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Detecting and modelling delayed 
density-dependence in abundance 
time series of a small mammal 
(Didelphis aurita)
E. Brigatti1, M. V. Vieira2, M. Kajin3, P. J. A. L. Almeida4, M. A. de Menezes5,6 & R. Cerqueira2

We study the population size time series of a Neotropical small mammal with the intent of detecting 
and modelling population regulation processes generated by density-dependent factors and their 
possible delayed effects. The application of analysis tools based on principles of statistical generality 
are nowadays a common practice for describing these phenomena, but, in general, they are more 
capable of generating clear diagnosis rather than granting valuable modelling. For this reason, in our 
approach, we detect the principal temporal structures on the bases of different correlation measures, 
and from these results we build an ad-hoc minimalist autoregressive model that incorporates the main 
drivers of the dynamics. Surprisingly our model is capable of reproducing very well the time patterns 
of the empirical series and, for the first time, clearly outlines the importance of the time of attaining 
sexual maturity as a central temporal scale for the dynamics of this species. In fact, an important 
advantage of this analysis scheme is that all the model parameters are directly biologically interpretable 
and potentially measurable, allowing a consistency check between model outputs and independent 
measurements.

One of the main objectives in the field of population dynamics is to determine the extent of deterministic vs. 
stochastic forces in time series of abundance and population parameters. The deterministic share of the observed 
fluctuations is usually assigned to nonlinear density-dependent processes, which create regulatory and stabilising 
forces1. Different theoretical and modelling frameworks have been used through the history of population dynam-
ics, but time series analysis and autoregressive models are a frequent and natural choice, as the population size in 
the future is related to the population size in the past2–4. A variety of time series analysis methods have been used 
in population dynamics to diagnose their structure and density dependence5, particularly successful in the analysis 
of empirical data of long lived taxa such as mammals6–8. The approach proposed by Royama9 combines diagnostic 
tools with the use of phenomenological models, and has increased the predictive power and understanding of the 
dynamics of intensively studied systems10–12. In general, for sufficiently long time series, it is possible to use conven-
tional autoregressive models or to apply other analogous methods which aim to determine a clear differentiation 
between deterministic and random components13,14. The most common approach9,15 uses a linear autoregressive 
model of order k , which relates the logarithm of the population abundance (yt) at different time steps:
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As εt represent a random component, this is an ordinary AR(k) model, where the k-value can be determined 
implementing an AIC-based selection. This approach is equivalent to fitting the population growth rate and it is 
efficient in determining density dependence. Considering that the correct estimation of the order of the model 
can be critical, that the real process can be highly nonlinear9,16, and that a direct connection between parameters 
βi and demographic estimated quantities is difficult, in general, the most appropriate role of this method is diag-
nosis rather than modelling17. Finally, taking into account that the random component included in population 
size time series can be difficult to characterise18, and that time series of the necessary length are not so common, 
it may be reasonable to take the reverse path. Instead of trying to diagnose and project the exact time series 
behaviour based on a general autoregressive model of a given order, it can be more informative to make inferences 
about its statistical properties and patterns of variance, and use these results to elaborate a specific and realistic 
dynamical model. Finally, the parameters of this particular model may be estimated by a standard autoregressive 
procedure.

Here in we use diagnostic tools to characterise the structure of a 13-year time series of population size esti-
mates of a Neotropical marsupial, the black-eared opossum, Didelphis aurita (Wied-Neuwied 1826), and develop 
a simple model that successfully reproduces its population dynamics. First, we determine periodicity, autocorrela-
tions structures and the nature of potentially density dependent regulation. Second, we use this diagnosis to build 
a simple model, incorporating the characteristics of the series. Third, we estimate the parameters of such a model. 
Finally, we compare the observed series with the ones generated by the model as an empirical test of model fit to 
the data, and of the whole procedure of model development. Models generated by this procedure can be simpler 
compared to some aspects of previous approaches, and yet still incorporate the main drivers of the dynamics. The 
simple model developed for D. aurita is capable of reproducing the time series dynamic behaviour and all their 
parameters are biologically interpretable and measurable in term of basic demographic quantities.

