
Comparison of Continuously Acquired Resting
State and Extracted Analogues From Active Tasks

Sebastian Ganger,1 Andreas Hahn,1 Martin K€ublb€ock,2 Georg S. Kranz,1

Marie Spies,1 Thomas Vanicek,1 Ren�e Seiger,1 Ronald Sladky,2

Christian Windischberger,2 Siegfried Kasper,1 and Rupert Lanzenberger1*

1Department of Psychiatry and Psychotherapy, Medical University of Vienna
Vienna, Austria

2MR Center of Excellence, Center for Medical Physics and Biomedical Engineering,
Medical University of Vienna, Vienna, Austria

r r

Abstract: Functional connectivity analysis of brain networks has become an important tool for investi-
gation of human brain function. Although functional connectivity computations are usually based on
resting-state data, the application to task-specific fMRI has received growing attention. Three major
methods for extraction of resting-state data from task-related signal have been proposed (1) usage of
unmanipulated task data for functional connectivity; (2) regression against task effects, subsequently
using the residuals; and (3) concatenation of baseline blocks located in-between task blocks. Despite
widespread application in current research, consensus on which method best resembles resting-state
seems to be missing. We, therefore, evaluated these techniques in a sample of 26 healthy controls
measured at 7 Tesla. In addition to continuous resting-state, two different task paradigms were
assessed (emotion discrimination and right finger-tapping) and five well-described networks were ana-
lyzed (default mode, thalamus, cuneus, sensorimotor, and auditory). Investigating the similarity to
continuous resting-state (Dice, Intraclass correlation coefficient (ICC), R2) showed that regression
against task effects yields functional connectivity networks most alike to resting-state. However, all
methods exhibited significant differences when compared to continuous resting-state and similarity
metrics were lower than test-retest of two resting-state scans. Omitting global signal regression did not
change these findings. Visually, the networks are highly similar, but through further investigation
marked differences can be found. Therefore, our data does not support referring to resting-state when
extracting signals from task designs, although functional connectivity computed from task-specific data
may indeed yield interesting information. Hum Brain Mapp 36:4053–4063, 2015. VC 2015 The Authors Human
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INTRODUCTION

The neuroimaging community has increasingly focused
on resting-state and functional connectivity research. This
trend is reflected by large-scale databases like the 1,000
Functional Connectomes Project [Biswal et al., 2010],
where a great number of resting-state datasets are accumu-
lated. These efforts have led to the identification of a mul-
titude of well-described networks, which are highly
reproducible across different methods [Beckmann, 2005;
Tomasi et al., 2009]. More importantly, numerous studies
have been performed to assess differences in networks
during resting conditions in various clinical populations
[Broyd et al., 2009; Fox and Greicius, 2010]. This has
revealed major insights on alterations in network organiza-
tion in various psychiatric and neurological disorders such
as major depression [Greicius et al., 2007], anxiety disor-
ders [Hahn et al., 2011], and Alzheimer’s disease [Sorg
et al., 2007].

As a consequence, research interest for connectivity and
changes in network parameters during task processing
[Greicius, 2004] has also emerged. While relating resting-
state to task processing, Smith et al. [2009] have demon-
strated that resting-state networks are also connected dur-
ing task engagement. Moreover, significant fractions of the
trial-to-trial variance in task paradigms can be explained
by coherent spontaneous activity, suggesting that ongoing
intrinsic neuronal activity has an influence on behavior
[Fox and Raichle, 2007]. It further has been hypothesized
that ongoing activity in the brain establishes a functional
architecture, in which neural responses are embedded but
which cannot be fully isolated from spontaneous fluctua-
tions [Sadaghiani et al., 2010].

