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As the population ages, interest in identifying biomarkers of healthy aging and developing
antiaging interventions has increased. DNA methylation has emerged as a potentially
powerful molecular marker of aging. Methylation changes at specific sites in the human
genome that have been identified in peripheral blood have been used as robust estimators
of chronological age. Similar age-related DNA methylation signatures are also seen in
various tissue types in rodents. However, whether these peripheral alterations in
methylation status reflect changes that also occur in the central nervous system
remains unknown. This study begins to address this issue by identifying age-related
methylation patterns in the hippocampus and blood of young and old mice. Reduced-
representation bisulfite sequencing (RBSS) was used to identify differentially methylated
regions (DMRs) in the blood and hippocampus of 2- and 20-month-old C57/Bl6 mice. Of
the thousands of DMRs identified genome-wide only five were both found in gene
promoters and significantly changed in the same direction with age in both tissues. We
analyzed the hippocampal expression of these five hypermethylated genes and found that
three were expressed at significantly lower levels in aged mice [suppressor of fused
homolog (Sufu), nitric oxide synthase 1 (Nos1) and tripartite motif containing 2 (Trim2)]. We
also identified several transcription factor binding motifs common to both hippocampus
and blood that were enriched in the DMRs. Overall, our findings suggest that some age-
related methylation changes that occur in the brain are also evident in the blood and could
have significant translational relevance.
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INTRODUCTION

As the population of older Americans continues to rise, with
estimates that it will more than double in the coming decades
(Populations Reference Bureau, 2015), there is a growing interest
in understanding the underlying biology of aging in order to
identify therapeutic interventions that can help improve the
overall health of older people. To this end, there has been an
increased focused on epigenetic changes, which are chemical
modification of the DNA that do not involve DNA sequence and
might affect gene expression. Epigenetic modifications are
known to occur throughout the lifespan and can serve as
molecular markers of chronological age that can be used to
assess and predict age-associated decline and disease, as well as
the effects of interventions devised to promote healthy aging
(Fahy et al., 2019). DNA methylation in particular has been
shown to be a sensitive marker for age, associating so precisely
with chronological age that they are often referred to as the
“epigenetic clock” (Bollati et al., 2009; Christensen et al., 2009;
Maegawa et al., 2010; Rakyan et al., 2010; Alisch et al., 2012;
Horvath et al., 2012; Rando and Chang, 2012; Day et al., 2013;
Hannum et al., 2013; Horvath, 2013; Johansson et al., 2013;
Teschendorff et al., 2013; Weidner et al., 2014).

Evidence of this “epigenetic clock” can be found in almost all
tissues and organs, however the brain appears to be the most
affected and these changes are thought to contribute to cognitive
decline in aging (Fraga et al., 2005; Lardenoije et al., 2015;
Starnawska et al., 2017; Barter and Foster, 2018). DNA
methylation is known to play an important role in dynamic
regulation of gene expression that is involved in synaptic
plasticity and learning and memory in aging humans (Borrelli
et al., 2008; Day and Sweatt, 2010; Graff and Tsai, 2013; Sweatt,
2013). Rodents similarly display epigenetic alterations as they age
(Stubbs et al., 2017; Meer et al., 2018) and many studies have
reported that age-related methylation changes in the central
nervous system (CNS) can likewise influence synaptic
connectivity and cognitive function (Levenson et al., 2006;
Miller and Sweatt, 2007; Lubin et al., 2008).

Although methylation changes can be powerful predictors of
age-related changes that affect the CNS, evaluating methylation
changes in the brain is not clinically feasible. Therefore it is key to
identify peripheral DNA methylation patterns that mimic those
in the brain region of interest. Similarity of methylation patterns
has been reported across many tissue types in both mice and
humans (Horvath, 2013; Stubbs et al., 2017). In humans,
correlations between age-related methylation changes have
been reported for peripheral blood and cerebral cortex
(Horvath et al., 2012; Horvath, 2013; Johansson et al., 2013),
but not hippocampus, a key region for understanding brain aging
and neurodegeneration (Morrison and Hof, 2002; Mattson and
Magnus, 2006; Wang and Michaelis, 2010; Moodley and Chan,
2014; Bird, 2017). We consequently focused these studies on the
hippocampus, and on methylation changes that were inferred
(by location in the promoter) or demonstrated (by concomitant
gene expression studies) to be functionally significant.
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METHOD

