiation, promotion, and progression, and
both positive and negative correlation between inflammation and
cancer have been reported (Liu et al., 2021), Conversely, cancer itself
alters the balance of cytokine production toward an inflammatory
milieu (Burkholder et al., 2014). Apart from cancer itself, a persistent
proinflammatory state in cancer patients is often the result of either
targeted therapy or palliative treatment (Ahmad et al, 2021;
Francesco et al., 2021). Regardless of their origin, the pro-
inflammatory cytokines produced in the periphery can enter the
circulation, permeate the blood-brain barrier, increase the
production of local inflammatory mediators, and subsequently
impair stress responses (Figure 1). Thus, cancer may cause
affect responses by altering
different aspects of neural function, such as circadian rhythm

neuroinflammation and stress

dysfunction, sleep  disturbances, aberrant  glucocorticoid
production, and dysregulation of neural network activity (Pyter,
2016). In accordance, McCaffrey et al. (2022) have most recently
demonstrated that, analogously to chronic stress, cancer itself
activates microglia through stress neurocircuitry.

Clinical data strongly indicate a dysregulated HPA axis function
and abnormal secretion of cortisol in cancer patients (Weinrib et al.,
2010). In these patients, cortisol levels can be altered due to several
factors including the cancer itself, treatments such as chemotherapy,
and psychological stress associated with a cancer diagnosis
(Francesco et al,, 2021). Thus, an altered cortisol diurnal rhythm
has been demonstrated in patients with cancer prior to surgery
(Schrepf et al, 2015; Chang and Lin, 2017), and an aberrant
nocturnal cortisol has been shown in women with advanced
breast cancer (Zeitzer et al., 2016). Elevated cortisol levels have
been observed in patients with high tumor grade and advanced-stage
cancer (Rasmuson et al., 2001; Bernabé et al., 2012) as well as in
those undergoing chemotherapy or target therapy (Brassard et al.,
2011; Ramirez-Exp6sito et al., 2021). However, Colombo et al.
(2019) have recently evaluated basal and stimulated adrenal
function in 12 thyroid cancer patients receiving tyrosine kinase
inhibitors and demonstrated a progressive ACTH increase with
normal plasma cortisol levels in 10 patients, whereas the diagnosis of
primary adrenal insufficiency was confirmed in 6 out of 10 patients
after the detection of a blunted plasma cortisol response upon
ACTH stimulation. Dysregulation of HPA axis and associated

cortisol secretion can lead to immunosuppression (Sephton et al.,
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2009), as well as to an increased risk for anxiety and depression in
cancer patients (Weinrib et al., 2010). Hence, both cancer and its
treatments can alter cortisol levels and stress responses, negatively
influencing quality of life and clinical outcomes in these patients
(Cruz et al., 2022).

In summary, the influence of chronic stress on cancer has been
extensively studied and conflicting results demonstrating harmful
effects, no association and even some protective effects have been
reported (Singh et al.,, 2021). However, considerably less attention
has been paid to the inverse direction of stress/cancer relationship
(cancer-to-stress relation). Further studies focusing on the
reciprocal relationship between stress and cancer are needed to
clarify a complex nature of this crosstalk as well as to identify
common underlying mechanisms and potential susceptibility/risk
biomarkers predicting worse clinical outcomes of cancer patients.

Low-grade inflammation as a common
feature underlying the crosstalk
between stress and cancer

An increased risk of cancer incidence and mortality has been
linked to the systemic low-grade inflammation in numerous studies
(Nost et al,, 2021). Persistent low-grade inflammation is a common
pathophysiological mechanism underlying various chronic conditions
including stress and cancer. Chronic psychological stress induces a
sustained and marked increase in circulating pro-inflammatory factors
(Miller et al,, 2019), thus leading to a low-grade inflammation in
peripheral tissues and brain (Rohleder, 2014). Chronic inflammation
and cancer are mutually intertwined conditions, both driven by
activation of common signaling pathways including signaling via
nuclear factor kappa B (NF-kB), signal transducer and activator of
transcription 3 (STAT3), and mammalian target of the rapamycin
(mTOR). These
proinflammatory cytokines, which in turn regulate their activation
(D’Orazi et al, 2021). Hence, synergistic activation of NF-kB and
STATS3 induces high levels of FATI0 gene expression and consequently

