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ABSTRACT: Genome-wide association studies allow detection of non-genotyped disease-causing variants through testing
of nearby genotyped SNPs. This approach may fail when there are no genotyped SNPs in strong LD with the causal
variant. Several genotyped SNPs in weak LD with the causal variant may, however, considered together, provide equivalent
information. This observation motivates popular but computationally intensive approaches based on imputation or haplotyping.
Here we present a new method and accompanying software designed for this scenario. Our approach proceeds by selecting, for
each genotyped “anchor” SNP, a nearby genotyped “partner” SNP, chosen via a specific algorithm we have developed. These
two SNPs are used as predictors in linear or logistic regression analysis to generate a final significance test. In simulations,
our method captures much of the signal captured by imputation, while taking a fraction of the time and disc space, and
generating a smaller number of false-positives. We apply our method to a case/control study of severe malaria genotyped using
the Affymetrix 500K array. Previous analysis showed that fine-scale sequencing of a Gambian reference panel in the region
of the known causal locus, followed by imputation, increased the signal of association to genome-wide significance levels.
Our method also increases the signal of association from P ≈ 2 × 10−6 to P ≈ 6 × 10−11. Our method thus, in some cases,
eliminates the need for more complex methods such as sequencing and imputation, and provides a useful additional test that
may be used to identify genetic regions of interest.
Genet Epidemiol 38:173–190, 2014. Published 2014 Wiley Periodicals, Inc.∗
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Introduction

Over the last 5–10 years, genome-wide association stud-
ies (GWAS) have proved a popular and highly successful
approach for identifying genomic regions (loci) that har-
bor single-nucleotide polymorphisms (SNPs) associated with
complex diseases [Visscher et al., 2012]. Early GWAS used
microarray-based genotyping technologies to survey between
100,000 and 500,000 SNPs across the genome; subsequent
technological developments have led to the routine use of
genotyping arrays containing anywhere between 500,000 and
4.3 million markers. SNPs present on genotyping arrays were
initially chosen based on surveys of known human genetic
variation such as HapMap [The International HapMap Con-
sortium, 2003] and tended to be heavily focused toward SNPs
present in European populations. Commonly used genotyp-
ing arrays typically provided lower levels of coverage of ge-
netic variation in non-European populations [Barrett and
Cardon, 2006], particularly African populations that gener-
ally show lower levels of linkage disequilibrium (LD) owing
to their population histories. The inclusion of larger numbers
of more varied populations in large-scale sequencing projects
such as 1000 Genomes Project [1000 Genomes Project
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Consortium et al., 2012], which have informed the develop-
ment of newer genotyping arrays, has redressed this balance
somewhat, but it is still true to say that not every population’s
genetic variation will be equally well “tagged” [Barrett and
Cardon, 2006; Johnson et al., 2001] by currently available
genotyping arrays.

The utility of a GWAS is premised on the idea that
a nongenotyped disease-causing variant can be detected
through testing a nearby genotyped SNP that is in strong LD
with the causal variant. For populations whose genetic vari-
ation is not well tagged, this premise may fail if the disease-
causing variant is neither present, nor highly correlated with
a variant present, on the genotyping array used. Use of
more sophisticated analysis approaches based on imputation
[Browning and Browning, 2007b; Howie et al., 2009, 2012;
Li and Abecasis, 2006; Li et al., 2010; Marchini et al., 2007;
Servin and Stephens, 2007] or haplotyping [Allen and Satten,
2009a, 2009b; Browning and Browning, 2007a, 2007b, 2008;
Gusev et al., 2011], rather than single-SNP testing, can allow
the recovery of information at causal variants that are well-
tagged by combinations of genotyped SNPs rather than by
any individual genotyped SNP. However, these approaches
tend to be highly computer-intensive and may require ex-
tensive postanalysis quality control to produce reliable re-
sults [Browning and Browning, 2008; Howie et al., 2012].
It is probably true to say that the main use of imputation
over the last few years has been to conveniently generate
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common panels of SNPs (genotyped and imputed), in order
to enable large-scale meta-analyses of studies that have been
carried out using different genotyping arrays [Band et al.,
2013; Berndt et al., 2013; Zeggini et al., 2008], rather than, as
originally conceived, to improve the signal of association at
poorly-tagged causal variants per se.