Mice
Six young male C57Bl/6 mice were obtained from Jackson Labs
(Bar Harbor, ME) and six aged male C57Bl/6 mice were obtained
from the National Institute of Aging Aged Rodent Colony. Mice
were maintained in a climate controlled facility with a 12-h light/
dark cycle and given food and water ad libitum at the Veteran’s
Administration Portland Health Care System (VAPORHCS). At
2 and 20 months of age mice were euthanized via CO2 inhalation
followed by exsanguination. Blood was collected via cardiac
puncture and placed in EDTA treated tubes, and hippocampi
were dissected and immediately frozen on dry ice. DNA was
extracted using DNeasy Blood and Tissue Kit (Qiagen) as per the
manufacturer’s instructions. All procedures were conducted in
accordance with the NIH Guidelines for the Care and Use of
Laboratory Animals and were approved by the institutional
Animal Care and Use Committee of the VAPORHCS.

Reduced-Representation Bisulfite
Sequencing Library Generation
RRBS libraries were generated from ~200 ng of genomic DNA
extracted from blood and brain. Overnight digestion was performed
with the restriction enzyme MspI (New England Biolabs). Reaction
clean-up was performed with AMPure XP magnetic beads
(Beckman Coulter) and library preparation was done with the
NEXTflex Bisulfite-Seq Kit (Bioo Scientific Corporation). The
digested DNA was end-repaired, A-tailed, and then ligated with
the NEBNext Methylated Adaptor (New England Biolabs). Bisulfite
conversion was performed with the EZ DNAMethylation-Gold Kit
(Zymo Research) before carrying out PCR amplification with
NEBNext Multiplex Oligos (New England Biolabs) to barcode
each library. A final AMPure XP bead clean was performed and
the resulting libraries quantified with the Qubit High Sensitivity
dsDNA Assay (Life Technologies, Eugene, OR) and the Bioanalyzer
High Sensitivity Analysis (Agilent, Santa Clara, CA). Libraries were
multiplexed and sequenced by the OHSU MPSSR on the Illumina
NextSeq 500 with the high-output, 75-bp cycle protocol.

Differential Methylation Analysis
RRBS reads were analyzed for quality with FastQC (v0.11.5),
followed by trimming with TrimGalore (v0.5.0) with the “—rrbs”
parameter specified. Trimmed reads were aligned to the mouse
reference genome from ensemble, version m38 (mm10), with
Bismark (v0.19.0) using default parameters. Coverage files
output from Bismark were used to obtain CpG methylation
rates. The R package methylKit (v1.8.1) was used for differential
methylation analysis.

For analysis of differentially methylated regions (DMRs)
using methylKit the genome was tiled into 1,000 bp
nonoverlapping regions and the CpG methylation rates were
averaged over the region. To calculate p-values, a logistic
regression model that utilizes a Chi-square test was used to
determine if the model with the treatment vector better predicts
the outcome variable (methylation proportion) than the null
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model. P-values were corrected to q-values via the SLIM (Wang
et al., 2011) method. Overdispersion correction was applied. The
dataset was reorganized into blood samples and hippocampus
samples in order to compare old to young within each tissue.

All DMRs with a q-value < 0.05 and a methylation difference >
10% were compiled and overlapping genes were annotated using a
custom pipeline. DMRs were considered as occurring within a
promoter region, intron, or exon based on using ensemble
annotation for mouse (specifically, GRCm38.92). We defined
promoters as 3 kb upstream from a transcription start site (TSS).
If theDMRoverlapped an annotated promoter, exon, or intron, then
it was considered as overlapping that given gene feature. In some
instances a DMR can overlap more than one feature; for example, a
DMR that spanned the promoter region and the first exon of a gene
would be considered as overlapping both features. For intergenic
DMRs, the closest gene and the distance between the DMR and TSS
were also annotated.

Characterization of DMRs
In order to identify pathways enriched in DMRs, we used the
publicly available tools GREAT (http://great.stanford.edu/
public/html/) and GOrilla (http://cbl-gorilla.cs.technion.ac.il/).
To identify pathways enriched in DMRs occurring specifically in
the promoter region we used the PANTHER (http://www.
pantherdb.org/). These can be found in Supplemental Tables
1 and 2.

We then compared DMRs occurring in the blood and
hippocampus identifying those in the same location that were
changed in the same direction in both tissue types. We also
performed a permutation analysis to determine if those common
DMRs we identified were merely due to random chance.
Randomly selected 1,000 bp regions were used in differential
analysis, choosing 1,528 regions for blood and 740 regions for
hippocampus out of the ~96,000 used in the initial differential
analysis. We then assigned the randomly selected regions a fold
change direction, using the same number of hypomethylated and
hypermethylated regions as in the original analysis. Finally, we
determined how many regions were shared while also possessing
the same fold change directions between the two shuffled
datasets. This process was repeated 1,000 times, and the
distribution of the number of regions shared and in the same
direction was determined.

