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Abstract: In recent days the rising concern over environmental pollution with excessive use of
synthetic materials has led to various eco-friendly innovations. Due to the organic nature, abundance
and higher strength, natural fibers are gaining a lot of interest among researchers and are also
extensively used by various industries to produce ecological products. Natural fibers are widely
used in the composite industry as an alternative to synthetic fibers for numerous applications
and new sources of fiber are continuously being explored. In this study, a fiber extracted from
the Furcraea foetida (FF) plant is characterized for its feasibility as a reinforcement to fabricate polymer
composite. The results show that the fiber has a density of 0.903 ± 0.07 g/cm3, tensile strength (σt) of
170.47 ± 24.71 MPa and the fiber is thermally stable up to 250 ◦C. The chemical functional groups and
elements present in the FF fiber are evaluated by conducting Fourier transform infrared spectroscopy
(FT-IR) and energy dispersive spectroscopy (EDS). The addition of FF fibers in epoxy reduced the
density (13.44%) and hardness (10.9%) of the FF/Epoxy (FF/E) composite. However, the void content
(Vc < 8%) and water absorption (WA: < 6%) rate increased in the composite. The FF/E composite
with 30% volume of FF fibers showed maximum σt (32.14 ± 5.54 MPa) and flexural strength (σf:
80.23 ± 11.3 MPa).

Keywords: Furcraea foetida fiber; retting; FT-IR; SEM; EDS; natural composite; tensile strength

1. Introduction

The constant rise in environmental pollution due to the extensive use of synthetic
non-biodegradable materials is one of the major concerns across the globe. Various govern-
mental bodies are imposing regulations to control the consumption of non-biodegradable
materials and promoting the use of green materials is raising the demand for eco-friendly
and bio-renewable products/materials [1,2]. Natural composites are considered as promis-
ing eco-friendly materials and continuous studies are being conducted to utilize them as
an alternative to synthetic materials in various applications [3,4]. Natural composites are
fabricated using fibers that are extracted from natural resources such as plants, animals and
minerals. Some of the popular sources of plant fibers are flax, jute, sisal, agave, hemp, abaca,
coir and banana plants [5]. The morphological properties of the plant fibers greatly depend
on the extraction process, maturity of the plant and location of fiber in the plant. They may
be extracted from their stem, seed, leaf, root and fruit. These fibers are attractive since they
are abundant, low cost and show good mechanical properties [6–8]. Generally, fibers are
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extracted by water, dew, chemical, enzymatic and mechanical retting methods, etc. [9]. The
natural-fiber-reinforced composites are advantageous than the synthetic versions because
they are lightweight, non-toxic, biodegradable and exhibit acceptable strength and stiffness
but may fail to provide resistance to moisture absorption, better wettability, strength and
thermal stability.

The applications of natural fiber composites are exponentially increasing in recent
years as their utilization in various fields, viz., in the preparation of automotive bumpers,
dashboard structures [10–12], ballistic armors [13], keel beam, rudder and spoiler of air-
craft components, satellite launch equipment [14], scaffolds in tissue engineering, dental
restorative systems [15,16], thermal insulation/soundproof/roofing/door/window panels
and internal structures of buildings [17], packaging [18], surfboards, fishing rod, musical
instrument components, artifacts and tableware, etc., [19]. Natural fibers such as rice
straw [20], cocoa bean [21], agave [22], wood [23], bamboo [24], etc., are explored for 3D
printing applications [25]. Additionally, the researchers are focused on developing low-cost
materials by utilizing rice straw [26], rice husk [27], sugarcane bagasse [28], olive [29] and
pineapple [30] leaves, peanut shell, coconut shell, coffee hull, and other agro wastes [31–34]
for other technical applications.

The literature on natural composites revealed that the fiber reinforcements such as flax,
hemp, sisal, kenaf, etc. in polymers, improved the mechanical [35–40], tribological [41–43]
and thermal [44–46] properties of polymer materials. However, these improvements greatly
depend on the fiber morphology, chemical composition, thermal stability, alignment, aspect
ratio and chemical treatments of fibers [47–49]. The porous structure of the natural fiber
makes them suitable material for thermal insulation applications [50,51]. Few natural fibers
show mechanical properties comparable with that of glass fibers [52–57]. The thermo-
mechanical properties of natural composites are being enhanced by developing hybrid
composites to suit the requirements of various applications [58–60].