These observations provide a strong argument for
extraction of signals similar to resting-state from task-
specific data. Methods applied in current research include
the use of task data processed equal to resting-state
[Greicius, 2004; Jones et al., 2010; McFadden et al., 2014;
Gimènez et al., 2012; Wu et al., 2011], concatenating base-
line conditions from block-designs [Fair, 2007; Fernandez-
Espejo et al., 2010; Honey, 2002; Kraus et al., 2014; Tomasi
et al., 2009, 2010; Washington et al., 2013] as well as using
residuals after regression against the task [Fair, 2007; Jones
et al., 2010; Noonan et al., 2009; Shih et al., 2010; Weisberg
et al., 2014]. Interestingly, there seems to be a trend in the
literature to use the regression method [Korgaonkar et al.,
2014; Muller et al., 2011], though other groups have recom-
mended the use of baseline blocks [Fair, 2007; Fleisher
et al., 2009; Hedden et al., 2009]. Generally, interpretation
of these methods is still a matter of debate [Fair, 2007;
Loitfelder, 2014; Muller et al., 2011; Sadaghiani et al.,
2010]. The importance of appropriate methodological
assessment has been recently highlighted in autism spec-
trum disorder [Muller et al., 2011]. In this case, differences
in functional connectivity extracted from task designs
could not be attributed unambiguously to either underly-

ing pathophysiology or methodological differences across
populations.

To sum up, extraction of resting-state data from task-
designs indeed represents a highly relevant method in cur-
rent fMRI research. However, there is a lack of consensus
which technique performs best as comprehensive compari-
sons are missing. Application of a method that allows for
extraction of signal similar to resting-state from tasks
would allow for utilization of previously acquired data,
particularly in cases in which resting state paradigms were
not acquired. Further, a method of this kind could illumi-
nate details about the relationships between task and rest-
conditions.

To address this issue, we aimed to provide a thorough
comparison of the applied techniques and to test potential
methodological improvements. More precisely, we
assessed which method best resembles continuous resting-
state networks. Two task paradigms (emotion discrimina-
tion and right finger-tapping) as well as five different net-
works were compared. Furthermore, we modified the
concatenation method [Fair, 2007] to account for subject-
specific shifts in delay of the hemodynamic response func-
tion (HRF), allowing us to avoid conservative cutting
intervals.

METHODS

Participants

Twenty-six healthy subjects (13 female), aged 25.6 6 5.83
years (mean 6 standard deviation) were included in the
study. For the test-retest comparison data from 20 subjects,
aged 26.7 6 5.91 years, partly overlapping with the above
group has been analyzed. The second scan has been con-
ducted one month after the first measurement. All subjects
underwent standard medical examination and completed
the Structural Clinical Interview for DSM-IV (SCID) disor-
ders, which was utilized to exclude persons suffering from
neurological or psychiatric disorders. In addition, exclu-
sion criteria included past substance abuse, intake of psy-
chotropic medication, pregnancy, hormone treatment and
contraindications for magnetic resonance imaging. All sub-
jects provided written informed consent after detailed
explanation of the study protocol by an experienced psy-
chiatrist and were reimbursed for their participation. The
study was approved by the Medical University of Vienna
ethics committee and procedures were conducted accord-
ing to the Declaration of Helsinki.

fMRI Scanning

All participants underwent fMRI scanning in a Siemens
Magnetom 7T MR scanner (EPI-sequence: TE 5 23 ms,
TR 5 1.4 s, flip angle 5 628) located at the Medical Univer-
sity of Vienna as described previously [Hahn et al., 2013].
Each subject completed one continuous resting-state scan
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as well as two paradigms in a typical block design. The
acquired images comprised voxel dimensions of 1.48 mm
3 1.48 mm 3 2 mm (11 mm slice gap), and dimensional-
ity of 128 3 128 voxels, comprising 32 slices. All stimuli
and timings were programmed in the cogent toolbox for
MATLAB and were presented to the subjects by a
projector.

Resting State

During the resting-state acquisition (total duration 5

360 s) subjects have been instructed to think about nothing
in particular, while simply viewing the cross-hair, that is,
stay relaxed but awake in the scanner with eyes open
[Hahn et al., 2011; Weissenbacher, 2009].