Finally, motif enrichment was performed on the significant
DMRs from each tissue type using HOMER (Hypergeometric
Optimization of Motif EnRichment) specifying the use of the
given size of the regions and normalizing for CpG content
against the random background. Enriched motifs with a
Benjamini value of less than 0.05 that were common between
the blood and the hippocampus were identified.

Gene Expression Analysis
The contralateral hippocampus not used for DNA extraction was
used for RNA-extraction and qPCR. RNA was extracted using
Tri-reagent (Molecular Research Center) and reverse transcribed
using Superscript III First Strand Synthesis kit (Thermo Fisher
Scientific) as per the manufacturers’ instructions. Relative gene
Frontiers in Genetics | www.frontiersin.org 3
expression was determined using TaqMan Gene Expression
Master Mix (Invitrogen) and commercially available TaqMan
primers (Invitrogen) for suppressor of fused homolog (Sufu),
potassium voltage-gated channel subfamily E member 1 (Kcne1),
nitric oxide synthase 1 (Nos1), tripartite motif containing 2
(Trim2), gamma-glutamyltransferase 1 (Ggt1) , and
glyceraldehyde-3phosphate dehydrogenase (GAPDH).
Quantitative PCR (qPCR) was performed on a StepOne Plus
Machine (Applied Biosystems) and analyzed using the delta-
delta Ct method. Statistics were analyzed using GraphPad
software using a two-tailed t-test.
RESULTS

Differentially Methylated Regions Were
Detectable in Both the Blood and
Hippocampus of Aged Mice
In order to identify possible differences in DNA methylation
between young and old mice in hippocampus and blood we
generated RRBS data for both young (2 months) and aged (20
month) mice and both tissues. The choice of RRBS was based on
the possibility to obtain genome wide data at a fraction of the
cost than whole genome bisulfite sequencing. This method
allows for the capture CpG methylation in promoters, CpG
islands, and gene bodies. Using all CpGs present with at least
10X coverage in all datasets we performed Principal Component
Analysis (PCA) to assess global differences between our groups
(see Supplementary Table 1 for CpG numbers at different
coverages). The PCA plot showed good separation between
young and old mice in both the hippocampus (Figure 1A) and
the blood (Figure 1B), suggesting that genome-wide differences
in methylation occur with aging, independently from the tissue.
Because samples were analyzed on two separate sequencing runs
(with tissue type and age randomized) some clustering did occur
within each run. Therefore, sequencing run was also included as
a covariate during differential analysis.

Next, we identified differentially methylated regions (DMRs)
between old and young animals, including differences in
methylation >10% (q-value < 0.05) and identified 740 DMRs
in the hippocampus and 1,528 in the blood. The majority of
DMRs in each tissue were found in intronic regions; however,
DMRs were identified in promoters and exons as well as
intergenic regions (Figure 1C). In order to determine if DMRs
were enriched in specific pathways, we used the GREAT toolkit
(McLean et al., 2010). Specifically, to carry out this analysis we
isolated the DMRs promoters and separated them into hyper- or
hypomethylated with age (Figure 1D). While there were no
biological processes associated with hypomethylated DMRs in
the brain, we identified enrichment in pathways involved in
immune response and cell differentiation in the blood.
Hypermethylated DMRs were enriched in mesoderm
development and muscle cell differentiation processes in blood
and muscle development and organ morphogenic processes in
the hippocampus. We additionally used PANTHER (Thomas
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et al., 2003) as a different approach to find pathways that were
associated with genes containing DMRs in the promoter region
that were either hypo- or hypermethylated with age in each tissue
(Supplementary Tables 2 and 3).

Common DMRs Between Hippocampus
and Blood of Aged Mice Display Changes
in Gene Expression
DNA methylation is one of the main mechanisms that regulate
gene expression. In order to determine if changes in DNA
methylation were also associated with changes in gene
expression, we first identified the DMRs shared between
hippocampus and blood. Although there was a high correlation
between methylation changes in the blood and hippocampus
(Supplementary Figure 1), we found only three DMRs shared
across tissues that were both hypomethylated with age (Figure
2A) and 20 that were hypermethylated with age (Figure 2B).
Through a permutation analysis we determined that that the
number of shared DMRs identified here (N = 23) is significantly
greater than the number of shared regions that would be
obtained by random chance (Supplementary Figure 2).