Materials and Methods
We analysed a 13-year time series of local population size estimates of black-eared opossums. The data set 
originated from the long-term small mammal population-monitoring program performed by Laboratório de 
Vertebrados, Universidade Federal do Rio de Janeiro, within the Parque Nacional da Serra dos Órgãos, state of 
Rio de Janeiro (22° 28′ 28″ S, 42° 59′ 86″ W, details in19). The local population sizes were estimated using program 
MARK20. To minimise census error, accurate population size estimates were obtained in a two-step modelling 
procedure: we first tested for the existence of heterogeneity in capture probabilities, then, having evidence of the 
existence of the latter, we used the appropriate estimator, namely, the Jackknife estimator to obtain population size 
estimates. Different models were fitted to the data, where the candidate model set comprised models including 
temporal variation in all real parameters and all nested models within this global model. The model that was best 
supported by the data was chosen based on the maximum likelihood principle (using QAICc index, corrected for 
possible data over-dispersion)21.

The time series used in the analyses ( )= , ,…,Xt 1 2 76  represents the estimated bimonthly local population sizes 
from April 1997 to October 2009 (see Fig. 1). Most studies of mammal populations analyse abundance counts or 
estimates using annual data22–24, and rarely populations are analysed on a finer time scale, using seasonal25 or 
monthly abundances26. Annual abundances are more commonly used when the aim is to describe long term 
behaviours, the organism has a defined and limited reproductive season within the year, or simply because data 
on a finer time scale are not available. In our case, reproduction of D. aurita occurs during a large portion of the 
year with no single reproductive peak, having two or up to three litters within a year19,27,45. Moreover, population 

Figure 1.  The time series used, comprised of bimonthly estimated local population sizes of a Didelphis 
aurita population in the Brazilian Atlantic forest, State of Rio de Janeiro, from April 1997 to October 2009. 
In the inset, the magnitude of the Discrete Fourier Transform of the data against the period.
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size fluctuations may not be related exclusively to reproductive events: immigrations to and emigrations from the 
area may occur28, modifying the local population size on a time scale that is not season or year-related. At the 
same time, both of these processes may be density dependent. Therefore, the appropriate temporal scale to inves-
tigate changes in abundance and regulatory processes must be thinner than a year. This suit of life history traits is 
common to other populations of neotropical marsupials29, hence seasonal or monthly time scales are likely the 
most appropriate.

As a first step, we try to identify basic patterns that clearly deviate from pure random behaviour. These basic 
patterns should be capable of summarising statistical and dynamical behaviours, with attention to the broad 
essential structures rather than the specific details. We emphasise that our time series is still not long enough to 
consider particular quantitative numerical outputs of the statistical analyses, but rather we limited our consider-
ations to the qualitative behaviour delineated by our examination.

The standard plot of X(t +  1) against X(t) shows a uniform distribution of points suggesting that no 
threshold-like behaviour or elementary correlations exist in our data (see Fig. 2). The plot of the logarithm of the 
population growth rate ( )( + )

( )
log X t

X t
1  as a function of the logarithm of the population number (log X(t)) shows 

that the growth rate clearly declines as population size increases (see Fig. 3). The relationship seems also charac-
terised by a larger variance at high population sizes but it is difficult to characterise this effect because of the small 
sample sizes at low abundances. This behaviour in the variance can be generated by involved interactions between 
process errors (biotic and abiotic) and observation errors. Estimation of these different sources of error is not 
possible, and out the scope of this study.

Figure 2.  Comparison of the observed X(t + 1) versus X(t) (black circles) with the iterates of the best-fit 
model parametrised as in Table 1 with added noise (red triangles).

Figure 3.  Observed log growth rate versus log abundance (black circles), with iterates of the best-fit model 
with the parameters of Table 1 and the added noise (red triangles). The black line represents the linear 
fit for the real data: = . − . × ( )

( + )

( )
X tlog 2 61 0 94 logX t

X t
1 , and the red one for the simulated data: 
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We performed a spectral analysis of the data, which does not present any robust or clear periodicity, except for 
some more prominent modes in correspondence of the 6-month time lag and its multiples (see inset of Fig. 1). 
We continued our inspection with the study of the autocorrelation function. Its behaviour reveals an interesting 
periodical structure (inset of Fig. 4), where positive autocorrelations were found for 6-month time lag and its 
multiples. The strongest negative autocorrelation values appear always four months after the positive peaks.

