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A B S T R A C T   

Bilirubin has been proven to possess significant anti-inflammatory, antioxidant and antiviral activities. Recently, 
it has been postulated as a metabolic hormone. Further, moderately higher levels of bilirubin are positively 
associated with reduced risk of cardiovascular diseases, diabetes, metabolic syndrome and obesity. However, due 
to poor solubility the therapeutic delivery of bilirubin remains a challenge. Nanotechnology offers unique ad-
vantages which may be exploited for improved delivery of bilirubin to the target organ with reduced risk of 
systemic toxicity. Herein, we postulate the use of intravenous administration or inhalational delivery of bilirubin 
nanomedicine (BNM) to combat systemic dysfunctions associated with COVID-19, owing to the remarkable 
preclinical efficacy and optimistic results of various clinical studies of bilirubin in non-communicable disorders. 
BNM may be used to harness the proven preclinical pharmacological efficacy of bilirubin against COVID-19 
related systemic complications.   

Introduction 

SARS-CoV-2 pandemic is a global health challenge with no proven 
treatment regimens available. Current therapeutic strategies concen-
trate on the alleviation of symptoms, though to a lesser extent, emer-
gency approved antiviral drugs and vaccines do provide relief [1]. 
However, treatment of this multifaceted disease, which poses severe 
complications in multiple organs, requires strategic attention to control 
viral load and simultaneously address other systemic complexities [2]. 
To this end, as a life-saving drug, corticosteroids like dexamethasone, 
which modulate the inflammatory microenvironment and reduce 
oxidative stress, have shown promising efficacy [3–5]. In such a sce-
nario, it is imperative to demonstrate the clinical effectiveness of 

therapeutically active substances individually or in combination with 
other drugs having proven preclinical efficacy. Bilirubin possesses 
unique pharmacological effects, and its moderately higher levels have 
been shown to potentially reduce the risk of cardiovascular diseases 
(CVDs), diabetes, metabolic syndrome and obesity [6–10]. However, 
some controversial reports suggest that bilirubin plays a negative role in 
COVID-19, as bilirubin levels were found higher in a pool of such pa-
tients. However, this preliminary observation was due to systemic sepsis 
or viremia, further, no conclusive findings indicated any detrimental 
role of bilirubin in the clinical course of COVID-19 [11]. In previous 
studies, bilirubin as an endogenous antioxidant compound or its exog-
enous administration has demonstrated immense antioxidant, anti- 
inflammatory and immunomodulatory potential in various chronic 
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diseases [12,13]. Further, recently it was postulated as a metabolic 
hormone [14]. At the cellular and molecular levels, bilirubin reduces M1 
macrophage polarization, expression of proinflammatory cytokines, 
improves gut barrier integrity, increases MHC-II+, CD11c+, CD11– 

dendritic cells (DCs), β-defensin-3, superoxide dismutase 1 and modu-
lates molecular mechanistic cascades relevant to pathogenesis of 
COVID-19 [15]. As the increased incidence and high mortality associ-
ated with COVID-19 has become a global burden and a grave challenge, 
there is still a great need for novel treatment options that can cure and 
ultimately eradicate this disease. This encourages us to propose the 
nanocarrier-mediated delivery of bilirubin that can be used as a poten-
tial alternative strategy to manage SARS-CoV-2 infection. 

Hypothesis 

We hypothesize that bilirubin nanomedicine (BNM) can be used as 
an alternative strategy for the management of COVID-19 by its property 
to halt the development of systemic inflammatory complications and 
cytokine storm by modulating the expression of transforming growth 
factor-beta (TGF-β), mitogen-activated protein kinase (MAPKs) and 
nuclear factor kappa light chain enhancer of activated B cells (NFκB) 
signaling pathways. 