Here we describe a new GWAS method and software im-
plementation, SnipSnip, that is specifically designed to im-
prove the signal of association at poorly tagged causal vari-
ants and to increase power over standard single-SNP analysis
in situations where there are a number of SNPs in low LD
with the causal variant. The method proceeds by selecting,
for each genotyped anchor SNP, a nearby genotyped partner
SNP (chosen from a window of SNPs surrounding the anchor
SNP). The partner SNP is selected on the basis of a specific
algorithm we have developed, which uses the correlation be-
tween the two SNPs to construct a score in which higher
scoring potential partner SNPs are expected to be more “use-
ful.” See Methods for details of how we define “useful.” These
two SNPs are then used as predictors in a linear or logistic
regression analysis to generate a final artificial-imputation
(AI) significance test for the anchor SNP. The procedure is
repeated for every genotyped anchor SNP across the genome.

Methods

The Artifical-Imputation Test

Two different logistic regression models are used in the
construction of the AI test. Let p be the probability an indi-
vidual is diseased, then association between disease status and
genotypes at the anchor and partner SNPs can be modelled
by a logistic regression model:

ln
p

1 – p
= β0 + β1x1 + β2x2 (1)

where x1 and x2 are the number of minor alleles at the anchor
and partner SNPs respectively (assuming an additive allelic
model on the log odds scale, equivalent to a multiplicative
model on the odds scale, between and within loci) and β0,
β1, and β2 are regression coefficients (to be estimated). For a
set of cases and controls the likelihood function is given by:

L (β0, β1, β2) =

n∏

i=1

eβ0+β1x1i +β2x2i

1 + eβ0+β1x1i +β2x2i

m∏

j =1

1

1 + eβ0+β1x1j +β2x2j

(2)
where i and j index cases and controls (with n and m the
number of cases and controls), respectively. This model is
compared with the logistic regression model for the partner
SNP only:

ln
p

1 – p
= β′

0 + β′
2x2 (3)

where β′
0 and β′

2 are (new) regression coefficients.
The AI test uses a likelihood ratio test to compare models

(1) and (3), giving a χ2 test statistic on one degree of freedom:

χ2
1 = –2(lN – lA ) (4)

where lA and lN are the log-likelihoods from alternative
and null models (1) and (3), maximized with respect to
their regression coefficients, respectively. The corresponding
P -value gives the significance of the anchor SNP conditional
on the partner SNP. That is, we test whether the additional
information from the anchor SNP improves the signal of
association (with disease status) over that provided by the
partner SNP alone. If the local LD pattern is such that the
anchor and partner SNPs provide different information con-
cerning a causal variant, then this situation (of improved
significance) may be expected to occur.

We also considered an alternative test that evaluated the
significance of adding an anchor-partner SNP interaction
term to model (1) as considered by Slavin et al. [2011] and
Wei et al. [2013] (motivated by the observation that such
a “local” interaction could correspond to a haplotype effect
marking a single untyped causal variant, see Gyenesei et al.
[2012]). However, we found no circumstances where this test
was superior to our original test (results not shown).

A similar AI test can be constructed for quantita-
tive trait phenotypes instead of case/control status. In
this case, the two following linear regression models are
compared:

y = β0 + β1x1 + β2x2 + ε (5)

y = β′
0 + β′

2x2 + ε (6)

where y, x1, x2, and ε are the quantitative trait value, num-
ber of minor alleles at the anchor and partner SNPs, and
error term, respectively. The error terms are assumed to be
normally distributed. The test statistic is given by a F 1,n–3

test statistic (where n is the number of subjects), which
compares the residual sum of squares from the fitted linear
models.

Selection of the Partner SNP

The partner SNP is chosen from a window of potential
partner SNPs surrounding the anchor SNP on the genome.
The SNP window is defined by a fixed number of SNPs to
the left and right of the anchor SNP (except when the anchor
SNP is near the end of a chromosome, in which case there
may be more potential partner SNPs on one side than the
other). A SNP window of size w corresponds to considering
w/2 SNPs to the left and w/2 SNPs to the right of the anchor
SNP. An alternative way to define the SNP window is by base
pair position units, where any SNP within a certain base pair
position distance of the anchor SNP is included in the SNP
window. However, use of a fixed SNP window size is generally
preferred (see Results).

Each potential partner SNP within the window is assigned
a score that depends on the observed correlation between the
anchor SNP and the potential partner SNP. We use a prede-
fined metric (see below) to map the Pearson’s r2 correlation
coefficient (as defined by Wellek and Ziegler [2009]) between
the two SNPs to a score between 0 and 100, where higher
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values are considered better. The potential partner SNP with
the highest score is then selected to be the final partner SNP.
In the event of a tie, the SNP showing the highest score that
appears first in the SNP window is chosen. Correlation is
calculated using the entire dataset regardless of phenotype
(i.e., all cases and all controls, for a case/control dataset, or
all individuals for a dataset with quantitative trait measure-
ments). This feature ensures that the procedure for choosing
the partner SNP is statistically independent of the subsequent
AI test performed.