Of the DMRs shared between the blood and hippocampus
that changed in the same direction we decided to focus on the
five DMRs that were located in promoters because of the strong
association between promoter methylation changes and
alterations in gene expression (Jones, 2012). In all five cases
Frontiers in Genetics | www.frontiersin.org 4
promoters were found to be hypermethylated with age (Figure
2C). We found that the expression of three of the five genes
(Nos1, Trim2, and Sufu) was significantly repressed in the
hippocampus of aged mice with a fourth (Gtg1) showing a
nonsignificant trend toward repression as well. No change was
observed in the hippocampal expression of Kcne1 between old
and young animals (Figure 2D).

Several Transcription Factor Binding Sites
Were Enriched in DMRs in Both the Blood
and the Brain of Aged Mice
DMRs can correspond to regulatory regions in the genome where
changes in methylation might vary affinity for binding of
transcription factors (TF). In order to investigate the possibility
that age-related differential methylation might impact binding of
biologically relevant TF, we employed the Hypergeometric
Optimization of Motif EnRichment (HOMER) tool (Heinz et al.,
2010; Populations Reference Bureau, 2015). We identified
54 TF binding motifs enriched in DMRs in the hippocampus and
111 inblood and14of thesewere common toboth tissues (Table 1).
DISCUSSION

In this study, we evaluated the hippocampus and peripheral blood
of 2- and 20-month-old C57Bl/6 male mice to try and identify
FIGURE 1 | Principal component analysis (PCA) of CpGmethylation genome-wide showed separation between young and oldmice for both the hippocampus (A) and blood
(B). (C)Differentially methylated regions (DMRs) were identified in promoter, intron, exon, and intragenic locations in both the blood and hippocampus. (D)GOanalysis identified
several biological processes associated with both hyper- and hypomethylated DMRs in each tissue.
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commonalities in the methylation pattern between the two tissues
that occur with aging. CpGmethylation between the blood and the
hippocampus was found to be highly correlated (Supplementary
Figure 1). This is consistent with previous reports of correlations
between the blood and other brain regions in humans (Horvath
Frontiers in Genetics | www.frontiersin.org 5
et al., 2012). We found thousands of significant DMRs in each
tissue distributed in promoters, gene bodies, and intergenic
locations. Pathway analysis of these DMRs revealed that in the
blood hypomethylated DMRs were enriched in immune response
and regulation of fat cell differentiation processes while
hypermethylated DMRs were enriched in mesoderm
development and muscle cell differentiation processes. In the
brain, there were no biological processes identified to be
enriched among the hypomethylated DMRs while the
hypermethylated DMRs were enriched in muscle structure
development and embryonic organ morphogenic processes.

Among these DMRs, relatively few were shared and changed
in the same direction in both the hippocampus and blood (3
hypomethylated and 20 hypermethylated) and only five were
located in the promoter region, all of which were
hypermethylated (Figure 2). Hypermethylation of promoters is
usually associated with repressed transcription and reduced gene
expression (Jones, 2012). We consequently decided to focus our
gene expression analysis on the five genes with hypermethylated
DMRs in the promoter region: Kcne1, Nos1, Trim2, Gtg1, and
Sufu. Although Kcne1 expression was unchanged, hippocampal
expression of Nos1, Trim2, and Sufu was all significantly reduced
in the aged animals and Gtg1 showed a similar, but
nonsignificant, trend as well.
FIGURE 2 | Differentially methylated regions (DMRs) shared between blood and hippocampus that were either hypomethylated (A) or hypermethylated (B) in aged
mice. (C) The percent methylation difference between the five common genes that were hypermethylated in the same location in the promotor was similar in both the
blood and the brain. (D) Three out of five genes with common hypermethylated DMRs in the promoter showed reduced expression in the hippocampus (*p < 0.05,
n = 6).
TABLE 1 | Transcription factor binding sites significantly enriched in differentially
methylated regions (DMRs) and shared by blood and the brain.

