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ABSTRACT

Objective: This study introduces a temporal condition pattern mining methodology to address the sparse na-

ture of coded condition concept utilization in electronic health record data. As a validation study, we applied

this method to reveal condition patterns surrounding an initial diagnosis of pediatric asthma.

Materials and Methods: The SPADE (Sequential PAttern Discovery using Equivalence classes) algorithm was

used to identify common temporal condition patterns surrounding the initial diagnosis of pediatric asthma in a

study population of 71 824 patients from the Children’s Hospital of Philadelphia. SPADE was applied to a data-

set with diagnoses coded using International Classification of Diseases (ICD) concepts and separately to a data-

set with the ICD codes mapped to their corresponding expanded diagnostic clusters (EDCs). Common temporal

condition patterns surrounding the initial diagnosis of pediatric asthma ascertained by SPADE from both the

ICD and EDC datasets were compared.

Results: SPADE identified 36 unique diagnoses in the mapped EDC dataset, whereas only 19 were recognized in

the ICD dataset. Temporal trends in condition diagnoses ascertained from the EDC data were not discoverable

in the ICD dataset.

Discussion: Mining frequent temporal condition patterns from large electronic health record datasets may re-

veal previously unknown associations between diagnoses that could inform future research into causation or

other relationships. Mapping sparsely coded medical concepts into homogenous groups was essential to dis-

covering potentially useful information from our dataset.

Conclusions: We expect that the presented methodology is applicable to the study of diagnostic trajectories for

other clinical conditions and can be extended to study temporal patterns of other coded medical concepts such

as medications and procedures.
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INTRODUCTION

Data mining refers to the computational process of automated infor-

mation extraction from large datasets to facilitate discovery of novel

insights.1 Pattern mining is a fundamental data mining task.2 Impor-

tant pattern types include subsequences of sequentially ordered

items or events that occur frequently in the dataset.3 For example, a

collection of temporally ordered event sequences may contain or-

dered event subsets that are frequent. Such temporal patterns may

yield valuable insights on associations or causal relationships among

variables in a dataset, and help to predict future events.

Temporal pattern mining of electronic health record (EHR) data

has the potential to uncover previously unknown relationships

among comorbidities (conditions occurring together) and condition

trajectories (conditions diagnosed in a temporal order), which can

complement clinical knowledge and traditional medical research

methods. Diagnoses found to commonly occur before the onset of a

condition of interest may inform clinicians of patient risk for devel-

oping that condition. Similarly, diagnoses found to occur commonly

after the onset of a condition of interest may inform care providers

of future risk for other disorders.

While longitudinal EHR data may inform healthcare research

and policy, data mining methods must be selected carefully based on

the characteristics of the EHR data and the outcome of interest.4 Se-

quential pattern mining methods can be broadly categorized into 2

classes: the Apriori-based candidate generation method and the pat-

tern growth method.5 The Apriori approach is based on the Apriori

property, which posits that a given sequence is necessarily infrequent

if it contains a smaller sequence that is infrequent, and that a subse-

quence of a frequent sequence is also frequent.6,7 Apriori-based

algorithms may use a horizontal database format (eg, the general-

ized sequential patterns algorithm),8 a vertical database format (eg,

SPADE [Sequential PAttern Discovery using Equivalence classes]),

or Apriori-based candidate generation and pruning using depth-first

traversal (eg, the SPAM [Sequential PAttern Mining] algorithm).9,10

Pattern growth algorithms, such as PrefixSpan, perform database

projection and use database scans to count item support (all patterns

present above a threshold percentage) but do not generate candi-

dates.11

Although the application of temporal pattern mining techniques

to EHR data remains a relatively new and unexplored approach,12

there have been some important initial studies that have demon-

strated the methods’ effectiveness. For example, Perer et al13 used

the SPAM algorithm to mine EHR data to identify sequential medi-

cal event patterns among hyperlipidemic patients and studied their

association with outcomes. The study identified sequences that

confirmed known associations and revealed novel information. For

example, increased use of certain medications, such as fluoroquino-

lones, in hyperlipidemic patients with hypertension may raise low-

density lipoprotein levels. Gotz et al14 also used the SPAM algorithm

for temporal pattern mining of clinical events in retrospective EHR

data. Chen et al15 used the PrefixSpan algorithm to analyze combi-

nations of chronic diseases and specific orders of chronic disease

transition from a large medical database. Wright et al16 utilized the

SPADE algorithm to identify temporal relationships among diabetes

medication prescription trajectories and to predict the future medi-

cation prescriptions.