Justification of the hypothesis 

Mechanism of pharmacological effects of bilirubin 

Bilirubin has gained wide attention in biomedical research owing to 
its strong antioxidant, immunomodulatory and anti-inflammatory re-
sponses [16]. Moderately high serum bilirubin concentration protects 
against multiple clinical pathologies. In various preclinical studies, 
bilirubin at nanomolar concentrations showed potential pharmacolog-
ical effects. Bilirubin elicits its anti-inflammatory and immunomodula-
tory activities by modulating the expression of NFκB, nuclear factor 
erythroid 2-related factor 2 (Nrf2), MAPKinase, inducible nitric oxide 
synthase (iNOS) enzyme and reducing toll-like receptor 4 (TLR4) 
mediated inflammatory signaling pathways. Bilirubin possesses reactive 
oxygen species (ROS) scavenging activity, inflammatory cytokines 
inhibitory potential and the ability to restore physiological redox bal-
ance [17–19]. 

In the early 1970s, Nejedla reported that hyperbilirubinemia exerted 
a suppressive effect on antibody formation in newborn infants [20]. 
Later, it has been shown that intraperitoneal administration of bilirubin 
influences the expression of Fc receptors for immunoglobulin (Ig) M, 
IgG2B, IgA and IgE in immature mouse peritoneal macrophages via 
activating the tubulin system and altering the lipid environment of the 
plasma membrane [21]. Haga et al., reported that in human B lym-
phocytes, unconjugated bilirubin dose-dependently reduces the activity 
of class I antigens which activate cytotoxic T lymphocytes [22]. Simi-
larly, in extended studies, bilirubin showed a protective effect in several 
autoimmune diseases, including encephalomyelitis through its broad 
spectrum suppressive effect on T cells reactivity and interference with 
NFκB [23,24]. Liu et al., reported that bilirubin inhibits the antigen- 
specific-polyclonal T-cell response, suppresses CD4+ T-cell response 
and causes apoptosis in reactive CD4(+) T cells at high doses. However, 
at non-apoptotic concentration, bilirubin suppressed CD4(+) T-cell 
reactivity by inhibiting co-stimulatory activity, suppressing immune 
transcription factor activation, and downregulation of inducible MHC 
class II expression. Further, bilirubin treatment suppressed experimental 
autoimmune encephalomyelitis in SJL/J mice [24]. In addition, bili-
rubin showed an immunosuppressive effect by activating apoptosis via 
caspases 9 in lymphocytes, downregulation of protein kinase, and 
inhibiting MHC II class cell surface expression in molecules containing 
antigen presenting cells. Moreover, unconjugated bilirubin impairs the 
expression of Fc subsets, modulates the activity of macrophage and 
antigen-presenting cells through the upregulation of Fcγ1, Fcµ, Fcε, Fcα, 

and the downregulation of Fcγ2B receptors [25]. Altogether, bilirubin 
could have great potential to modulate the immune system. 

Introduction to nanoformulations and potential of bilirubin as a 
nanomedicine against immune-mediated inflammation 

Nanotechnology-based drug delivery systems are currently being 
used as a smart strategy to treat pathogenic infections due to their 
penetration ability across cell barriers owing to their smaller size and 
permeation into cellular compartments for site-specific drug delivery 
[21,26]. Among the different types of novel strategies, such as 
controlled release, sustained release or pH triggered/responsive release 
drug delivery systems, nanoparticles have attracted wide attention for 
intracellular delivery of drugs [27]. Nanoparticles offer distinctive 
physicochemical properties, such as high biocompatibility and negli-
gible cellular toxicity in physiological systems [28]. Tailoring nano-
particles with bilirubin or other drugs may improve their therapeutic 
effectiveness by rapidly internalizing conjugated/encapsulated drugs 
into microbial cells through interactions with the negatively charged 
cell membrane [29]. These nanosystems offer excellent drug loading 
capacity, improved pharmacokinetics and minimal dose-related side 
effects. In addition, biocompatible polycationic polymers such as chi-
tosan with proven antimicrobial properties while polyesters and poly-
urethanes as bio-based polymers with aided antimicrobial properties 
offer a highly positive surface charge, which helps to transport drugs 
across the cell membrane [30]. 