We explored the long term behaviour of correlations looking at the scaling of the time-series fluctuations at 
different time lags. Power-law scalings in population fluctuations, which display a clear deviation from pure ran-
dom behaviours, are well known fact reported in the literature30. The direct inspection of autocorrelations is 
usually not appropriate because of noise effects and because of possible non-stationarities31. In contrast, a robust 
and general method for the characterisation of the fluctuations behaviour at different scales is the detrended 
fluctuation analysis (DFA)31. It measures the second moment-fluctuation F of the detrended time series for differ-
ent time windows of size T, obtaining F =  F(T). The scaling behaviour is characterised by estimating the exponent 
α, a generalisation of the Hurst exponent, which is extracted from the relation ( ) ∝ αF T T . A straightforward way 
for its evaluation is a linear fit of the log-log graph of F(T) as a function of T (Fig. 4). For our time series we obtain 
α =  0.56 ±  0.01 , which is significantly different from the case of uncorrelated, white noise series, characterised by 
α =  1/2. Considering that the exponent is not very far from 1/2 and that the regression is realised on less than two 
decades, we are lead to interpret these outcomes just as a detection of positive autocorrelations rather than a claim 
about the self-similarity of the time series. For this reason we use the DFA method for clearly identifying positive 
correlations, not for conclusively assessing their power-law scaling32,33.

We can summarise the principal results of this analysis outlining two basic patterns present in our data. First, a 
clear trend in the growth rate which declines for large population sizes6. This effect suggests the presence of some 
type of density dependent regulation in the population dynamics. Second, the autocorrelation analysis sketch 
out a positive correlation for lag multiples of six months, followed by a negative one four months later. These 
results are corroborated by the DFA analysis, where we can outline a deviation from an uncorrelated, white noise 
time series (α >  1/2), which indicates some type of long-memory process that generates correlations between the 
data34. These outcomes indicate a possible time delay in the density effect on natality and suggest the use of some 
delayed-recruitment model for the replication of the time series.

Starting from these results we assemble one of the simplest autoregressive models which could account for 
such basic patterns. In fact, as we study a specific population, it is more appropriate to build in its specific mech-
anisms and patterns, rather than to bother with claims of statistical generality. We begin from the simplest recur-
rence relation xt =  axt–1, where xt denotes the population size at time t. Each period t represents two months, 
which correspond to the time scale of field data collection. A recruitment term must be added, which can account 
for the detected structure in the correlation of the time series, and takes into consideration that sexual maturity in 
this population takes place only 6 months after birth27. For these reasons, we add a second term G(xt−τ) where xt−τ 
is the adult breeding population, which is selected with a delay of τ periods. An analogous model has been used 
for studying baleen whale populations35,36. The final strategy is to make the minimalistic assumption about the 
form of G(xt−τ) which could describe the outlined density dependent growth rate. A common one is a quadratic 
polynomial, which leads to the following autoregressive model:

ε= + + + . ( )τ τ− − −x ax bx cx 2t t t t t1
2

Here εt stands for some stochastic term affecting the population abundance xt and, as a starting approxima-
tion, we model it with a normally distributed noise N(0, σ2). The autoregressive coefficients can be obtained by 
least-squares estimates: we minimise the squared difference between the modelled time series and the observed 

Figure 4.  DFA analysis of the abundance time series. The red line represents the fit: F(T) =  1.7 ×  T 0.56±0.01. In 
the inset, the autocorrelation function of the same dataset.
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one37. We based our model on the observed value of the population abundance Xt, but the use of the log Xt gen-
erates very similar results.

Finally, we must determine the value of τ. This is attained identifying which is best at predicting the observed 
data. The accuracy of our prediction is measured using the following quantity38:
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where Xi are the predicted values, Xi are the observed ones and X  is their mean value. R2 =  1 represents a perfect 
prediction and accuracy reduces with decreasing in R2 value. We draw attention to the fact that negative values are 
a possible output since we are not simply fitting our values with a regression, but we are trying to predict future 
values with an autoregression38. In particular, negative values indicate that prediction is even worse than using the 
mean of the series. This quantity can be used for determining the best τ value only because the number of model 
parameters is fixed, and it does not change with the value of τ, like in the approach presented in equation 1. 
Finally, an advantage in the use of R2 over a likelihood based approach is that it can be compared over different 
sample sizes (data must not be thrown out to directly compare different τ values).