pathways orchestrate the production of

counteracts the activity of tumor suppressor p53 (Choi et al., 2014).
The inactivation of the tumor suppressor p53 is usually a result of TP53
gene mutation and occurs in most human cancers. Romeo et al. (2021)
have shown that mutant form of p53 protein facilitates cancer cell
survival by an enhanced production of intracellular reactive oxygen
species (ROS), secretion of proinflammatory cytokines, activation of
mTOR signaling as well as decreased autophagic activity and
uncoupling protein 2 (UCP2) expression. Moreover, these authors
have pointed towards the restricting effect of wild type p53 protein on
cancer cell survival induced by TP53 gene mutation. On the other
hand, this proinflammatory cytokine release further activates
proinflammatory/oncogenic ~ signaling pathways, creating the
positive feedback loops, and thereby promoting a tumor-supportive
milieu (D’Orazi et al,, 2021). In addition to inflammation-supported
oncogenic transformation, an enhanced proinflammatory cytokine
release can also be triggered by stress- or cancer-associated hypoxic
microenvironment, metabolic alterations as well as by anticancer
therapy (Kartikasari et al, 2021). The proinflammatory cytokines
contribute to tumor growth and metastasis by regulating cancer cell
proliferation and invasiveness, inducing epithelial-mesenchymal
transition, or by controlling tumor angiogenesis via upregulation of
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Chronic inflammation at the crossroads between chronic stress and cancer. Chronic stress, via catecholamine release, induces monocyte
recruitment from bone marrow (BM) and spleen to the brain. Monocyte trafficking is induced via upregulated macrophage migration inhibitory factor
(MIF) and C-C ligand 2—(CCL2)/C-C chemokine receptor 2 (CCR2) pathway. An increased expression of cell adhesion molecules in the cerebral
endothelium facilitates the adherence and extravasation of peripherally derived monocytes, through blood brain barrier (BBB). Chronic stress
activates microglia by altering the cerebral microenvironment through the production of proinflammatory cytokines and reactive oxygen species (ROS).
Increase in ROS production triggers NF-kB-mediated NOD-like receptor protein 3 (NLRP3) inflammasome activation and subsequent proinflammatory
cytokine secretion. Activation of this pathway in hippocampal microglia mediate chronic stress-induced neuroinflammation. Neuroinflammation may
cause alterations in locus coeruleus (LC)-norepinephrine function resulting in overeactivity to subsequent stressors. Chronic inflammation contributes to
tumor growth, angiogenesis and metastasis. Cancers with high expression levels of proinflammatory cytokines exhibit multiple drug resistance. Tumor-
induced ROS and proinflammatory cytokine release further activates proinflammatory/oncogenic signaling pathways, creating the positive feedback

loops.

the expression of vascular endothelial growth factor and its receptors
(Yadav et al, 2011; Chung et al, 2017; Kartikasari et al,, 2021).
with high expression levels of
proinflammatory cytokines exhibit multiple drug resistance, most
likely through an autocrine forward-feedback loop (Kartikasari

Furthermore, cancer cells

et al, 2021). Thus, a systemic proinflammatory state induced by
either chronic stress or cancer is persistently maintained via
positive feedback loops and, apart from further influencing cancer
biology, may also lead to neuroinflammation (Figure 2).

The neuroinflammation caused by systemic proinflammatory state
occurs through multiple mechanisms including monocyte trafficking,
microglial activation, and blood-brain barrier disruption (Wohleb
et al, 2015; Sun et al, 2022). Studies using rodent models have
demonstrated that chronic stress induces the recruitment of
monocytes from the bone marrow and spleen to the brain via
persistent catecholamines release (Weber et al., 2017). Peripherally
derived monocytes than shift their phenotypic and functional
characteristic towards a hyperinflammatory state (Barrett et al,
2021) and enhance their trafficking to the brain (Wohleb et al,
2015). An increased expression of cell adhesion molecules in the
cerebral endothelium under chronic inflammatory state facilitates
the adherence and extravasation of peripherally derived monocytes,
which subsequently differentiate into microglia-like cells. Interestingly,
emerging evidence suggests that this chronic stress-induced monocyte
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migration, which is strongly dependent on C-C chemokine receptor 2
(CCR2) activation, however, is not associated with blood-brain barrier
dysfunction (Hu et al,, 2022). Furthermore, macrophage migration
inhibitory factor (MIF), a proinflammatory cytokine that is markedly
upregulated under chronic stress (Vignjevi¢ Petrinovi¢ et al., 2016) and
induces monocyte recruitment via C-C ligand 2—(CCL2)/
CCR2 pathway (Gregory et al., 2006), has been recognized as a key
player in chronic neuroinflammation (Nasiri et al, 2020). During
neuroinflammation, MIF has been identified as an upstream regulator
of IL-1p and IL-6 production from microglia. Chronic stress activates
microglia in multiple brain regions, thereby altering the cerebral
microenvironment through the production of proinflammatory
cytokines, the induction of ROS, and phagocytosis (Schramm and
Waisman, 2022). An excessive production of ROS by microglia can
create a self-reinforcing cycle of microglial activation and potentiate
HPA axis stimulation through the release of IL-1p within the
hypothalamus (Ramirez et al., 2017). In particular, glucocorticoid-
induced increase in ROS production triggers NF-kB-mediated NOD-
like receptor protein 3 (NLRP3) inflammasome activation and
subsequent IL-1p secretion (Feng et al,, 2019), and the activation of
this pathway in hippocampal microglia has been suggested to mediate
chronic stress-induced neuroinflammation. Most importantly,
McCaffrey et al. (2022) have revealed that cancer and chronic stress
activates microglia to the same extent in the same brain regions.

frontiersin.org


https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://doi.org/10.3389/fphys.2023.1119095

Vignjevi¢ Petrinovi¢ et al.