The primary concern of COVID-19 is the diffuse alveolar epithelium 
damage resulting in lung injury and other cellular responses. Although 
the clinical course of molecular events and pathobiology of COVID-19 
associated respiratory tract damage remains unknown. The primary 
pathophysiological mechanism for this is the triggered host innate im-
mune response and subsequent accelerated inflammation caused by the 
cytokine constellation. Further, the condition may worsen when 
elevated cytokine levels promote lung fibrosis, making the disease 
almost incurable. DCs act as antigen-presenting cells (APCs) for coro-
navirus and display the virus on their surface on MHCII [31]. DCs 
migrate to the lymph nodes and activate allergen-specific T-cells that 
induce clonal selection and Th2 cells polarization. Th2 cells, in turn, 
produce cytokines (IL-1β, IL-4 and IL-5) responsible for inflammatory 
and fibrotic reactions (Fig. 1). Bilirubin, a product of the enzyme heme 
oxygenase (HO-1) has strong antioxidant, anti-inflammatory and cyto-
protective effects [32]. Over the last decades, several efforts were made 
to unravel the salient therapeutic features of bilirubin using a 
nanocarrier-mediated delivery system and overcome the limitations of 
its hydrophobicity and toxicity. Therefore, targeting the respiratory 
system with nano-based bilirubin delivery as an alternative therapeutic 
strategy to protect against coronavirus would be a plausible approach. 
BNMs have been reported to possess enhanced therapeutic effect as the 
volume-to-surface ratio significantly increases, which imparts bilirubin 
the improved catalytic properties [33]. Treatment of C57BL/6 mice with 
bilirubin-based nanoparticles suppressed experimental allergic asth-
ma complications by modulating the expression of Th2 cytokines 
compared to untreated controls. Observed effect may be due to 
decreased T-cells population and their associated proinflammatory cy-
tokines (IL-4, IL-5 and IL-13), via NFκB activation and co-stimulatory 
molecules of T cells in an antigen-presenting cell (APC)-independent 
way significantly attenuated Th2-related allergic lungs inflammation. In 
addition, PEGylation of bilirubin into nanoparticles improved its phar-
macokinetics and dispersibility compared to free bilirubin. This study 
showed bilirubin as an alternative nanomedicine to treat allergic pul-
monary inflammatory diseases compared to currently available corti-
costeroids with potential side effects [34]. Fig. 2 depicts our postulated 
hypothesis for the probable mechanistic benefits of BNM. The high po-
tency of bilirubin as an endogenous anti-inflammatory molecule makes 
it an attractive option for clinical implications. In a mouse model of 
dextran sodium sulfate-induced ulcerative colitis, unconjugated 
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bilirubin treated animals showed reduced clinical severity of colitis and 
colonic tissue injury marked by restored intestinal mucosal barrier 
function and intestinal microbiota homeostasis. Furthermore, reduced 
immune inflammation was also characterized by significantly reduced 
levels of proinflammatory cytokines (IL-1β, IL-6, IFN-γ and TNF-α) 
through the alteration of different molecular signaling pathways (TLR4, 
TRAF6 and NFκB) [18]. Bilirubin encapsulated silk fibroin-based 
nanoparticles (BRSNPs) were found to be highly biocompatible and 
protected pancreatic acinar cells from free radicals mediated oxidative 
damage and reduced the disease severity in rat acute pancreatitis model, 
evident by suppressed NFκB and activated Nrf2/HO-1 pathway. This 
study showed the site-specific targeting capability of the synthesized 
BRSNPs demonstrated by the accumulation and internalization of 
BRSNPs into inflammatory pancreas. This study concluded the immense 
therapeutic potential of BNM with advantage of increased vascular 
permeability and retention of bilirubin in cellular and subcellular 
compartments through enhanced permeability and retention (EPR) ef-
fects. Such a bilirubin-functionalized nanocarrier-mediated delivery 
strategy can improve high payload of drugs, achieve controlled release 
of encapsulated drugs, and reduce the dose associated side effects 
[13,35]. Collectively, previous findings indicate that BNMs are highly 
effective against the prevention and management of various inflamma-
tory diseases by harmonizing the inflammatory immune cells and levels 
of their related proinflammatory cytokines making them an interesting 
arsenal in the fight against COVID-19. 