Functional Paradigms

The first paradigm was the right-finger-tapping (RFT)
task. Here, the subject was instructed to alternately tap the
index and middle finger towards the thumb during a
stimulus-phase in which flickering checkerboards were
shown (8 Hz). The RFT consisted of 6 3 10 s tapping peri-
ods, and 7 3 10 s baseline-blocks (total paradigm
length 5 130 s). During the baseline-blocks, which are of
main interest in this work, a crosshair was presented to
the subjects. The participants were instructed that the
baseline blocks represent a short pause between the trials.
The description of the crosshair sequence was the same
for the emotion-discrimination task. This task was chosen,
due to its simplicity, as the task is well understood and
has distinct areas of activation [Biswal et al., 1995, 2010].
Furthermore, the paradigm has found widespread applica-
tion with good reproducibility [Gountouna et al., 2010].

The emotion discrimination task (EDT) consisted of 4
blocks of emotion-discrimination and 4 blocks of object-
discrimination with 20 s each, alternated by 8 320 s
baseline-blocks, plus one baseline-block at the end (total
duration 5 320 s). This task-design is an established para-
digm [Hariri, 2002] and is more sophisticated in compari-
son to the finger-tapping task, as it involves emotional
facial stimuli. This task was chosen since it represents a
widely applied paradigm to elicit emotional processing.
Furthermore, the duration of baseline blocks, as well as
total paradigm length were longer as compared to the
RFT-task.

Data Preprocessing

Preprocessing of the data, unrelated to the method of
extraction or paradigm, was carried out in SPM8 using
default parameters unless otherwise specified. This
included slice timing correction (reference=first slice)
[Sladky et al., 2011], realignment (reference=mean image),
spatial normalization to a scanner-specific EPI template in
MNI-space [Hahn et al., 2013] as well as spatial smoothing

using an 8 mm 3 8 mm 3 8 mm FWHM Gaussian kernel.
Following preprocessing, the next step was to test the dif-
ferent methods to extract resting-state from task-specific
data and/or for removing task-related signals (see below).

Multiple linear regression was applied to remove move-
ment parameters as calculated by SPM, as well as white-
matter, ventricular and global signal, followed by band-
pass filtering (0.009< f< 0.08Hz). Finally, cross-correlation
to seed regions was calculated and resulting maps were
transformed to z-scores for group comparison [Weissen-
bacher, 2009]. To acknowledge the ongoing dispute about
global signal regression (GSR), we also performed the cal-
culations for one task dataset without applying GSR.

Extraction of Resting-State From fMRI Task-Data

The following 4 approaches of resting-state extraction
from task-specific data have been applied. The actual
resting-state data was used for comparison, where the
duration was adapted to fit the duration after task
removal.

Method 1: Original unmodified data (ORIG)

In this method, functional connectivity was calculated
from unmodified task data in the same way as it was
done for resting-state data [Greicius, 2004]. As previously
stated, the task is either right finger-tapping (RFT) or an
EDT. Besides the filtering related to the seed-based correla-
tion (i.e., band-pass and regression against “physiological
noise” including white matter, ventricular and global sig-
nal) [Weissenbacher, 2009] no efforts were done to remove
the signal that is associated with the task [Greicius, 2004].

Method 2a: Baseline block extraction (BLOCK)

Resting-state blocks were extracted from the design and
concatenated as described previously [Fair, 2007]. After
the end of each task block, a fixed duration of �15 s
(dependent on rounding of TR) was removed, allowing
the hemodynamic response to return to a baseline state. At
the start of each task-block, an interval of 5 s was assumed
to be the resting-condition. This method, when applied in
the right finger-tapping paradigm, resulted in extracted
resting-state durations lower then 30 s, as the cutting inter-
vals are conservative, generously avoiding possible con-
taminations. We, therefore, excluded method 2a for the
finger-tapping paradigm due to insufficient amount of
data points.

Method 2b: Baseline block extraction with variable

shift (BLOCKvar)

Similar to method 2a, baseline blocks were extracted
from the task-design and concatenated to create a resting-
state analogue. Additionally, the delay of the HRF was
estimated for each subject individually in order to
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eliminate potential task influences. Instead of using a
standard HRF with fixed delay (e.g., from SPM), we aimed
to estimate the delay individually for each subject, and
then adjust the cutting intervals. This was done because
the hemodynamic response varies across subjects and even
sessions [Aguirre et al., 1998; Cunnington et al., 2003;
Handwerker, 2004]. Hence, individual estimates of the
HRF shift should provide more accurate representations in
contrast to one static model for the entire group. We
assumed that shortly after the peak, further changes in
response would be minimal. We also assumed that the
actual baseline condition starts at the onset of the cross-
hair plus the shift, lasting the same duration as the presen-
tation of the crosshair.