It is evident that studies are focused on developing sustainable and eco-friendly
materials as an alternate to synthetic materials. Additionally, there is a quest for new
sources of natural fibers which develop sustainable ecology and benefit society and the
composite industry. The fibers derived from Furcraea foetida plant are unexplored for
fabrication of polymer composites. The FF plant is a perennial subshrub plant that grows
4 to 6 feet tall (Figure 1a) and is widely seen in southern/western ghats of India. These
plants are mainly used for fencing, to avoid soil erosion or landslides, and the root extracts
are medically used to treat hepatitis, oedema, rheumatism, back pain and as a blood-
purifying tonic [61–63]. The fibers extracted from the leaves of the FF plant are used for
domestic applications to prepare twine cloth, mats and ropes, etc., [64]. The chemical
composition of FF fibers is reported as it contains high cellulose content of 68.35 wt.%,
hemicellulose of 11.46 wt.%, lignin of 11.46 wt.% and wax of 0.24 wt.%. The FF fibers exhibit
good thermal stability ranging from 320 to 360 ◦C with an average surface roughness of
18.005 nm [65,66]. The high cellulose content (gives high strength) in FF fiber motivated
us to select this as a reinforcing agent in epoxy composites. The preliminary study also
showed excellent fiber properties. Therefore, the novel FF fiber as a polymer reinforcement
is investigated for the first time by fabricating and evaluating the physio-mechanical
properties of FF/E composites in the present study.
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Figure 1. Furcraea foetida fiber extraction process (a) FF plant; (b) FF plant leaves; (c) water retting 
process; (d) separation of decayed substance; (e) drying of FF fiber; (f) extracted FF fiber bundles. 

2. Materials 
Epoxy resin (Lapox L12) and hardener (K6) (supplied by: Atul Pvt. Ltd., Gujrat, In-

dia) were used for the fabrication of test samples. The pot life of epoxy and hardener mix-
ture is 30–40 min and the curing time is between 14 to 24 h at a temperature of 25 °C. The 
properties of epoxy and hardener are given in Table 1. The FF fiber is extracted from the 
plant leaves by the water retting process [67,68]. The matured FF plant leaves were chosen 
from the forests of Udupi region, Karnataka, India (Figure 1a). The leaves appear in a 
wedge shape with lengths varying from 90 to 170 cm and width 10 to 25 cm. The FF plant 
leaves (Figure 1b) were initially cleaned and then immersed in a water tank for five days 
to carry out the water retting process, as shown in Figure 1c. The surface layer of the leaves 
was decayed due to enzymatic actions during the water retting process which expose the 
inner fiber structure of the leaves [69]. The decayed greenish organic flesh of the leaves is 
separated from the fibers by gently crushing and brushing the leaf surface as shown in 
Figure 1d. The separated fibers are washed with distilled water to remove any organic 
deposits from the fiber surface. Finally, the extracted FF fibers are dried under sunlight 
for 24 h as shown in Figure 1e,f, which shows the extracted FF fiber bundles of length 
varying from 90 to 120 cm. 

  

Figure 1. Furcraea foetida fiber extraction process (a) FF plant; (b) FF plant leaves; (c) water retting
process; (d) separation of decayed substance; (e) drying of FF fiber; (f) extracted FF fiber bundles.