More recently, hyaluronic acid-bilirubin nanoparticles for inflam-
matory bowel diseases and doxorubicin-loaded-biotinylated bilirubin- 
nanoparticles, folate-gold-bilirubin nanoconjugate for cancer have been 

developed as BNM and found to be significantly effective [36–38]. The 
potential strategy to treat associated systemic infections and manage-
ment of COVID-19 may be a combination drug delivery system that fa-
cilitates the easy transport of drugs to the target site. BNMs 
functionalized with biocompatible polymers would enhance cellular 
internalization of bilirubin due to interaction between nanoformulation 
and cell membrane resulting in membrane disruption and enhanced 
penetration, thus, providing a smart strategy to combat the threatening 
effects of COVID-19. 

Potential of bilirubin nanomedicine (BNM) against cytokine storm 

Cytokine storm is the most prominent cause, making COVID-19 pa-
thology very complex and life-threatening [39,40]. Currently available 
medications have limited efficacy or elicit significant adverse effects, 
hampering their clinical use in COVID-19 management [41]. In this 
context, BNMs could be considered for their ability to restrain the 
cytokine signaling pathways like NFκB, Janus kinases and signal trans-
ducer and activator of transcription proteins (JAK-STAT) etc. and halt 
the triggered expression and release of proinflammatory cytokines [42]. 
Administration of BNM to murine pancreatic islet allograft recipients 
extensively enhanced graft viability by alleviating cell apoptosis and 
reducing the expression of inflammatory cytokines such as IL-1β, TNF-α, 
monocyte chemoattractant protein-1 (MCP-1) and soluble intercellular 
adhesion molecule-1 (sICAM-1) [43]. Similarly, BNM abrogated the 
severity of acute pancreatitis by dampening NF-κB and TNF-α expression 
and stimulating the Nrf2 activity [35]. Hyaluronic acid decorated BNM 
protected the experimental animals from dextran sulfate sodium- 

Fig. 1. Respiratory airways exposure to coronavirus. Dendritic cells (DCs) in the respiratory airways capture, internalize, and display coronavirus on the cell surface 
of MHCII molecules. DCs migrate to the lymph node (LN) and encounter coronavirus-specific T cells. The DCs induce the differentiation of the T cells into Th2 cells. 
Th2 cells produce cytokines (IL-4, IL-5 and IL-13) that induce mucus production and smooth muscle contraction in the airways. This forms the basis of allergic airway 
sensitization and cytokine mediated lungs insufficiency. The figure was created with BioRender.com. 
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induced colitis. Developed nanoformulation found accumulated in the 
inflamed colonic epithelium and restored the epithelium barriers 
integrity in the in vivo murine model of acute colitis by decreasing the 
expression of IL-1β, IL-6, IL-10, TNF-α and TGF-β [36]. 

Potential of BNM to fight against multiple organ dysfunctions 

The clinical spectrum of COVID-19 is not limited to lung pneumonia; 
it also represents the multiple organ dysfunction and potential risk of 
other systemic complications [44]. Therapeutic intervention with bili-
rubin loaded nanoparticles has been shown to alleviate imiquimod 
(IMQ)-induced psoriasis in mice. Topical treatment of IMQ-induced 
psoriasis mice with BNM showed reduced clinical severity of psoriasis, 
downregulated ROS levels and decreased expression of proinflammatory 
chemical mediators. This study demonstrated BNM with high biocom-
patibility and reduced cellular toxicity for psoriasis management [45]. 
The anti-fibrotic effect of bilirubin conjugated chitosan nanoparticles 
loaded with losartan was investigated in a thioacetamide/ethanol- 
induced liver fibrosis mice model. Findings of the in vitro and in vivo 
experiments suggested that the ROS stimuli-responsive nanoparticles 
having losartan might be an appealing therapeutic choice to manage 
hepatic dysfunction and fibrosis [46,47]. Under strong antioxidant and 
anti-inflammatory potential, BNM reversed the typical characteristics of 
pancreatitis by inhibiting proinflammatory cytokines and restoring the 

altered levels of lipase and amylase. Moreover, BNM attenuated the 
expression of NFκB pathway, resulting in an overall improvement of the 
pancreas in L-arginine induced acute pancreatitis in mice [13,15]. 
Similarly, PEGylated BNM has been shown beneficial against allergen- 
induced allergic asthma by ameliorating Th2 mediated allergic lung 
inflammation confirmed by reduced Th2 cell population and related 
cytokines level [34]. 