Data heterogeneity and sparsity are major challenges to temporal

pattern mining of EHR data.17 These challenges are particularly sa-

lient when working with diagnostic codes. For example, although a

typical EHR dataset will contain thousands of distinct International

Classification of Diseases (ICD) codes,17 a small fraction of ICD

codes will account for most diagnoses. Previous research indicates

that this Pareto principle18 phenomenon presents a significant

challenge for pattern mining. Chen et al15 noted the complexities of

mining disease transition patterns using ICD codes due the volume

of codes and the sparse use of medically similar codes. Boytcheva

et al19 observed similar challenges and highlighted analyzing classes

of similarly grouped ICD codes as an important area of future work.

Diagnostic schemes that group diagnosis codes into medically

homogenous clusters are one approach to reduce sparsity in an EHR

dataset, which may improve pattern mining results. However, the

use of such clustering methods in combination with sequential pat-

tern mining in EHR data is limited.13,14 There is also limited com-

parison of mining results when utilizing diagnostic schemes

compared with using standard codes (ie, ICD codes).17 To address

this, our study utilizes expanded diagnostic clusters (EDCs)20 from

the Adjusted Clinical Group (ACG) System to address sparsity and

makes a direct comparison to results using the original ICD-based

diagnoses.21 We selected EDCs because they are linked to both

ICD–Ninth Revision–Clinical Modification (ICD-9-CM) and –ICD–

Tenth Revision–Clinical Modification (ICD-10-CM), and cover all

diagnosis codes, thus providing comprehensive coverage.

We present a sequential pattern mining approach that combines

the SPADE pattern mining algorithm with the use of EDC groupings

to identify temporal condition patterns in a large, sparse EHR data-

set with a case study of pediatric asthma. Pediatric asthma is one of

the most common childhood chronic conditions, has numerous

comorbidities, and is a socially significant health condition that dis-

proportionately impacts low-income and minority children in the

United States.22,23

Our objective is to identify temporal patterns surrounding an in-

cident diagnosis of a given condition (eg, asthma). Toward this end,

we sought to develop a generalizable framework to identify tempo-

ral patterns utilizing sparse EHR data and a sequential pattern min-

ing algorithm. We also consider the impact of collapsing diagnostic

codes into clinically similar groups on temporal pattern recognition.

We present our data extraction, data transformation, and knowl-

edge discovery processes. We describe the implementation of the

SPADE algorithm on EHR data to ascertain condition patterns asso-

ciated with pediatric asthma using both ICD and EDC coded condi-

tions, and compare output from both datasets. We discuss the

evaluation and interpretation of SPADE output, as well as the suc-

cesses and limitations of our approach. Our study contributes a

methodological framework for extracting and organizing EHR data

into temporal sequences, and an approach to analyze temporal pat-

terns in EHR data for associations between condition trajectories

and an outcome of interest (eg, pediatric asthma).

MATERIALS AND METHODS

The institutional review board at the Children’s Hospital of Phila-

delphia (CHOP) approved this research study through institutional

review board protocol number 16-012822 and waived the require-

ment for consent. The primary methodological steps in the study,

from data extraction through algorithm implementation, are de-

scribed in Figure 1.

Setting
Study data were obtained from the Pediatric Big Data (PBD) re-

source maintained at CHOP. The PBD resource includes EHR data
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from CHOP, its primary care network, and specialty care and surgi-

cal centers. EHR information for conditions recorded during each

patient visit was derived from ICD-9-CM and ICD-10-CM diagnos-

tic information.24,25 Data were extracted by nonstudy staff person-

nel and anonymized to remove all personal health information

before transfer. The PBD resource contains data for visits through

October 2017.

Inclusion criteria
Patient data were included for individuals with at least 2 clinical

encounters on or after January 1, 2005, in which an ICD code for an

asthma diagnosis or exacerbation (ICD-9-CM codes 493.* and ICD-

10-CM codes J45.*, where * is any child code) (see Supplementary

Table 1) was recorded and the encounters were face to face (inpa-

tient stays, ambulatory visits, or emergency department visits). The

requirement for 2 records with an asthma diagnosis was meant to

exclude transient asthmas diagnoses.