2. Materials

Epoxy resin (Lapox L12) and hardener (K6) (supplied by: Atul Pvt. Ltd., Gujrat, India)
were used for the fabrication of test samples. The pot life of epoxy and hardener mixture
is 30–40 min and the curing time is between 14 to 24 h at a temperature of 25 ◦C. The
properties of epoxy and hardener are given in Table 1. The FF fiber is extracted from the
plant leaves by the water retting process [67,68]. The matured FF plant leaves were chosen
from the forests of Udupi region, Karnataka, India (Figure 1a). The leaves appear in a
wedge shape with lengths varying from 90 to 170 cm and width 10 to 25 cm. The FF plant
leaves (Figure 1b) were initially cleaned and then immersed in a water tank for five days to
carry out the water retting process, as shown in Figure 1c. The surface layer of the leaves
was decayed due to enzymatic actions during the water retting process which expose the
inner fiber structure of the leaves [69]. The decayed greenish organic flesh of the leaves
is separated from the fibers by gently crushing and brushing the leaf surface as shown in
Figure 1d. The separated fibers are washed with distilled water to remove any organic
deposits from the fiber surface. Finally, the extracted FF fibers are dried under sunlight for
24 h as shown in Figure 1e,f, which shows the extracted FF fiber bundles of length varying
from 90 to 120 cm.
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Table 1. Properties of epoxy [70,71].

Properties Range

Density of epoxy (L-12) at 25 ◦C 1.1–1.2 g/cm3

Density of hardener (K-6) at 25 ◦C 0.95–1.1 g/cm3

Tensile strength 55–70 MPa
Flexural strength 120–140 MPa
Impact strength 17–20 KJ/m2

Thermal conductivity 0.211 kCal/m h ◦C
Coefficient of liner thermal expansion 64–68 10−6/◦C

Water absorption (25 ◦C/24 h) 0.5 w/w % (Max)

3. Materials Characterization
3.1. Fourier Transform-Infrared Spectroscopy

The chemical functional groups present in FF fiber are evaluated by conducting FT-IR.
FF powder is mixed with KBr solution and the pellet is prepared using a simple press. The
FTIR spectrum of FF fiber in the range of 4000 to 500 cm−1 wavenumber range of 32 scans
with a resolution of 4 cm−1 is recorded using a spectrophotometer (IR Spirit, Shimadzu,
Tokyo, Japan).

3.2. Thermogravimetric Analysis (TGA)

The TGA evaluates the rate of change in the mass of the material with respect to
temperature and time in an inert atmosphere. The thermograms of the fibers and composite
are recorded using a TGA apparatus (TGA 5500, TA Instruments, New Castle, DE, USA). A
known weight of the fiber is taken in platinum crucible and is subjected to gradual heating
at the rate of 10 ◦C/min up to 700 ◦C. Nitrogen is used as a purge gas with a flow rate of
20 mL/min to maintain the inert environment.

3.3. Scanning Electron Microscopy (SEM) and Energy Dispersive Spectroscopy

The surface morphology of the FF fiber is investigated by SEM (EVO MA18, Carl Zeiss
Ltd., Cambridge, UK) at different magnification levels. The outer structure of the untreated FF
fiber is examined at different fiber surface areas. The elements present on the surface of the FF
fiber are evaluated by EDS using SEM and are measured in atomic and weight percentages.

4. Preparation of FF/E Composite

The unidirectional fiber mat is prepared by arranging the fiber strands on the table
and fixing the ends of the fibers with adhesive tape [72] as shown in Figure 2a–c.
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(c) FF fiber mat and (d) FF/E composite.

Further, the mold cavity is coated with PVA (polyvinyl alcohol)-releasing agent to easily
remove the laminate after the hand-layup process [73–75]. The epoxy and hardener at the
ratio of 1:10 are poured into a glass flask and the solution is mixed for 10 min to promote the
chemical reaction. A thin layer of the epoxy mixture is applied on the mold surface and the
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FF fiber mat is then placed in the mold; using a brush, another layer of epoxy is coated on
the fiber mat. This process is repeated until the desired thickness of the laminate is achieved.
A hand roller and a soft brush are used to spread the epoxy on the fiber mat. Finally, a
metal plate coated with releasing agent is placed on the mold to apply uniform pressure and
remove the excess epoxy from the green laminate. The laminate is cured at room temperature
for 24 h before removing it from the mold. Figure 2d shows the cured laminate and Table 2
shows the composition of test samples and their corresponding designations.

Table 2. Coding of test samples.