Therefore, both chronic stress- and cancer-activated microglia can
contribute to the dysfunctional neuroendocrine-immune response by
reinforcing stress-related neurocircuitry.

Therapeutic potential of targeting
inflammation in stress-cancer
interrelationship

The low-grade inflammation that occurs as a result of chronic
stress- and/or cancer-induced dysregulation of the neuroendocrine-
immune interactions is constantly maintained via positive feedback
loops. Disrupting these positive feedback mechanisms may
represent a promising therapeutic approach for cancer treatment.
Over the past decade, the results derived from preclinical studies
have been successfully translated into cancer immunotherapies, but
therapeutic resistance develops over time in the vast majority of
patients (Hou et al.,, 2021). Importantly, the resistance to therapy is
often attributable to a proinflammatory state in cancer patients.

Cytokine secretion is commonly dysregulated during chronic
stress and growing evidence points toward dysregulated cytokine
release as a key feature of cellular mechanisms underlying the
tumor invasiveness and drug-resistance (Kartikasari et al., 2021).
Since IL-1PB is one of the crucial stress-induced cytokines that
promote cancer growth and metastasis, its blockers are currently
being evaluated in clinical trials for cancer therapy. A recent clinical
trial tested the use of anti-interleukin-1p therapy in cardiovascular
disease and unexpectedly revealed that IL-1p blockade led to a
significantly lower incidence of lung cancer (Ridker et al, 2017).
However, sepsis occurs far more often in patients treated with IL-1f
blockade than with placebo, indicating a need for further clinical
research. In addition, the secretion of IL-1p is tightly regulated by
NLRP3 inflammasome and targeting the inflammasome has emerged
as a new therapeutic strategy for cancer (Missiroli et al., 2021).
Moreover, MIF is needed for NLRP3 inflammasome activation and
inhibition of MIF in macrophages results in blockade of
NLRP3 inflammasome-mediated cytokine release (Wen et al,
2021). Considering an important role of MIF in NLRP3 activation
in human peripheral blood monocytes, MIF inhibition may prevent
stress-induced monocyte migration and consequent
neuroinflammation or may be considered as a potential strategy to
suppress tumor growth and overcome therapeutic resistance in some
cancer patients (Samadi et al, 2015; de Azevedo et al, 2020). A
distinctive “transcriptional fingerprint” of human peripheral
monocytes under chronic stress conditions, characterized by
increased proinflammatory gene expression, may serve as a
predictive biomarker of dysregulated immune cytokine signaling in
cancer patients (Kartikasari et al., 2021). Likewise, IL-6 signaling is
one of the most frequently dysregulated pathways in both chronic
stress and cancer. However, the results form clinical trials have
demonstrated a poor clinical response to IL-6 signaling blockade
in patients with multiple myeloma, breast, lung, or prostate cancers
(Hou et al,, 2021). Therefore, although the result from experimental
studies strongly suggests that anti-inflammatory therapy has a great
potential in combating cancer as well as in improving the efficacy of
current treatment modalities, clinical trials to confirm the therapeutic
potential of targeting inflammation in cancer treatment or prevention
are still ongoing.
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Conclusion

Chronic stress and cancer are mutually interconnected
affect
In contrast to numerous

conditions that can each other wvia bidirectional

communication. research results
emphasizing the influence of chronic stress on tumor initiation,
growth and metastasis, the reciprocal effects of tumor on stress
responses have been far less studied. The systemic low-grade
inflammation, which can be induced by both chronic stress and
cancer, has emerged as a significant contributor to tumor
invasiveness and cancer treatment resistance. Therefore, the anti-
inflammatory approaches have a huge therapeutic potential for
cancer treatment, but the translation of experimental results into
clinically effective anti-cancer therapy that targets inflammation is
still pending. Further studies focusing on reciprocal causal
relationship between chronic stress and cancer are needed to
unravel the complex dynamics of underlying neuroendocrine-
immune crosstalk. To elucidate the mechanisms underlying this
complex crosstalk, the integrative multi-omics approaches (e.g.,
genomics, metabolomics, proteomics) should be considered.
Better understanding how cancer alters stress responsivity may
provide novel insights into mechanisms contributing tumor
immune evasion and therapy resistance, as well as to point
towards the susceptibility/risk biomarkers predicting worse
clinical outcomes in cancer patients. Furthermore, multi-omics
analysis of peripheral blood cells may enable the identification of
distinct cytokine signatures as potential biomarkers assessing the
risk for stress-related cancer development and/or progression.
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