Response time-to-peak was estimated as follows: First a
spherical region of interest (5 mm diameter) was placed in
the occipital cortex bilaterally (center at x,y,z 5 117 mm/
222 mm, 290 mm, 12mm MNI-space) Next, we created a
theoretical boxcar-model for each subject, given by onsets
and durations of the block design as extracted from the
scanning log-files.

To identify the individual HRF shift, the modeled box-
car was shifted in time by 1 TR-steps (i.e., 1.4s
steps 5 1TR), while analyzing the correlation with the
measured response. This enabled us to search for the max-
imum correlation, which was assumed to represent the
best estimate for the individual shift. This shift was lim-
ited to a maximum of 7 times the TR (7 3 1.4s 5 9.8s),
based on previous estimates of the shape of the HRF
[Handwerker, 2004]. Individual HRF delays as computed
in the BLOCKvar method were 5.2 s 6 1.32 s (mean 6 sd).

Method 3: Residual time course after regression

(REG)

In this method we tested if multi-linear regression ena-
bles an effective removal of task effects from the BOLD
signal [Fair, 2007]. Here, the same theoretical boxcar-
model as in method 2b was used. After convolution with
the HRF model from SPM8, the estimated responses were
used for the multilinear regression. The residuals from this
regression are assumed as time course with removed task
effects [Fair, 2007; Korgaonkar et al., 2014].

Combination of method 2b13: Block extraction after

regression (BlockREG)

For this technique, regression and block extraction have
been combined. First, regression was performed as
described in method 3 (REG). After the task removal from
REG, we concatenated the baseline-blocks from the resid-
uals, similar to method 2b.

Resting-State Networks

Three coordinates for the seed of the resting-state net-
works were taken from Tomasi et al [2011]. In particular,

the chosen networks correspond to the “default mode”-
(x 5 4 mm, y 5 252 mm, z 5 29 mm), the “cuneus”-
(x 5 224 mm, y 5 280 mm, z 5 18 mm) and the
“thalamus”-network (x 5 212 mm, y 5 219 mm,
z 5 8 mm). Additional two networks have been chosen
from an independent component analyses based approach
[Smith et al., 2009]. These are defined as the peaks from
resting state network “sensorimotor” (x 5 0 mm,
y 5 212 mm, z 5 50 mm) and “auditory” (x 5 260 mm,
y 5 24 mm, z 5 2 mm). Networks are displayed in figure
1.

To account for potential outliers and to decrease influen-
ces of noise, the seed was defined as a 33333 voxel cube
around the coordinate instead of using a single voxel
[Cole et al., 2010]. The average time course was then
extracted and cross-correlated with the entire brain, fol-
lowed by z-transformation (see data preprocessing
section).

Statistical Testing

One sample t-tests of the DMN were computed with
SPM for visualization purposes (Fig. 2). The DMN has
been chosen for this visualization as it has the highest reli-
ability as indicated by all three similarity measures (Tables
(I–III)).

ICC [McGraw and Wong, 1996] and Dice similarity mea-
sure [Birn et al., 2013] have been calculated for each
method with continuous resting-state as reference to iden-
tify similarities between both conditions, and to enable
comparison with previously published literature. The ICC
was estimated across all brain voxels using unthresholded
individual z-score maps [McGraw and Wong, 1996]. For
the calculation of the Dice measure a binary threshold of
0.3 was applied as published previously [Birn et al., 2013].
Hence in contrast to the Dice metric, the ICC does not rely
on a binary threshold. Both indices range from zero to
one, where zero represents no similarity and one repre-
sents identical sets.