Patients must also have had 2 clinical encounters of any type

(not necessarily face to face, such as a pharmacy visit) with a

recorded ICD condition concept that was not an asthma diagnosis

or exacerbation code (these encounters must have occurred on or af-

ter January 1, 2000). This requirement ensures that the cohort does

not include individuals with only asthma diagnoses to enable identi-

fication of clinically informative temporal condition patterns sur-

rounding an initial diagnosis of pediatric asthma. ICD codes may be

classified as clinical or nonclinical observations, per Observational

Health Data Sciences and Informatics condition domain standards.

For example, an anemia screening is a nonclinical observation,

whereas an anemia diagnosis is a clinical observation.26 In this

study, we excluded encounters without any clinical observations.

We extracted the available clinical diagnosis observations for all

patients that met the inclusion criteria in the PBD database. This

yielded 7 412 524 clinical observations for 94 343 patients. The

encounters where asthma conditions were recorded corresponded to

1 135 006 clinical observations. For each individual, we identified

the first visit with a recorded asthma diagnosis (the index visit), the

encounter immediately before the index visit (the preindex visit, if

one exists), and the encounter immediately after the index visit (the

postindex visit, if one exists). This yielded a dataset containing

578 839 clinical observations for 94 343 patients. To ensure the

ability to analyze patients’ clinical state before the initial asthma di-

agnosis, patients without a preindex visit were excluded. The final

dataset contained 473 607 clinical observations for 71 824 patients.

Data extraction and transformation
R version 3.4.4 (R Foundation for Statistical Computing, Vienna,

Austria)27 and Python 3 (Python Software Foundation, Wilmington,

DE)28 were used for the data analysis. Computations were per-

formed on a MacBook Pro running MacOS version 10.12.6 and

with 8 GB of RAM (Apple Inc, Cupertino, CA).

After extracting condition occurrence data from the PBD re-

source, we mapped ICD-9-CM and ICD-10-CM clinical condition

concepts into medically homogenous classes using EDCs20 from the

ACG System.21

Temporal order identification
The SPADE algorithm analyzes data in a “vertical id-list” database

format, in which sequences comprise a list of objects in order of oc-

currence along with timestamps.29 To apply the SPADE algorithm,

we reorganized PBD data from their normalized relational form (in-

formation for a single patient stored in different tables within the

database) into row entries, in which each row contained a patient

identifier, a visit timing class indicator (preindex, index, or postin-

dex) and all clinical observations associated with that visit. Visit

date information was no longer relevant, as the visit timing class

variable captured the temporal order information necessary to indi-

cate sequential order for subsequent SPADE analysis. Figure 2A

presents a sample sequence database of clinical information for 3

patients, formatted to the SPADE algorithm’s specifications for pat-

tern mining.

Sequence mining
Our primary study objective required identification of temporal con-

dition patterns in a large, sparse EHR dataset. Prior research has

demonstrated that SPADE performs well on data with such charac-

teristics and demonstrates runtime efficiency and low memory us-

age.30 For these reasons, we selected SPADE as our mining

algorithm for this study.

SPADE first identifies individual items (eg, a singular diagnosis

in a specific timing class) above a specified support level (eg, the pro-

portion of patients with an identified condition pattern), and then

builds more complex sequences (multiple diagnoses across different

timing classes) at the given support level. An inherent but provable

assumption is that a complex sequence present above a given sup-

port level is comprised of individual items that also occur above the

support level. The algorithm uses efficient lattice search techniques

and simple join operations to find frequent patterns among smaller

subproblems obtained from dividing the original problem.29 The

SPADE algorithm is efficient for identifying subsequence patterns in

large databases of sequential data, and has been successfully used

across numerous domains including internet user behaviors31 and

food purchasing patterns.32

We applied the SPADE algorithm as implemented in the R arules

package33 to discover common subsequences in clinical diagnoses

among patients in the study population. Figure 2B illustrates the se-

quential patterns identified by the SPADE algorithm for 3 hypotheti-

cal patients with clinical history shown in Figure 2A. Figure 3

illustrates the possible combinations of temporal diagnoses that

SPADE detects. It is important to note that frequent patterns may

not contain diagnoses from all 3 timing classes. As illustrated in Fig-

ure 3, condition patterns may comprise diagnoses that occurred in

the pre- and postindex visits (Figure 3A), index and postindex visits

(Figure 3B), preindex and index visits (Figure 3C), and across all 3

timing classes (Figure 3D). Additionally, SPADE identifies singular

Figure 1. The primary methodological steps involved in the study. SPADE: Sequential PAttern Discovery using Equivalence classes.
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temporal diagnoses that occur among patients at the specified mini-

mum support level (eg, a diagnosis of the EDC code ALL04

[asthma] in the index visit).