Sl. No Sample Code FF Fiber (Vf) Epoxy (Vm)

1 Neat 0 1
2 F10E90 0.10 0.90
3 F20E80 0.20 0.80
4 F30E70 0.30 0.70

5. Density

FF fibers and FF/E test sample of known weight are immersed in a flask filled with
distilled water and its volume of water displaced is recorded. The experimental density (ρe)
of these samples is calculated using Equation (1). The average density of test samples is
calculated based on the readings of 10 trials. The theoretical density (ρt) of the test samples
is calculated by using the rule of mixture as given in Equation (2). The percentage of Vc in
the prepared test samples is calculated by Equation (3), where ρm,f and Vm,f are the density
(g/cm3) and volume fractions of matrix and fiber material, respectively [76,77].

ρe( g/cm 3) = weight of the sample / volume of water displaced (1)

ρt(g/cm 3) = ρmVm+ρfVf (2)

Vc =
ρt − ρe
ρt

× 100 (3)

6. Microhardness

The microhardness of the FF/E composite is determined by Vickers hardness (Vh)
tester (Make: MMT-X, Matsuzawa Co., Ltd., Toshima, Akita, Japan) as per ASTM E382-17
standard [78,79]. Indentation is produced on the test sample (50 mm × 25 mm × 3 mm)
using a diamond indenter by applying a load of 100 g for a dwell period of 10 s. The indented
region on the test sample surface is measured using the inbuilt microscope and the Vh is
calculated using the Equation (4), where Fa and Ai are the applied force (N) and indentation
area (mm2), respectively. The average Vh of tests samples is calculated by repeating the
experimental trials five times on different indentation locations on the test sample.

Vh = 1.854
Fa

A2
i

(4)

7. Water Absorption Study

WA study of the test samples is conducted as per ASTM D570-98 standard using test
samples of dimension 50 mm × 25 mm × 3 mm. Initially, test samples of known weight
are soaked in tap water for 744 h. The moisture uptake in the test samples is recorded by
measuring the weight of the test sample using electronic balance at a regular interval of
24 h. The WA rate of test samples is calculated by Equation (5) where W1 (g) and W2 (g)
are the initial and final weight of the test samples [80,81].

WA (%) =
W2−W1

W2
× 100 (5)
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8. Mechanical Properties

The σt of the FF fiber is evaluated as per ASTM C1557-20 standard. A cardboard
mounting tab is used to avoid the twisting or breaking of the fiber during the loading of
fibers to the testing machine as shown in Figure 3a. The fiber is placed in the mounting
tab by maintaining a gauge length of 50 mm and the ends of the fiber are constrained
with epoxy adhesive. A 50 N capacity tensile testing machine (ETM-A, Shenzhen WANCE
testing machine Co., Ltd., Beijing, China) is used to conduct the tensile test as shown
in Figure 3b. The mounting tab is loaded to the testing machine and the sides of the
mounting tab are cut to release the support of the mounting tab without damaging the
fiber. The testing is conducted at a constant cross-head speed of 0.2 mm/min till the fiber
breaks [82,83].
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Figure 3. Tensile testing of fibers (a) FF fiber test sample and (b) Tensile testing machine.

The σt and σf of the FF test samples are evaluated as per ASTM D 3039 and D
790 standards respectively. Universal testing machine (Make: UNITEK 9940, Fuel In-
struments and Engineers Pvt. Ltd., Kolhapur, Maharastra, India) is used to conduct the
test and a constant cross-head speed of 2 mm/min is maintained during the test till the
test sample fail. Finally, the maximum failure load of test samples is recorded and the σt
and σf of test samples are calculated using Equations (6) and (7), respectively. Fm, Ac, L, w
and d are the maximum force (N), cross-sectional area (mm2), length (mm), width (mm)
and thickness (mm), respectively. The theoretical tensile strength (σtt) is calculated using
Equation (8) where σr,εr, Vr are max. stress, strain and Vf of reinforcement, respectively
and Em is the modulus of the matrix.