We can summarise some positive aspects in the use of this model over the standard approach of equation 1. 
Our approach is easier because it can account for different lags in the delayed density dependence with a fixed 
number of parameters. This is an important point for data having a time scale finer than one year. Detecting a 
two-year delay for bimonthly data using the standard approach implies the estimation of thirteen parameters, an 
impracticable task because of the curse of dimensionality. In our approach, all model parameters can be related 
to biological quantities that regulate the individual dynamics, and potentially can be measured empirically. This 
allows independent estimation from other demographic studies, important to perform a consistency check of the 
autoregressive estimation. In contrast, in the standard approach, parameters βi are just statistical parameters for 
fitting general delayed density-dependent effects in the population growth rate. This difference is important if our 
interest is modelling rather than just detecting delayed density dependence. Finally, we model our population at 
the fundamental level of abundance and not to the derived level of the growth-rate.

Results and Discussion
The analysis presented in Fig. 5 shows that the first positive R2 value is found for τ =  3, which corresponds to 6 
months. Temporal delays in population responses can result from the time it takes for many intrinsic (e.g repro-
ductive event, mortality of young) and extrinsic factors (e.g. predator, competition, parasite infection) to result in 
changes in population parameters39. These delays are directly related to a number of life-history traits, such as 
generation time, time of first reproduction, maternal care, reproductive strategy, as well as the species trophic 
position and the environmental conditions a population faces at a certain moment. In Didelphis aurita, a 6-month 
delay corresponds to the time it takes for the newborn females to reach sexual maturity and start reproducing, 
also becoming more trappable27. This is the simpler explanation for the positive 6-month delay in our model. The 
model present two terms, controlled by parameter b and c, both characterised by a 6-month time delay. Together 
they are the responsible for the regulatory process of the population: low population sizes when individuals are 
born result in >τ τ− −bx cxt t

2 , a positive contribution to the population 6-months latter; larger population sizes 
when individuals are born quickly results in <τ τ− −bx cxt t

2 , a negative contribution to population size 6-months 
latter. Annual growth rates in this population are most sensitive to changes in the survival of pouch young, the 
newborns of the season40,41. Therefore, the negative density dependence more likely reflects density dependence 
in survival rates of pouch young. Adult and aged-adult age classes have the relatively highest contributions to 
fertility41, hence more subtle density dependent effects may occur through contributions to fertility by adults and 
aged adults. However, these would correspond to time delays of 12 months or more as the condition of adults at 
the start of the breeding season will depend on the conditions of previous seasons, a maternal effect42.

The next positive R2 value is naturally found for a multiple of this value, but not for other τ values. This is the 
first impressive consistency check between our model outputs and independent measurement of the biological 
population. Interestingly, the fact that R2 <  0 for τ =  1 rules out the possibility of using the considered autore-
gressive model without any delay for successfully describing our data. No delay in our time series would have no 
biological support as well.

The generation of a simulated time series from the stochastic model of equation 2 is straightforward. We fix 
the numerical values of the parameters a, b, c and σ2 corresponding to the autoregressive estimation of the best fit 
model for τ =  3 (see Table 1). Selected the initial conditions X1, X2, X3 from the real data, we obtain a simulated 
sequence of Xt values. The simplicity of this approach allows the generations of a number of different trajectories 
produced by our model which turn out to be a powerful strategy for testing our hypothesis. In fact, we can probe 
if our model well incorporate the stochastic mechanism underlying real data and if it can effectively reproduce the 
basic patterns of the observed time series.

First, we can reproduce the general behaviour of the empirical time series, as shown in the scatter plot of Xt+1 
versus Xt of Fig. 2. More importantly, starting from the synthetic series, we can replicate the essential trend of the 
population growth-rate (see Fig. 3), with a clear density-dependent limitation on growth for hight population 
sizes. This finding is very significant. It proves that equation 2 can perfectly account for the density dependent 
effects present in our empirical data: an approximately linear dependence of the population growth rate with the 
log population size. This result is remarkable because it is obtained modelling the abundance time series and not 
directly the growth rate, as in standard approaches of the type of equation 1. In fact, if we use the model of equa-
tion 1 we are able to well reproduce the growth rate behaviour, but, in this case, this result is quite obvious, as the 
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autoregression is a direct fitting procedure over the population growth rate. All these results are robust and have 
been tested for different simulation runs and for long simulations of up to 10000 time steps.