Santangelo et al., demonstrated the virucidal effect of bilirubin 
against the enterovirus EV71 and human herpes simplex virus type 1 
(HSV-1). Bilirubin-IX-α, at concentrations of 1–10 μM, close to those 
found in blood and tissues, significantly reduced the EV71 and HSV-1 
replication in Vero and Hep-2 cell lines, respectively. Bilirubin-IX-α 
inhibited the viral infection of Vero cells and Hep-2 when given 2 h 
before and concomitantly after 2 h of the viral infection [6]. Similarly, 
biliverdin (BV) has been reported as a potent inhibitor of hepatitis C 
virus (HCV) NS3/4A protease, which exerts antiviral action against HCV 
by inducing dose-dependent activity of heme oxygenase-1. BV showed 
remarkable antiviral activity at concentrations as low as 20 μM. BV also 
augmented the antiviral activity of α-interferon in replicons. All these 
findings suggested that bilirubin and BV or its derivatives have potential 
antiviral activities which can also be investigated against the SARS-CoV- 
2. 

Fig. 2. Coronavirus get inhaled and travel to the respiratory airways. Once there, their stimulus damages the epithelium, which causes the release of different 
alarmins: IL-33, IL-25 and TSLP. ILC2, innate immune cells, are activated and release proinflammatory type 2 cytokines, such as IL-5 and IL-13 for the recruitment of 
eosinophils and mucus production, respectively. T helper cells, adaptive immune cells, are activated in an antigen-dependent manner via dendritic cells and cause 
major respiratory problems, including fibrotic lungs and inflammation. The figure was created with BioRender.com. 
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Possible novel treatment strategies of bilirubin for COVID-19 therapeutics 

Dosage form and route of drug administration to the patients remain 
key factors for an effective treatment strategy when using conventional 
or novel treatment options. The critical assessment of physicochemical 
and pre-formulation parameters is essential to develop a robust formu-
lation that can deliver maximum therapeutic outcomes in patients [48]. 
To this end, nanotechnology and nanobiotechnology are providing 
innovative solutions [49]. Principally, COVID-19 causes significant 
damage to the lungs and renders them inefficient for routine function; 
therefore, pulmonary drug delivery must be incorporated as a thera-
peutic strategy for prominent action [50]. In this context, aerosol-based 
inhalation formulations might be a better approach which is not only 
patient compliant but can also exhibit the rapid relief over a defined 
period. In its free form, bilirubin has problems with its solubility; hence, 
its administration in nanoparticulate form offers enhanced solubility 
and improved efficacy. BNM as aerosol-based drug delivery system can 
deliver cargo directly to the lungs and reduce the complications of 
COVID-19 resulting in improved patient status. As the dose is required to 
be taken at short time intervals, it poses compliance issues. In such cases, 
BNM sustained release formulation can be administered directly through 
the intravenous route, which can provide 100% bioavailability and 
enhanced clinical response. 

Bilirubin has unveiled encouraging effects in eliminating over-
produced ROS and maintaining the cellular redox homeostasis; there-
fore, it is considered an efficacious therapeutic agent. Exogenous 

bilirubin also serves as an alternative for the shielding of heme oxy-
genase in various organs of the body. However, ample information 
regarding the toxic traits of bilirubin is present, such as neonatal 
hyperbilirubinemia and kernicterus [51,52]. In particular, the low sol-
ubility of bilirubin at physiological pH due to internal hydrogen bonds 
between the different polar groups is a hindrance to its intravenous 
administration. Several attempts have been made to overcome this 
limitation, such as binding bilirubin with glutathione-S-transferase, an 
intracellular protein or with albumin [53]. Kristin et al., demonstrated a 
protocol for intravenous administration of the exogenous bilirubin for its 
protective effects on ischemia-reperfusion induced injury in rats’ kid-
neys [54], where, bilirubin was added to a solution of pH 8 with the 
exception of albumin [55]. 