σt (N/mm 2) =
Fm

Ac
(6)

σf (N/mm 2) =
3FmL
2wd2 (7)

σtt= (σ r)Vr+(ε rEm(1 − V r) (8)

9. Results and Discussions
9.1. Fourier Transform Infrared Spectroscopy

Figure 4 shows the FT-IR spectrum of FF fiber. The spectrum shows a strong relatively
broad absorption peak at around 3335 cm−1, corresponding to the hydrogen-bonded O-H
stretching. The peak at 2916 cm−1 is ascribed to the C-H stretching of the cellulose and
hemicellulose molecules of the fiber. A peak observed at 1727 cm−1 is attributed to the
–C=O moiety of the lignin present in the fiber. A peak at 1032 cm−1 is due to the –C-O-
of the ether group and the bending vibrations of the –O-H group which are merged and
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appear as a strong band. Similar results were observed for fibers in the study conducted
by tong et al., 2021 [84] (FF fiber), Ortega et al., 2019 [85] (Agave fiber) and Dizbay et al.,
2018 [86] (Flax, Hemp, Sisal fiber).
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9.2. Thermogravimetric Analysis

The TGA thermograms of FF fiber and F30E70 composite are given in Figures 5 and 6,
respectively. From the thermograms (Figure 5), the fibers are found to be thermally stable
between 100 and 250 ◦C. The loss in mass up to 100 ◦C is about 8% is due to the evaporation
of moisture. The onset temperature of the decomposition is observed at around 250 ◦C
and the offset is about 375 ◦C. The decrease in mass between the temperature range of
250 to 375 ◦C involves two steps. In the first step, at about 278 ◦C, a mass loss of about 15%
is observed, which may be due to the decomposition of glycosidic bonds present in the
cellulose. In the second step, about 50% of major mass change is observed at 352 ◦C, which
may be due to the depolymerization of hemicellulose and evaporation of α-cellulose moiety.
The major mass change observed at 352 ◦C in the fiber is in concordance with the reported
thermal degradation of cellulose I and α- cellulose [54,55] of other fibers. Similar final
degradation temperatures are reported [87–89] in literature for different plant fibers such as
Coccinia grandis stem (320 ◦C), bamboo (321 ◦C), hemp (308.2 ◦C), jute (298.2 ◦C) and kenaf
(307.2 ◦C). In case of the FF/E composite, it is noticed that the onset of the degradation is
about 250 ◦C and the offset is about 450 ◦C. The onset of degradation is unaltered in case of
the F30E70 composite, but the offset temperature is increased by about 75 ◦C, which infers
that the degradation of the composite taking place over a wide temperature range and may
be due to breakage of the network of chemical bonds present in the epoxy thermoset. The
maximum decrease in mass is observed at about 375 ◦C in the F30E70 composite, which
is about 23 ◦C higher than the fiber. The results indicate that the FF fibers are suitable for
reinforcement of composites and useful for high-temperature applications.

9.3. Energy-Dispersive X-ray Spectroscopy

Figure 7 shows the details of EDS analysis of FF fiber. The major compositional elements
observed in FF fiber are C and O followed by Ca, Pd, K, Cl and Na. The weight % of C (46.02%)
and O (41.93%) were observed to be slightly lower compared to the other reported natural
fibers such as jute, cotton fiber, corn husk and hemp [90,91]. Table 3 shows the comparative
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atomic and weight percentage of different natural fibers. The traces of Au and Pd elements
observed in the spectrum are due to the sputtering process, in which an ultra-thin coat of
Au/Pd is applied to improve the conductivity of the test specimen during EDS.
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9.4. Morphological Study of FF Fiber

The Figure 8a–d shows the SEM images of FF fibers. As seen in Figure 8a, the FF
fiber is observed to be made up of several closely packed fibrils (elementary fiber) which
are bonded by pectin and other organic elements [92–94]. These fibrils are observed to be
arranged with different length and diameter along the fiber direction.
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Table 3. Weight and atomic percentages of FF and other natural fibers [65].