We wanted to identify as many common condition patterns as

possible while ensuring that the patterns were present among a

meaningful number of patients; therefore, we selected a support

level of 0.01 to identify all condition patterns that were present in

1% or more of patients. To characterize the impact of grouping clin-

ically similar conditions, we deployed SPADE on both the full ICD

dataset and the mapped EDC dataset. For ease of interpretability

and results comparison, the common condition patterns identified

by SPADE in the ICD dataset were then mapped from ICD codes to

EDC codes. While the support values would not change for the com-

mon condition patterns identified from the ICD dataset once they

have been mapped to EDC codes, it is possible for 2 or more pat-

terns to appear to have the same temporal and diagnostic informa-

tion, since more than 1 ICD code is mapped to a single EDC code.

We analyzed our results for clinical relevance, and compared the

prevalence of condition patterns by support level. We identified

sequences with the highest support level, which have the strongest

potential associations with pediatric asthma. As support is invariant

to timing class, we also examined trends of condition diagnoses rela-

tive to the visit timing class.

RESULTS

Clinical term mapping
There were 7072 unique ICD codes represented in the dataset,

which mapped to 267 EDC codes.

SPADE analysis
When deployed on the mapped EDC dataset, SPADE’s runtime was

0.72 seconds, and it identified 439 sequences with a support level of

0.01 or higher. Support for these sequences ranged from 0.01 to

0.94. The mean and median level of support were 0.03 and 0.019,

respectively. When deployed on the ICD dataset, SPADE’s runtime

was 0.49 seconds, and it identified 203 sequences with a support

level of 0.01 or higher. Support for these sequences ranged from

0.01 to 0.54. The mean and median level of support were 0.03 and

0.018, respectively.

Table 1 illustrates the top 20 condition patterns with the highest

level of support (0.09-0.94) in the study population identified in

the EDC dataset. Among the most prevalent sequences, 5 distinct

conditions were present: asthma without status asthmaticus, respira-

tory signs and symptoms, acute upper respiratory tract infection, al-

lergic rhinitis, and otitis media.

Table 2 illustrates the conditions present in at least 1 of 439

sequences identified by SPADE in the EDC dataset. There were 36

unique EDC codes represented among the identified sequences. The

majority of conditions were present in all 3 visit timing classes.

However, there were 5 EDC codes that were identified in the prein-

dex visit only: exanthems, nausea/vomiting, dermatophytosis, non-

fungal infections of skin and subcutaneous tissue, and allergic

reactions. No conditions were present exclusively in the postindex

visit.

Table 3 presents the top 20 condition patterns with the highest

level of support (0.06-0.54) identified by SPADE in the full ICD

dataset (the ICD concepts in the identified sequences were mapped

to EDC codes for comparison, with results in Table 1).

Among the most prevalent sequences, 6 distinct conditions were

present: asthma without status asthmaticus, respiratory signs and

symptoms, acute upper respiratory tract infection, allergic rhinitis,

cough, and otitis media. Table 4 shows the unique conditions pre-

sent in the 203 sequences identified by SPADE in the ICD dataset

(again mapped to EDC codes for ease of comparison). There were

19 unique EDC codes present. The majority of conditions occurred

Figure 2. (A) A sample sequence database of clinical information (ie, expanded diagnostic cluster groupings for clinical diagnoses) for 3 patients, formatted for

the SPADE (Sequential PAttern Discovery using Equivalence classes) algorithm. (B) The output of frequent sequential patterns that SPADE uncovers from the clin-

ical information of the 3 patients in panel A. The expanded diagnostic cluster codes correspond to the following diagnostic categories: ALL04: asthma, without

status asthmaticus; EAR08: deafness, hearing loss; EYE07: conjunctivitis, keratitis; GAS03: constipation; MUS02: acute sprains and strains; MUS08: fractures and

dislocations/digits only.
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in all 3 visit timing classes. Only gastroenteritis was diagnosed solely

in the preindex visit. No conditions were present exclusively in the

postindex visit.