Moreover, it was suggested that upon intravenous administration, 
the protective effects of bilirubin have been observed to be model spe-
cific and organ specific. These effects may arise as a result of the vari-
ance in regional oxygen tension and microcirculatory hemodynamics of 
that particular organ, which plays climacteric role in the reperfusion 
phase that occurs instantly after a cardiac ischemic injury. Therefore, 
intravenous infusion of bilirubin was effective in prompt elevations of 
serum bilirubin concentrations, for a very short period of time. Besides, 
Nakao et al. have also observed the identical effects but were unable to 
produce these results in the kidney and heart in animal models [56]. 
Similarly, Clark et al., demonstrated similar effects in the isolated 
perfused rat heart model [57]. Hence, it delineates that various efforts 
have been made for intravenous administration of bilirubin to explore its 

Fig. 3. Administration of BNM by various routes and their advantages. Part of the figure were adapted and reproduced from reference [70] under the Creative 
Commons Attribution License (CCBY). 
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usefulness as a therapeutic tool. Further, adding other treatment regi-
mens in combination with BNM would serve as a dual synergistic 
approach. Fig. 3 shows the proposed routes for BNM administration. 

Experimental strategy to test the hypothesis of bilirubin 
nanomedicine (BNM) as a potential candidate against COVID-19 

The airway epithelial cells are located at the interface between the 
external and internal milieu and demonstrate a broad spectrum of ac-
tivities associated with pulmonary inflammation, immune response, 
host defense and tissue remodeling. The airway epithelium plays a 
crucial role in the defense against various inhaled substances by 
modulating innate and adaptive immunity [58]. Moreover, airway 
epithelial cells show highly-expressed angiotensin-converting enzyme 2 
(ACE2) and transmembrane serine proteinase 2 (TMPRSS2), as essential 
receptors for SARS-CoV-2 entry [59,60]. Further, experiments with 
SARS-CoV-2 infection using primary human airway epithelial cells have 
been found to demonstrate cytopathic effects 96 h after the infection 
[61]. Therefore, primary human airway epithelial cells can be utilized to 
test the potential anti-COVID-19 effects of BNM. Herein, we propose the 
following experimental design to investigate the effectiveness of BNM 
against COVID-19- group-I: control-bronchial primary human airway 
epithelial cells, group-II: bronchial primary human airway epithelial 
cells infected with SARS-CoV-2, group III: treatment of SARS-CoV-2 
infected primary airway epithelial cells with various doses of BNM. 
Bronchial primary human airway epithelial cells can be maintained and 
cultured as earlier described by Vanderheiden et al. [62]. Infection in 
the bronchial primary human airway epithelial cells would trigger 
strong immune-mediated inflammatory cytokine response, while BNM 
treatment can reduce the cytokine storm and other proinflammatory 
chemical mediators. 

In the case of COVID-19, where disease pathogenesis is complex and 
progressive, combination therapy is needed to cure or prevent further 
disease severity through a multidimensional mechanism of action. While 
proposing bilirubin as nanomedicine for the clinical management of 
COVID-19, which itself holds the therapeutic effects, the question arises 
how to design a safe and effective BNM rationally and effectively. We 
sincerely believe that this is a part at the end of both, i.e., clinical and 
formulation scientists. Therefore, when developing BNM, one should 
choose site-specific targeting to avoid the accumulation of free drug in 
healthy tissues and to enhance transportation across various biological 
barriers for improved drug bioactivity [63]. Further developed BNM 
should be characterized using state-of-the-art biophysical techniques for 
physicochemical analysis such as physical and surface properties, 
architectural composition and stability using standardized protocols 
[64]. Biocompatibility and comprehensive toxicity analysis of devel-
oped BNM choosing standard protocols and appropriate cell line based 
in vitro assay and the in vivo animal models following the guidelines of 
Organisation for Economic Co-operation and Development (OECD) for 
testing of chemicals are necessary, before its preclinical or clinical 
evaluation [65,66]. 