Of note, all comparisons (t-tests, Dice, ICC, and R2)
were computed for the entire brain, masked to exclude
areas outside the cortex, without restriction to a particular
network. To assess differences in similarity metrics
between a given method of extraction and continuous
resting-state, a mixed factorial ANOVA was implemented
in SPSS, followed by post hoc two-sample t-tests. This was
done for each metric (Dice, ICC, and R2) as well as for
both tasks (RFT, EDT). Here, correlation values have been
z-transformed beforehand to ensure normal distribution.

RESULTS

Computing the DMN as an average across the entire
study group resulted in functional connectivity maps
which were visually comparable to actual resting-state for
each of the extraction methods (maps in Fig. 2). However,
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TABLE II. Average R2 values between maps derived from method of extraction and actual resting-state

Cuneus Auditory Sensorimotor Default Mode Thalamus

EDT (with GSR)
BLOCKreg 0.12a 0.13a 0.11a 0.15a 0.05a

BLOCKvar 0.13a 0.14a 0.10a 0.16a 0.05a

REG 0.11a 0.16 0.13a 0.20 0.08a

BLOCK 0.06a 0.07a 0.04a 0.07a 0.04a

ORIG 0.13a 0.13a 0.11a 0.20a 0.07a

RFT (with GSR)
BLOCKreg 0.03a 0.03a 0.02a 0.04a 0.02a

BLOCKvar 0.03a 0.03a 0.02a 0.04a 0.02a

REG 0.10a 0.09a 0.06a 0.23a 0.05a

ORIG 0.07a 0.09a 0.06a 0.15a 0.05a

Test-Retest (with GSR) 0.30 0.20 0.24 0.37 0.17
EDT (without GSR)

BLOCKreg 0.41a 0.46a 0.41a 0.41a 0.39a

BLOCKvar 0.43a 0.47a 0.45a 0.42a 0.42a

REG 0.31a 0.32a 0.30a 0.26a 0.37a

BLOCK 0.53a 0.56 0.54a 0.49a 0.47a

ORIG 0.54a 0.53a 0.56a 0.48a 0.47a

Test-Retest (without GSR) 0.69 0.65 0.71 0.61 0.63

aIt denotes network significantly different to test-retest, where extraction methods with and without GSR are compared to the corre-
sponding test-retest with and without GSR, respectively (P< 0.05 post hoc t-tests).
Values represent the averaged across all subjects; higher value indicates better overlap between methods. Highest values for each net-
work are marked in bold. Test-retest values between two resting-state scans are shown for comparison.

TABLE I. Intraclass correlation coefficient between maps derived from method of extraction

and continuous resting-state

Cuneus Auditory Sensorimotor Default Mode Thalamus

EDT (with GSR)

BLOCKreg 0.26a 0.29a 0.25a 0.34a 0.13a

BLOCKvar 0.28a 0.30a 0.24a 0.36a 0.13a

BLOCK 0.17a 0.19a 0.13a 0.20a 0.13a

REG 0.29a 0.34 0.29a 0.41a 0.20a

ORIG 0.32a 0.32a 0.26a 0.42a 0.18a

RFT (with GSR)
BLOCKreg 0.07a 0.10a 0.08a 0.17a 0.06a

BLOCKvar 0.07a 0.09a 0.08a 0.17a 0.05a

REG 0.27a 0.22a 0.18a 0.43a 0.16a

ORIG 0.21a 0.22a 0.17a 0.36a 0.15a

Test-Retest (with GSR) 0.51 0.41 0.44 0.58 0.36
EDT (without GSR)

BLOCKreg 0.41a 0.45a 0.40a 0.41a 0.39a

BLOCKvar 0.42a 0.47 0.45a 0.42a 0.42a

BLOCK 0.30a 0.32a 0.30a 0.23a 0.37a

REG 0.48a 0.52 0.49a 0.46 0.43a

ORIG 0.49a 0.50 0.51a 0.46a 0.44a

Test-Retest (without GSR) 0.65 0.59 0.66 0.57 0.57

aIt denotes network significantly different to test-retest, where extraction methods with and without GSR are compared to the corre-
sponding test-retest with and without GSR, respectively (P< 0.05 post hoc t-tests).
Values represent the average across all subjects, higher ICC indicates better overlap between methods. Highest values for each network
are marked in bold. Test-retest values between two resting-state scans are presented for comparison
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further investigation of the individual functional connec-
tivity showed remarkable differences for these methods
(scatterplots in Fig. 2). Here, the explained variability was
markedly lower for the methods cutting out baseline
blocks, than for those using the entire scan. A decrease in
similarity was also observed for the shorter right finger
tapping paradigm, compared to the longer emotional dis-
crimination task. It should be noted once again that the
duration of the resting-state has been adjusted to fit the
duration of the method with which it is compared, ensur-
ing that the functional connectivity maps have been
derived from data with the same amount of time-points.