Element
Furcraea Foetida Jute Cotton

Weight (%) Atomic (%) Weight (%) Atomic (%) Weight (%) Atomic (%)

C 46.02 58.03 55.68 62.72 46.1 53.2
O 41.93 39.69 43.89 37.11 53.9 46.8

Na 0.42 0.28 - - - -
Cl 0.53 0.23 - - - -
K 0.78 0.30 - - - -
Ca 1.93 0.73 - - - -

Polymers 2022, 14, x FOR PEER REVIEW 10 of 22 
 

 

 
Figure 8. SEM images of untreated FF fiber surface (a) Diameter of fiber, (b) Diameter of fibrils, (c) 
Cavities observed in fiber and (d) Slots observed in fiber. 

The diameter of the fibrils ranges from 5.83 to 19.9 µm as shown in Figure 8b. 
Whereas the diameter of FF fiber varies from 176.9 to 410.1 µm. The cavities and rectan-
gular slots as observed in Figure 8c,d indicate the rough surface texture of FF fiber. This 
rough texture of FF fiber surface with cavities shows the better mechanical interlocking 
property of fiber with polymers. Similar observations on the surface morphology of FF 
fiber were made by Manimaran et.al., 2018 [65] and Pathan et.al., 2020 [66]. Figure 9a,b 
shows the microscopic images of cross-sectional area of the FF fiber. From Figure 9a it is 
seen that the fibrils appear to be of almost circular or filleted square shape. The closely 
packed fibrils are arranged in a honeycomb structure in the FF fiber bundle. The lumen 
structure observed in the Figure 9b is the intrinsic porosity of the FF fiber. Tong et.al., 2021 
[84] also observed similar lumen structure in FF fibers and the studies by Richely et.al., 
2021 [95], Madsen et.al., 2013 [96], Hernandez et.al., 2020 [97] confirm that the natural 
fibers have a porous structure. 

 
Figure 9. Microscopic images of cross-sectional area of FF fiber (a) Arrangement of fibrils in FF fiber 
bundle and (b) Lumens observed in fiber. 

  

Figure 8. SEM images of untreated FF fiber surface (a) Diameter of fiber, (b) Diameter of fibrils,
(c) Cavities observed in fiber and (d) Slots observed in fiber.

The diameter of the fibrils ranges from 5.83 to 19.9 µm as shown in Figure 8b. Whereas
the diameter of FF fiber varies from 176.9 to 410.1 µm. The cavities and rectangular slots as
observed in Figure 8c,d indicate the rough surface texture of FF fiber. This rough texture of
FF fiber surface with cavities shows the better mechanical interlocking property of fiber
with polymers. Similar observations on the surface morphology of FF fiber were made by
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Manimaran et al., 2018 [65] and Pathan et al., 2020 [66]. Figure 9a,b shows the microscopic
images of cross-sectional area of the FF fiber. From Figure 9a it is seen that the fibrils appear
to be of almost circular or filleted square shape. The closely packed fibrils are arranged in a
honeycomb structure in the FF fiber bundle. The lumen structure observed in the Figure 9b
is the intrinsic porosity of the FF fiber. Tong et al., 2021 [84] also observed similar lumen
structure in FF fibers and the studies by Richely et al., 2021 [95], Madsen et al., 2013 [96],
Hernandez et al., 2020 [97] confirm that the natural fibers have a porous structure.
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9.5. Density

The Figure 10 shows the ρct and ρce of test samples. The average density of FF fiber is
found to be 0.903 ± 0.07 g/cm3. However, the literature shows the variation of density of
FF fiber from 0.778 to 0.891 g/cm3 [65,66].
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It is observed from the Figure 10 that the density of the test samples decreased with
increase of FF fiber content. This reduction in ρce is due to the lower density of FF fiber
compared to epoxy material. The density of the F30E70 test sample is reduced by 13.44%
compared to neat epoxy. The ρce of the test samples is lower compared to ρct. This is
mainly due to the formation of voids during the fabrication of test samples. The voids are
developed due to the entrapment of gaseous volatiles which are released by the chemical
reaction of epoxy and hardener during the fabrication. The FF fiber reinforcement acts
as a barrier for the escape of gases and produces bubbles that form the voids in the test
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samples [36]. The percentage of void content in neat, F10E90, F20E80 and F30E70 is
observed to be 1.06, 6.67, 6.69 and 7.47%, respectively. The size of the voids in the test
samples is found to vary from 22.75 to 514.84 µm and appears globular in shape, as seen in
Figure 11.
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9.6. Water Absorption