Until now, we know that the most prominent pathophysiological 
features of COVID-19 are upper respiratory tract infections that gradu-
ally lead to alveolar epithelial damage and chronic inflammation. In 
severe cases, when the virus severely attacks the immune system and 
modulates cellular and molecular homeostasis, it can cause systemic 
infection and life-threatening complications. Furthermore, there is a 
lack of understanding of the precise pathobiology and mechanistic 
molecular cascades involved in the pathogenesis of COVID-19. Now if 
we specifically focus on assessing the therapeutic effectiveness of BNM 
developed for COVID-19, this can be done using clinically relevant cell 
lines based in vitro and in vivo animal models. In order to evaluate the 
altered expression of major cytokines relevant to COVID-19, an enzyme- 
linked immunosorbent assay (ELISA) may be performed on physiolog-
ical fluid samples, or tissue homogenate of a particular organ, such as 
the lungs of the BNM treated experimental animals infected with SARS- 

CoV-2 [34]. In addition, intracellular cytokines staining with the aid of 
flow cytometry may also be performed. The tissue histopathological 
analysis can be performed to observe the major pathological changes in 
vital organs, such as lungs, kidneys and heart of the experimental ani-
mals. It is known that COVID-19 cause the upper respiratory tract 
collapse and bronchial inflammation, ROS generation assay using 5- 
(and-6)-chloromethyl-2′,7′-dichlorofluorescein diacetate (DCF-DA) 
staining and levels of proinflammatory cytokines and chemokines can 
also be analyzed using ELISA [34]. Further experiments such as quan-
titative polymerase chain reaction (qPCR) assay and indirect immuno-
fluorescence assay (IFA) may be performed to analyze the inhibition of 
viral replication, its entry into the host cells and virucidal effect of BNMs 
[67,68]. 

Implications of the hypothesis 

In conclusion, BNM may provide a novel strategy for the pharma-
cotherapy of COVID-19 as it possesses not only antiviral efficacy but also 
anti-inflammatory and antioxidant effects. Further, it can be adminis-
tered either systemically by intravenous route or locally to the lungs as 
an aerosol. Given that moderately higher serum levels of bilirubin have 
positive health benefits, the use of BNMs for COVID-19 management 
sounds appealing. Owing to the physiological relevance of bilirubin, 
BNMs may be excellent choice for effective management of this deadly 
viral infection. 

Limitations and practical challenges in the implementation of 
proposed hypothesis 

There is always the possibility of viral mutations and resistance 
development against the currently available medications, which may 
lose their effectiveness due to their specific response under different 
pathophysiological conditions. Therefore, evaluating effectiveness and 
safety and repurposing existing drugs are of utmost importance and 
should be considered a continuous process. For any new chemical entity 
or a drug molecule in the preclinical or clinical phase; it is crucial to 
determine its appropriate dosage form and route of administration to 
achieve maximum therapeutic response in patients. Since bilirubin is a 
hydrophilic molecule, it is susceptible to first-pass hepatic metabolism. 
This results in low systemic bioavailability of bilirubin and limits its 
clinical application as a drug candidate. Therefore, we propose the 
clinical use of bilirubin as a nanomedicine using appropriate drug de-
livery systems to overcome the limitations of poor solubility, sustained 
or controlled drug release and improved pharmacokinetics of bilirubin. 
Concurrently, nano-based drug delivery systems offer the advantage of 
high drug payload, smaller size and reduced dose associated side effects. 
Besides, it is necessary to identify a suitable route of administration for 
BNM and a comprehensive toxicity assessment using clinically relevant 
animal models. There are significantly less data available on direct 
inhalation toxicological studies of different types of nanoparticles. The 
determination of the actual inhalation dose requirement is a daunting 
process which has restricted the specific designs of direct BNM inhala-
tion formulations. Also, we are still a long way from deducing the 
nanotoxicological assessments in the relevant disease model [69]. 
Therefore, a comprehensive evaluation is needed before implementing 
the proposed hypothesis in the therapeutics of COVID-19. 
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