For the test-retest data, values of ICC and Dice were in
a comparable range as reported previously [Birn et al.,
2013] (Tables I and III). Importantly, the majority of extrac-
tion methods yielded significantly lower similarity metrics
than test-retest. Moreover, this was not consistent across
the different networks assessed, that is, different
approaches yielded variable similarity values for different
networks. Again, methods using the entire scan were most
alike to that of test-retest, with REG showing highest simi-
larity, followed by ORIG. It should be noted that R2 (Table
II), as well as the ICC seemed more stable compared to
the Dice, which might be related to the binary threshold of
the Dice measure. R2 as well as ICC provided results con-
sistent across different networks, which was not the case
for the Dice metric.

For the mixed model ANOVA in methods utilizing
GSR, significant differences were found for the ICC for
main effect of method in EDT (F[5,26] 5 26.7) and RFT

(F[4,26] 5 25.3), as well as for the R2 in EDT (F[5,26] 5 64.4)
and RFT (F[4,26] 5 69.9, all P<0.001). DICE coefficient was
not significant for EDT (F[5,26] 5 1.7, P=0.14) and RFT
(F[4,26] 5 0.264, P=0.85). Post hoc two-sample t-tests
showed that all methods of resting-state extraction gave
significantly lower similarity values within the vast major-
ity of networks (Tables (I–III)).

In addition, we carried out the analysis also without
GSR for the EDT task. Similar to the results with GSR, the
mixed model ANOVA showed significant differences for
the main effect of method in the ICC (F[5,26]=15.8) and
the R2 (F[5,26]=17.2, both P<0.001). In line with the calcu-
lation including GSR, the DICE coefficient (F[5,26]=0.7,
P=0.56) was not significant.

DISCUSSION

This work aims to provide a thorough assessment of
various methods used to gather resting-state signal from
task-specific fMRI paradigms. In comparison to previous
studies, we add important information by assessing simi-
larity across different methods, whereas a strong focus on
nonsignificant differences has prevailed before. The evalu-
ation across different networks and paradigms indicated
that using the residuals from a regression against task-
effects (REG) was most similar to resting-state data,
although still significantly different.

Concerning similarity, REG (regression against task
effects) as well as ORIG (unmanipulated task data)

TABLE III. Dice similarity metric between maps derived from method of extraction and actual resting-state

Cuneus Auditory Sensorimotor Default Mode Thalamus

EDT (with GSR)
BLOCKreg 0.35a 0.36 0.35 0.39a 0.27
BLOCKvar 0.36a 0.36 0.34a 0.40a 0.27
BLOCK 0.34a 0.35 0.32a 0.35a 0.30

REG 0.35a 0.36 0.34a 0.40a 0.28
ORIG 0.37a 0.37 0.34a 0.43a 0.27

RFT (with GSR)
BLOCKreg 0.31a 0.33a 0.33 * 0.36a 0.29

BLOCKvar 0.30a 0.30a 0.33a 0.35a 0.29

REG 0.35a 0.33a 0.30a 0.41a 0.25a

ORIG 0.32a 0.32a 0.29a 0.40a 0.27
Test-Retest (with GSR) 0.52 0.40 0.42 0.51 0.31
EDT (without GSR)

BLOCKreg 0.54 0.56 0.51a 0.49 0.52
BLOCKvar 0.54 0.57a 0.51 0.48 0.53
BLOCK 0.48a 0.52 0.49a 0.43a 0.56