The water-resistant property of the test samples is studied by immersing the test
samples in water at room temperature for 744 h. The Figure 12 shows the WA rate of test
samples monitored at a regular interval of 24 h. It is observed that the WA rate of the test
samples significantly increased up to 72 h of immersion period. After a certain period, the
rate of absorption gradually dropped and remained almost constant. Beyond this peak
level the moisture uptake in the test sample is almost negligible. It is observed from the
figure that the addition of FF fiber in epoxy increases the WA rate of test samples. This
is mainly due to the hydrophilic nature of FF fibers [98]. Additionally, the presence of
voids, micro cracks and cavities between the fiber–matrix interphase influences the water
absorption in test samples [99,100]. The WA rate in FF test samples is observed to be below
6%. Although the polymer materials are water resistant due to the voids, they showed
a WA rate of 1.02% which is lowest among test samples. Whereas F10E90, F20E80 and
F30E70 test samples showed WA rate of 3.75, 4.41 and 5.92%, respectively, with 31 days
of immersion.
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9.7. Microhardness

The Figure 13 shows the hardness of the test samples. The neat test sample showed
the highest hardness of 21.1 ± 0.87 HV compared to other test samples. The neat epoxy
laminate showed higher hardness (10.9%) compared to F30E70 composite. This reduction in
hardness in FF/E composite is due to the higher amounts of micro-voids in the test samples.
These micro-voids form weak surfaces and offer poor strength against penetration, thus
reducing the hardness of the materials. However, the increase in FF reinforcement gradu-
ally improved the hardness of composites. At higher fiber content, the fibers are closely
distributed and the interfacial adhesion of fibers improves and increases the composite’s
hardness [101,102]. The hardness of F30E70 test sample is increased by 17.44% compared
to the F10E90 test sample.
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9.8. Tensile Strength of FF Fiber and FF/E Composite

The average σt of FF fiber with five experimental trials was found to be 170.47 ± 24.71 MPa.
The Figure 14 shows the theoretical and experimental σt of the FF/E test samples. The
F30E70 test sample showed maximum σt of 32.14 ± 5.54 MPa compared to neat, F10E90
and F20E80 composites. The interfacial region between the fiber and matrix produced
weak interphase and reduced the strength of composites [103]. However, with the increase
in fiber content the load applied was transferred to reinforced fiber and the strength of
the composites improved [104]. The experimental σt of test samples was observed to
be lower compared to σtt of test samples in most of the cases. This is due to voids and
the heterogenous nature of FF fibers which affected the structural stability of the test
samples [105]. The Figure 15 shows the stress–strain diagram of test samples subjected
to tensile test. The neat epoxy test sample showed a maximum strain value of 0.025. It is
observed that the addition of fibers decreased the strain. At highest fiber content of 30%,
lowest strain is observed. The F30E70 test sample showed considerably higher strength
compared to other test samples. The tensile properties of FF/E composite are comparable to
different natural composites fabricated by Engin et al., 2019 [106], Cristiano et al., 2018 [107],
Saba et al., 2019 [108], Mahesha et al., 2016 [72].
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9.9. Flexural Strength of FF/E Composite

The Figure 16 shows the σf of FF/E test samples. The neat composite showed highest
σf (107. 63 ± 6.69 MPa) compared to F10E90, F20E80 and F30E70 test samples. As explained
in the earlier sections, the higher percentage of voids is responsible for the reducing the σf of
FF/E composites compared to the neat test samples [109]. Although the FF/E test samples
exhibited low σf compared to neat epoxy sample, the σf gradually improved with the
increase in the FF fiber content. The addition of FF fiber volume from 10 to 30% improved
the σf of the composite by 44.98%. The composite prepared by Jawaid et al., 2021 [60],
Mohanavel et al., 2021 [110], Jumaidin et al., 2021 [111], Devireddy et al., 2021 [112] and
Ajith et al., 2014 [113], showed comparable flexural strength to that of FF/E composites.
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The Figure 17 shows the stress–strain graph of test samples subjected to flexural
load. The neat epoxy test samples showed maximum strain (0.0258). The strength of
the FF/E composites is seen to be improved by the addition of FF fiber. The F30E70 test
sample showed the highest strain of 0.0165 and strength of 78.45 MPa. It is observed from
Figures 15 and 17 that the tensile and flexural strength of F30E70 composite was higher
compared to F10E90 and F20E80 composites. This is due to the higher fiber content and
high crystalline nature of FF fibers [65], which are parallelly aligned in the composite.
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9.10. Fractural Analysis of FF/E Composites