In the following, we examine the correlations behaviour of the simulated time series. For this reason, we 
generate long simulated series, with at least 1000 events, which permit robust statistical analysis. The resulting 
simulated series present positive correlation values at lag of 6 months and its multiples, a result comparable with 
the output of the real data analysis (see Fig. 5). The analysis of the time series generated by the model by means of 
the DFA method results in an exponent α compatible with the one of the real data (see Fig. 5). This fact suggests 
that the elaborated model can capture some aspects of the essential time correlations present in real data. Only 
the oscillating behaviour caused by the anti-correlated values that follows the positive peaks are lost in our model.

One of the most interesting aspect of our autoregressive model is that all the parameters can be directly bio-
logically interpreted and, potentially, estimated empirically. The parameter a corresponds to the survival fraction 
of the population that contributes with the population size two months later. For this reason, its estimated value 
should be 0 <  a <  1. The parameter b is proportional to the fertility, and in order to maintain a positive equilib-
rium population and compensate the mortality, should be b >  1 −  a36,43. The parameter c controls the reduction 
in fertility for high populated communities. In principle, also this parameter can be related to basic measurable 
quantities43. It is the responsible for the density-dependent pattern in the population growth rate and should be 
negative. We can highlight some plausible factors that could be associated to this parameter. Resource limitation 
is more likely the main mechanism of density-dependence. However, disease cannot be disregarded because of 
the relatively high load of parasites in animals in the area. In addition, high population density may have at least 

Figure 5.  Top, on the left: the R2 value for different τ. Top, on the right: the autocorrelation function of the 
synthetic series generated by the best fit model, with added noise, for τ =  3 and τ =  1. Blu points are obtained 
with a random shuffling of the series obtained for τ =  3. From the comparison, we can appreciate the statistical 
relevance of the autocorrelation values. Bottom: DFA analysis of the synthetic series generated by the model 
parametrised as in Table 1 with added noise.

Parameter Estimate
Standard 

Error t P

a 0.134 0.102 1.314 0.197

b 1.514 0.243 6.230 < 0.001

c − 0.029 0.007 − 4.143 < 0.001

Table 1.   Parameter estimates and associated significance levels for the autoregressive model with τ = 3.
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three different effects on future population size through reproduction: (1) prevents active females to reproduce 
through strong intraspecific competition for food and space, (2) reduces the number of fertilised females by forc-
ing males do disperse due to intraspecific competition, with possible modifications in movements strategies44, and 
(3) forces newborn young to disperse to adjacent areas, with a final reduction in local population size estimates.

These constraints limiting the values of model parameters were always respected in our analyses, for all val-
ues of τ. Additional analyses performed using the time series generated by different population size estimates 
(minimum number known alive, ad hoc estimators for each sampling session) confirm these results. These facts 
corroborate the robustness of our modelling approach. In particular, our estimated values for τ =  3 satisfy the 
condition 1 −  a <  b <  3(1 −  a) which states that the model equilibrium solution is locally stable36. A final proof 
of the functionality of our model is the similarity between our a value evaluation compared with an independent 
empirical measurement: the value estimated by the model corresponds to a ≈  0.2, the same found in a demo-
graphic study of the same population of opossums27, hardly a coincidence.

The possibility of robustly reproducing general qualitative patterns with a relatively short time series is a 
relevant and novel contribution presented here45. In addition, population size fluctuations of an organism liv-
ing in an environment as complex as the Atlantic forest produce time series of high variance and noise, add-
ing difficulty to the task. Detecting evidence of density-dependent dynamic behaviour is by far not new, but 
being able to reproduce directly the dynamics of the abundance time series based on biologically realistic and 
measurable parameters is. Our model incorporates the basic demographic characteristics operating in a natural 
population: the temporal delay due to reproduction peculiarities, fecundity and survival rates, and the effect of 
density-dependence on reproduction.
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