Name q-value
(Benjamini)

% of Target
Sequences with

Motif

q-value
(Benjamini)

% of Target
Sequences with

Motif

Elk4 <0.0000 36.4 <0.0000 35.6
Elk1 <0.0000 33.1 <0.0000 34.1
Elf1 <0.0000 30.1 <0.0000 30.2
Fli1 <0.0000 53.8 <0.0000 52.8
ETV4 <0.0000 55.8 <0.0000 54.4
Zac1 0.0005 86.0 0.0011 84.5
GABPA 0.0032 44.9 <0.0000 45.6
ETA 0.0039 19.1 <0.0000 19.4
AT5G05550 0.0065 51.8 0.0001 53.2
ETV1 0.0176 62.2 0.0012 61.2
AT3G58630 0.0300 6.0 0.0137 6.2
RXR 0.0261 53.8 0.0197 51.4
EAR2 0.0261 58.2 0.0001 57.13
RAP211 0.0357 66.1 0.0003 68.6
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In addition to being a marker for brain aging that can be
detected peripherally, these gene expression changes could also
have functional relevance. Of note, expression changes of two of
the three genes found to be significantly reduced in expression
with age, Nos1 and Trim2, have also been reported to be
associated with changes in synaptic plasticity and cognitive
function. Mice lacking Nos1 gene have been shown deficits in
executive function and spatial memory (Weitzdoerfer et al., 2004;
Zoubovsky et al., 2011) and in humans, NOS1 mutations have
been identified as risk factor for schizophrenia, particularly with
schizophrenia with profound impairment in cognitive function
(Zhang et al., 2015).

Trim2 expression has also been associated with neuronal
health. Trim2 is an E3 ubiquitin ligase that is highly expressed
in the hippocampus and deficiencies in Trim2 levels has been
associated with axonal neuropathy (Ylikallio et al., 2013).
Additionally neurofilament-light (NF-L) protein is a target of
Trim2 that is involved in dendritic branching and dendrite spine
formation and it has been reported that mutations or loss of
Trim2 leads to accumulation of NF-L resulting in progressive
neurodegeneration and synaptic loss (Ylikallio et al., 2013). NF-L
levels have been reported to be elevated in the cerebrospinal fluid
(CSF) and blood of patients with synucleinopathies, tauopathies,
and Alzheimer’s disease and similar increases can been seen in
the CSF and plasma of mouse models of the same diseases
(Bacioglu et al., 2016).

By performing a motifs search on all DMRs, we identified 14
TF motifs (Table 1) that were significantly enriched in age-
related DMRs in both the blood and brain suggesting potential
translational relevance of the findings from this study. Six of
those 14 common motifs (ELK1, ELF1, ETV1, ETV4, ETV5,
RXR) have been associated with modulating synaptic density,
arborization, and neurite outgrowth (Gao et al., 1996; Abe et al.,
2011; Szatmari et al., 2013; Boone et al., 2017). Furthermore,
ETV1, ELK1, EAR2, RXR, and GABPA have been implicated in
regulating cognitive function. Specifically, ELK1 has been
reported to be involved in transcriptional regulation of several
key immediate early genes required for synaptic plasticity and
subsequent memory formation (Minatohara et al., 2015;
Hullinger and Puglielli, 2017) while loss of EAR2 has been
shown to cause learning and memory deficits in healthy mice
and exacerbates those seen in mouse models of Alzheimer’s
disease (Morrison and Hof, 2002). Changes in ETV1 expression
have likewise been linked with cognitive decline (Abe et al., 2011;
Ding et al., 2016). RXR agonists that increase binding to the RXR
motif have been shown to enhance synaptic density and improve
cognitive function in mouse models of aging and Alzheimer’s
disease (Cramer et al., 2012; Nam et al., 2016; Tachibana et al.,
2016; Mariani et al., 2017). The binding partner of GABPA,
METTL23, has been reported to play an essential role in human
cognition (Reiff et al., 2014). Additionally, the GABPA binding
was also recently found to be enriched in the frontal cortex of
aged humans and was determined to be a potential regulator of
aging-related genes (Meng et al., 2016). As DNA methylation is
able to change binding affinity of TF to enhancers and regulatory
sequences, our findings suggest that age-related changes in
methylation might affect gene networks whose regulation
Frontiers in Genetics | www.frontiersin.org 6
depends on some of these TFs. More functional studies will be
needed to validate this hypothesis.

In conclusion, we were able to identify a methylation
signature in the hippocampus of aged mice that was also
present in the blood. Interestingly, some of these age-related
differences occur in genes relevant to neuronal health, synaptic
density and cognitive function. Additional experiments are
needed to confirm these results are also relevant in aged female
mice, qs some epigenetic modifications might be sex specific
(Masser et al., 2017; Gegenhuber and Tollkuhn, 2019). If a
common methylation footprint is also be found between the
blood and the hippocampus of female animals, it would be of
interest in future work to determine if antiaging or cognitive
enhancing interventions can modify these changes in both sexes.
Ultimately confirming these methylation changes in a human
population will be necessary if this is to be adapted for
clinical use.
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