The Figure 18a,b shows the orthographic view of failed FF/E composite under tensile
and flexural loads, respectively. The microscopic images of tensile test samples did not
show delamination near the failure line, which indicates higher bond strength between
fiber and matrix (Figure 18a). The Figure 18b shows that the failure line is horizontal and it
appears to follow a weak interface located near the failure area. As seen from Figure 18c,
the F10E90 test sample subjected to flexural load fractured at the center of the specimen.
However, in F20E80 and F30E70 the test samples showed that the fiber phase was intact
even after the failure of the composite. This show that the failure of test samples occurred
due to the fracture of matrix phase. The micro voids present in the test sample acted as
stress concentrators and the applied load was transmitted between these weak locations,
which resulted in the fracturing of the matrix phase (Figure 18d) [114]. Figure 19a,b shows
the optical microscope images of fractured surfaces subjected to tensile and flexural load,
respectively. The fibers are observed to be intact and no signs of fiber pull-out are observed
from the images. The fibrils observed on the surfaces of fractured surface areas indicate
that the applied load is successfully transferred to the fiber phase [115].
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10. Conclusions

The FF plants which grow abundantly in the forest regions are locally used for domestic
purposes. The morphological observations such as high cellulose content, rough surface
structure and thermal stability of FF fibers indicate good fiber properties. These FF fibers
can be seen as a potentially inexpensive source of reinforcement for polymer composites.
In this regard, the effectiveness of FF fibers in reinforcing epoxy material is evaluated by
fabricating and testing the physical/mechanical properties of FF/E composites for the first
time. This study aims to extract, characterize the FF fibers and evaluate the effect of FF
fiber content on the physio-mechanical properties of FF/E composite. The observations
made from the microscopic images of the tensile and flexural test failed samples show
good bonding between FF fiber and epoxy. Additionally, the FF reinforcement considerably
improved the mechanical properties of the epoxy material.

Further, improving the quality of FF fiber by chemical treatments is expected to
enhance the properties of the composite. The prepared FF/E composite shows promis-
ing results and can be used to develop cost-effective materials for different eco-friendly
applications. Based on the present investigation, the following conclusions are derived.

• The FF fiber extracted from its plant’s leaf using the water retting process showed a
density of 0.903 ± 0.07 g/cm3, indicating its usability in lightweight applications. The
higher amount of carbon and oxygen observed in EDS signifies the organic nature of
the FF fibers.

• The rough surface texture with rectangular-shaped slots observed in the microscopic
images of FF fiber indicates better interlocking property and higher compatibility as
reinforcement material.

• The TG analysis showed that the FF fiber is thermally stable between the temperature
range of 100 to 250 ◦C. and the maximum thermal degradation for FF fiber is observed
at 352 ◦C.

• The addition of FF fibers decreased the density of FF/E composites up to 13.44% due
to the lower density of FF fiber compared to epoxy and the presence of voids in the
test samples. Additionally, these voids increased with FF fiber content and among
them, F30E70 showed the highest void content (7.47%).
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• The WA rate in the test samples increased with FF fiber concentration due to the
hydrophilic nature of FF fiber. However, the maximum WA rate observed in the FF/E
composite was <6%.

• The mechanical properties of FF/E composite gradually improved with FF fiber con-
tent. The F30E70 showed the highest σt (32.14 ± 5.54 MPa) and the neat epoxy showed
the highest σf (107.63 ± 6.69 MPa) compared to other test samples. Additionally, the
F30E70 composite showed slightly higher thermal stability than FF fibers.
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