REG 0.55 0.57a 0.52 0.47 0.5
ORIG 0.55 0.54a 0.50 0.46 0.4

Test-Retest (without GSR) 0.61 0.61 0.66 0.53 0.57

aIt denotes network significantly different to test-retest, where extraction methods with and without GSR are compared to the corre-
sponding test-retest with and without GSR, respectively (P< 0.05 post hoc t-tests).
Highest values for each network are marked in bold, higher value indicates better overlap between methods. Test-Retest between two
resting-state scans values are shown for comparison
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showed the highest values for all metrics. One could argue
that this is influenced by the final duration of the data
after correcting for task-effects. Methods providing shorter
durations after extensive removal of blocks yielded lower
similarity scores. Due to fewer samples, this means that
the variance of the estimated effect, and therefore, uncer-
tainty is greater for the methods having a lower amount of
samples in the time-domain. This is a disadvantage in
terms of interpretability of data and an argument for using
regression. When using REG, the output is the longest in
terms of duration, which results in increased stability of
the results. This is an advantage for REG as the duration
of resting-state scans is a topic of debate in which the gen-
eral assumption is “the more the merrier” [Birn et al.,
2013; Murphy et al., 2007] Murphy et al. also highlight an
additional advantage of REG, which is not concatenating
data, therefore, avoiding adverse effects concerning the
signal-to-noise ratio. If one assumes continuous intrinsic
activity [Sadaghiani et al., 2010] that should be investi-
gated, repeatedly introducing sudden changes (i.e., high
frequency components) by concatenation of time courses
in the continuum might substantially alter the underlying
signal properties, and the frequency spectrum.

Implementing an individual estimation of the HRF shift
(BLOCKvar), we aimed to improve the previously intro-
duced method of extracting resting-state signal from base-
line blocks (BLOCK) [Fair, 2007]. This allowed a less
conservative cutting interval resulting in longer scan dura-
tion after task-effect removal, which indeed improved the
method. Furthermore, influences from task onto the base-

line block seemed to be negligible after a delay of a few
seconds. However, all methods cutting out baseline blocks
consistently showed lower similarities to resting-state than
regressing out task effects.

Interestingly, one can easily reproduce “resting-state”
maps even when using unmodified data acquired during
paradigms (Fig. 2). This is inherent to the DMN’s defini-
tion as “a network that is routinely deactivated during
task states” [Raichle, 2000], and is in accordance with the
previously discussed assumption of continuous intrinsic
activity [Sadaghiani et al., 2010; Smith et al., 2009]. These
networks do accommodate a certain amount of coactiva-
tion and spatial consistency represented via correlation,
also during task-states [Greicius, 2004]. However, it seems
that this issue is not always taken into account when inter-
preting results of such analyses. Computing functional
connectivity networks from task data may indeed yield
interesting findings, but one must be aware of the fact that
the resulting networks are statistically different to those
calculated from resting-state data, although visually simi-
lar. In Figure 2, all networks seem highly similar, and
share an enormous overlap, due to the consistent relations
between parts of the network during rest and task [Sada-
ghiani et al., 2010; Smith et al., 2009]. However, investigat-
ing the individual connectivity instead of group-averaged
networks differences between the methods are evident.
This is particularly important for clinical applications
[Loitfelder, 2014; Muller et al., 2011], where individual
functional connectivity values may be related to treatment
response. However, our findings demonstrate that it is

Figure 1.

The networks used for analysis, represented via one-sample

t-tests as conducted with SPM. The maps are based on the indi-

vidual z-score maps of the first resting-state measurement of

the test-retest measurements (n=20). Maps represent t-values,

thresholded between 4 and 35. Although the auditory and sen-

sorimotor networks look similar, one seed was placed in the

motor cortex (“auditory”), and the second in the temporal

gyrus (“sensorimotor”) as published previously [Smith et al.,

2009]. [Color figure can be viewed in the online issue, which is

available at wileyonlinelibrary.com.]
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Figure 2.