Among the top 20 most prevalent patterns observed in the EDC

dataset, SPADE detected 3 condition patterns with diagnoses ob-

served in the preindex and index visits and 3 condition patterns with

diagnoses observed in the index and postindex visits. Three singular

patterns of diagnoses in the preindex visit, 7 in the index visit, and 4

in the postindex visit were observed. Among the top 20 most preva-

lent patterns in the ICD dataset, SPADE detected 1 condition pattern

with diagnoses observed in the preindex and index visits and 1 con-

dition pattern with diagnoses observed in the index and postindex

visits. Four singular patterns of diagnoses in the preindex visit, 10 in

the index visit, and 4 in the postindex visit were identified.

DISCUSSION

Methodological contributions
We presented a novel methodology to mine EHR data for temporal

condition patterns associated with pediatric asthma. Our approach

included extraction of relevant information from a large EHR data-

base, temporal data organization, selection of a sequential pattern

mining algorithm, and grouping of clinically similar codes to address

data sparsity. The methodology described in this study can be used

to study temporal condition patterns within large volumes of EHR

data regardless of the condition of interest. We found the SPADE al-

gorithm to be a time-efficient approach to mining a large, sparse

dataset for frequent longitudinal clinical condition patterns sur-

rounding initial diagnosis of a selected condition of interest (pediat-

ric asthma in this study).

Figure 3. Sample temporal diagnostic sequences discoverable by SPADE (Sequential PAttern Discovery using Equivalence classes). (A) A sequence that includes

a clinical diagnosis in the preindex visit and the postindex visit. (B) A sequence that includes a clinical diagnosis in the index visit and the postindex visit. (C) A se-

quence that includes a clinical diagnosis in the preindex visit and the index visit. (D) A sequence that includes a clinical diagnosis in all 3 timing classes. Clinical

diagnoses observed in a single timing class may also be considered common sequences.
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In recent years, the generation and use of large datasets derived

from nontraditional data sources (eg, EHRs) in the healthcare sector

has increased.34,35 The generation of such data enable the extraction

of useful and potentially previously unknown insights from massive

datasets, but only with the proper computational methods to con-

vert this data into clinically meaningful information and knowl-

edge.36,37 Our work provides a case study into a successful

aggregation method and examination of condition information from

Table 1. Top 20 most prevalent conditions patterns surrounding initial diagnosis of pediatric asthma (EDC dataset)

Preindex visit condition(s) Index visit condition(s) Postindex visit condition(s) Support

Asthma without status asthmaticus 0.942

Asthma without status asthmaticus 0.436

Asthma without status asthmaticus Asthma without status asthmaticus 0.417

Acute upper respiratory tract infection 0.186

Acute upper respiratory tract infection Asthma without status asthmaticus 0.175

Allergic rhinitis 0.164

Allergic rhinitis, asthma without status asthmaticus 0.158

Acute upper respiratory tract infection 0.145

Respiratory signs and symptoms 0.139

Acute upper respiratory tract infection 0.139

Otitis media 0.137

Asthma without status asthmaticus Acute upper respiratory tract infection 0.136

Respiratory signs and symptoms Asthma without status asthmaticus 0.134

Asthma without status asthmaticus, Acute upper

respiratory tract infection

0.132

Otitis media Asthma without status asthmaticus 0.131

Otitis media 0.120

Asthma without status asthmaticus Otitis media 0.116

Allergic rhinitis 0.102

Otitis media 0.101

Asthma without status asthmaticus, Otitis media 0.098

EDC: expanded diagnostic cluster.