Comparison between continuous and extracted resting-state

connectivity for the default mode network. Maps represent one-

sample t-tests across the entire group for each method. In the

scatter plots, resting state (x-axis) and the according method of

extraction (y-axis) are compared for all brain voxels across all

individual z-score maps. Hence, the top left scatterplot repre-

sent test-retest evaluation of two resting-state scans. Scaling is

uniform for all images (t-values from 6.09–50, P<0.05 FWE-cor-

rected), and scatter-plots (26 to 16). For the finger-tapping the

BLOCK method is not shown, as the resulting signal comprised

less then 30 s, and therefore considered too short. Visually, the

networks are highly similar, but through further investigation

marked differences can be found. [Color figure can be viewed in

the online issue, which is available at wileyonlinelibrary.com.]
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exactly this individual variation, which becomes unstable,
especially when cutting out baseline blocks and to a lesser
but still significant extent when regressing out task-
signals.

Some studies report findings to be identical to those
acquired from resting-state data [Greicius, 2004; Korgaon-
kar et al., 2014], while others observed overt differences
even in unpaired study designs [Fair, 2007]. Although vis-
ual comparison seems appealing, misleading conclusions
may be drawn. The voxels exhibiting significant connectiv-
ity can easily vary, especially in the outermost area of the
network, and for smaller sample sizes [Damoiseaux, 2006].
Therefore, an unbiased quantitative assessment of network
overlap is desirable. Here, we used the ICC and Dice simi-
larity metrics [Birn et al., 2013], next to R2. The observation
that ICC showed more consistent results than the Dice
might be related to the different computation of these two
values. Dice is computed from binary images after choos-
ing an arbitrary threshold (here: 0.3 for comparison with
previous reports [Birn et al., 2013]), whereas ICC as well
as R2 are computed from connectivity maps, without
thresholding. This inconsistency may also explain the non-
significant F-test when comparing the Dice metric across
different methods.

Considering the differences between resting-state analy-
sis including GSR and the one omitting GSR the gain in
the individual metrics achieved by excluding GSR is strik-
ing. In individual cases the test-retest reliability for single
networks is more than doubled as compared to the analy-
sis including GSR. This effect is also consistently reflected
in elevated test-retest scores. This is in line with previous
findings; however, test-retest reliability alone does not
allow conclusion of the validity of the data, as this could
also be due to noise [Shirer, 2015]. Another interesting
effect is that while the values for the default mode with
GSR are in a range comparable to the results without GSR,
the other networks seem to level up to numerically similar
scores as the DMN. This is in line with the argumentation
that different networks are differently related to the global
signal, and therefore differently affected by GSR [Gotts,
2013]. Nevertheless, the different networks and methods
were still significantly different from the test-retest scores
when omitting GSR, similar to the results with GSR. In
other words, GSR did not change the finding, that extrac-
tion of resting-state data from task-related signals did
indeed yield significant differences to continuously
acquired resting-state.

We want to further emphasize that a nonsignificant find-
ing in a t-test does not imply similarity, as often falsely
concluded. Hence it is worth to mention that tests for sig-
nificant differences (ANOVA, t-tests, etc.) are valid to
assess whether the null hypothesis (H0=no difference) can
be rejected, and for that specific purpose only. Still, simi-
larity has been concluded recently, where the default
mode network did not show significant differences
between actual resting-state and residuals from tasks [Kor-

gaonkar et al., 2014]. Interestingly, visual comparison
showed even stronger differences in DMN connectivity
within the medial prefrontal cortex [Korgaonkar et al.,
2014] as compared to our study (Fig. 2), whereas we
indeed observed significant differences. Our data indicates
that differences to actual resting-state still remain, regard-
less of the method of extraction and findings should be
interpreted with care. We do not claim that results
obtained by approaches extracting resting-state from task-
specific data are not valid. However, considering the
marked differences we would like to emphasize the
importance of not referring to any of these methods as
resting-state.

CONCLUSION

To summarize, all of the described methods available
for the extraction of resting-state data from task-specific
fMRI designs are actively applied and relevant in current
research. However, the assessment demonstrated substan-
tial differences in comparison to continuous resting-state.
Although regression against task-effects (REG) was the
method showing highest similarity with the original rest-
ing state, the resulting functional connectivity maps were
still significantly different. Considering this mismatch with
continuous resting-state, results obtained from extracted
signals should be interpreted with care, and not be
referred to as resting-state.
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