Table 2. Conditions observed in prevalent sequences identified by SPADE (EDC dataset), by timing class

All visit classes Preindex visits

Preindex and index

visits

Preindex and

postindex visits Index visits

Index and postindex

visits

Acute lower respiratory tract

infection

Allergic reactions Chronic pharyngitis

and tonsillitis

Abdominal pain Seizure disorder Asthma without

status asthmaticus

Acute upper respiratory tract

infection

Dermatophytosis Musculoskeletal

disorders, other

Acute sprains and

strains

Asthma, with status

asthmaticus

Administrative concerns and

nonspecific laboratory

abnormalities

Exanthems Contusions and

abrasions

Allergic rhinitis Nausea, vomiting Deafness, hearing loss

Attention-deficit disorder Nonfungal infections

of skin and subcu-

taneous tissue

Musculoskeletal signs

and symptoms

Conjunctivitis, keratitis Urinary symptoms

Constipation

Cough

Dermatitis and eczema

Developmental disorder

ENT disorders, other

Failure to thrive

Gastroenteritis

Gastroesophageal reflux

Nonspecific signs and symptoms

Obesity

Otitis media

Respiratory signs and symptoms

Sinusitis

Viral syndromes

EDC: expanded diagnostic cluster; ENT: ear, nose, and throat; SPADE: Sequential PAttern Discovery using Equivalence classes.

Journal of the American Medical Informatics Association, 2020, Vol. 27, No. 4 563



EHR data that can be directly applied to similar datasets. Our study

specifically demonstrated the utility of EDC codes when mining

large EHR datasets to reveal additional important patterns.

When deployed on the full dataset of ICD codes, SPADE identi-

fied fewer than half the number of common condition patterns than

when deployed on the dataset containing EDC codes. SPADE was

also able to better detect more complex temporal patterns in diagno-

ses in the EDC dataset. By using EDC codes, we consolidated clini-

cally similar results, detected common condition patterns at higher

levels of support, and found condition patterns at low levels of sup-

port that would otherwise not have been identified. The EDC map-

ping optimized the recognition of potential condition associations

(36 unique diagnoses were identified in the mapped EDC dataset,

compared with only 19 in the ICD dataset), and was essential to an-

alyzing temporal trends in condition trajectories. Gastroenteritis

was the only diagnosis exclusively found in the preindex visit in the

ICD dataset. However, in the EDC dataset, gastroenteritis diagnoses

were found across all timing classes, and 5 separate conditions were

identified as occurring exclusively in the preindex visit. None of

these diagnoses were identified by SPADE in the ICD dataset. While

our approach utilized the ACG system to aggregate related, but

sparsely used clinical concepts, it is important to note that other

methods (eg, the Clinical Classifications Software for ICD-9-CM)

exist for clustering patient diagnoses into a manageable number of

clinically related categories for analysis.38

To our knowledge, this is the first study to utilize the SPADE al-

gorithm to study temporal condition patterns surrounding initial di-

agnosis of pediatric asthma. The patterns identified by SPADE can

be regarded as hypotheses for associations between specific condi-

tions and temporal patterns and pediatric asthma that future studies

can explore. We found strong associations among allergic rhinitis,

respiratory signs and symptoms, acute upper respiratory tract infec-

Table 3. Top 20 most prevalent conditions patterns surrounding initial diagnosis of pediatric asthma (ICD dataset)

Preindex visit condition(s) Index visit condition(s) Postindex visit condition(s) Support

Asthma without status asthmaticus 0.538

Asthma without status asthmaticus 0.251

Asthma without status asthmaticus Asthma without status asthmaticus 0.183

Asthma without status asthmaticus 0.149

Asthma without status asthmaticus 0.137

Allergic rhinitis 0.125

Respiratory signs and symptoms 0.108

Acute upper respiratory tract infection 0.096

Acute upper respiratory tract infection 0.088

Cough 0.081

Asthma without status asthmaticus 0.079

Allergic rhinitis 0.077

Allergic rhinitis, asthma without status asthmaticus 0.075

Acute upper respiratory tract infection 0.072

Respiratory signs and symptoms Asthma without status asthmaticus 0.064

Asthma without status asthmaticus 0.061

Acute upper respiratory tract infection 0.059

Cough 0.059

Otitis media 0.057

Asthma without status asthmaticus 0.055

ICD: International Classification of Diseases.

Table 4. Conditions observed in prevalent sequences identified by SPADE (ICD dataset), by timing class

All visit classes Preindex visits

Preindex and

postindex visits Index visits

Index and postindex

visits

Acute lower respiratory tract infection Gastroenteritis Deafness, hearing loss Attention-deficit disorder Asthma without

status asthmaticus

Acute upper respiratory tract infection Asthma, with status asthmaticus

Administrative concerns and nonspecific

laboratory abnormalities

Obesity

Allergic rhinitis

Constipation

Cough

Dermatitis and eczema

Failure to thrive

Gastroesophageal reflux

Otitis media

Respiratory signs and symptoms

Sinusitis

Viral syndromes

ICD: International Classification of Diseases; SPADE: Sequential PAttern Discovery using Equivalence classes.
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tion, and otitis media and pediatric asthma. Five conditions (exan-

thems, nausea/vomiting, dermatophytosis, nonfungal infections of

skin and subcutaneous tissue, and allergic reactions) were present

exclusively in the preindex visit among common sequences. These

conditions may represent signals of future asthma that could alert

clinicians. Future research into the reproducibility and potential

causal relations of these associations is warranted.

Diagnostic pattern associations
The patterns with the highest support discovered by SPADE in this

study align with clinical knowledge of pediatric asthma comorbidities.

Allergic rhinitis,39 sinusitis,40 eczema, and respiratory infections41

have previously been shown to be associated with pediatric asthma.

As these findings are consistent with prior epidemiological asthma

studies, we may speculate that the other condition patterns found in

this study may also be clinically relevant and are possible areas for fu-

ture epidemiological research. Furthermore, this approach may reveal

information about disease comorbidities. For example, although it is

known that asthmatic children with multiple morbidities have in-

creased asthma symptoms, school absences, and visits to emergency

departments,42 knowledge of pediatric asthma comorbidities remains

an understudied topic.43 Our methodology represents a scalable ap-

proach to study comorbidity patterns that may be employed to ex-

plore pediatric asthma and other critical health conditions.

The methods described in this study differ from other epidemio-

logical approaches, such as those described in Beck et al44,45 which

focused on the predictive power of disease trajectories uncovered

from EHR data to assess relative risk of sepsis mortality. Rather

than studying the predictive power of a particular sequence, our

work serves to describe an approach to analyze complex datasets to

uncover patterns and generate hypotheses for future research. While

we focused on pediatric asthma, the methodology is not dependent

on the conditions analyzed and can be utilized to uncover temporal

patterns surrounding any health outcome (eg, diabetes or obesity) or

medical event of interest (eg, medication usage). Such an approach

may potentially uncover previously unknown associations that have

clinical and public health utility for researchers studying asthma and

other health outcomes.

Limitations
We utilized a large and complex dataset, which required extensive

personnel time and resources to obtain and analyze. As EHRs are

primarily designed for clinical care and billing purposes, there are

challenges to utilizing the data for clinical and translational re-

search.46 Although groups such as Observational Health Data Scien-

ces and Informatics have recommended that EHR data be organized

temporally,47 currently most EHRs are stored in databases with var-

ious data points for a single patient stored in different tables across

schemas within the database.48 As EHR data are typically not tem-

porally organized in a singular table, relevant data must be identi-

fied across the database and transformed into temporal sequences

retrospectively for analysis to mine temporal patterns. It is impor-

tant to note that our dataset was developed from a secondary-use re-

search database composed of aggregated EHR data. Additional

steps may be necessary for researchers seeking to implement our

methods utilizing data directly collected from the EHR. Grouping

related concepts in our dataset was an essential step, otherwise

SPADE would not have detected relevant patterns at the specified

support levels. Researchers implementing a similar approach may

overlook important condition associations if they implement a pat-

tern mining algorithm on EHR data using ICD codes (or similar

sparsely used concept codes). Finally, because we used a retrospec-

tive observational study design, the associations that SPADE uncov-

ered are purely descriptive. No causation can be attributed to the

comorbidities and temporal condition patterns that SPADE identi-

fied with pediatric asthma. Rather, this approach should be viewed

as a hypothesis-generating method, whose results represent potential

associations that future research can investigate for causality.

CONCLUSION

EHR data mining has tremendous potential to improve patient care

and reduce financial costs. Frequent pattern mining of EHR data is

essential to identify potential associations and correlations in EHR

data that researchers may not consider or may have otherwise gone

unnoticed. We presented an approach to analyzing a large and com-

plex EHR dataset for temporal condition patterns, using pediatric

asthma as a case study. Our analysis revealed strong associations be-

tween asthma and several comorbidities and temporal condition

patterns. These associations can be used as hypotheses to explore

causality in future pediatric asthma research. The methodology pre-

sented in this study can be applied to identify temporal patterns in

EHR data to investigate conditions and research objectives in nu-

merous contexts outside pediatric asthma.
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