Our goal here is to choose the partner SNP that is most
likely to provide a useful test result. We define useful in this
context as the ability to detect a causal variant when single-
SNP GWAS methods fail. In particular, we are interested in
obtaining improved performance for our method over stan-
dard single-SNP testing in regions of low LD and poorly
tagged causal variants. Intuitively, we would expect that that
a partner SNP that has “too high” a correlation with the
anchor SNP would not be that useful for the AI test, as the
anchor SNP is unlikely to provide much extra information for
association testing compared to that provided by the partner
alone. Equally, a partner SNP that has “too low” a correlation
with the anchor SNP will not be that useful, as it does not
add any information compared to that provided by the an-
chor alone, and so the AI test will not be very different from
the anchor’s single-SNP test. Therefore, our goal is to pick a
partner whose correlation with the anchor SNP is not “too
high” and not “too low.” Naı̈vely, we may think it would be
a good idea simply to choose the SNP that gives the most
significant AI test result as the partner SNP. However, this
approach would inflate significance levels across all anchor
SNPs, resulting in an invalid test. Instead we use a simula-
tion procedure (see below) to precompute the metric that
is used to select the partner SNP in such a way that higher
scores are assigned to correlation patterns that tend to lead
to higher significance for the AI test than for single-SNP test-
ing, when there is a causal variant in the vicinity of the two
SNPs.

We note that other measures could be used instead of, or
in addition to, the correlation between the two SNPs, when
choosing the appropriate partner SNP for each anchor SNP. A
detailed investigation of possible alternative measures would
be an interesting topic for future work. For example, one
could make use of alternative LD measures such as D ′. In
this spirit, we initially investigated the use of a more com-
plicated haplotype-based metric to choose between potential
partner SNPs. The disadvantage of both the haplotype-based
metric and D ′ is that these approaches are computationally
less efficient, as haplotypes need to be resolved (estimated)
in order to calculate the metric and thus choose the best
partner SNP, whereas this is not required for our current
correlation-based metric (r2 can be calculated on the basis
of the unphased genotype data alone, see Wellek and Ziegler
[2009]). Investigation of our proposed haplotype-based met-
ric did not find its performance to be superior (in terms of
power or type I error) to that of our correlation-based metric
(data not shown), and thus, for the time being, we have not
considered it any further.

Correlation Metric Construction

It is not obvious which anchor-partner SNP correlations
are most useful. In order to determine this, we used an empir-
ical approach to sample from the entire sample space of pos-
sible anchor-disease-partner SNP haplotype configurations.
Our reasoning was that the performance of both single-SNP
tests and our proposed AI test will be largely determined by
the population haplotype frequencies at these three SNPs.
By sampling from this haplotype space, we could investigate
which haplotype configurations result in situations where the
AI test has improved power over single-SNP testing, and what
resulting correlations between the anchor and partner SNP
are induced in these situations. We note that, in practice, the
utility of the AI test (in comparison to single-SNP testing)
will be lowest when the disease SNP is already well tagged
by the anchor SNP. If the disease and anchor SNP are highly
correlated (as would be expected when using dense geno-
typing arrays that have been specifically designed to tag the
population under study), then we would expect single-SNP
tests to perform well and no improvement to be seen from
use of more complicated methods such as imputation, AI or
haplotype testing. This does not concern us as we are not
proposing AI as an alternative to single-SNP testing, rather
we propose it as a useful additional test that can, in some
circumstances, detect a complementary signal. We are there-
fore not overly concerned about situations where single-SNP
testing already works well, we simply want to ensure that our
correlation metric performs well in situations where there is,
in fact, a complementary signal to be found.

We thus performed one million computer simulations to
calculate, for different haplotype configurations (resulting in
different anchor-partner SNP correlations) the resulting AI
and single-SNP logistic regression tests. In each simulation
replicate, a random haplotype frequency partition was chosen
to model the haplotype frequencies at three SNPs (the anchor
SNP, a disease-causing SNP, and the partner SNP). The eight
haplotype frequencies were randomly simulated as follows:

1. The eight haplotype frequencies were initially undefined
over the unit interval.

2. A random haplotype was picked from the remaining un-
defined haplotype frequencies (with equal probability).

3. A frequency for the haplotype was picked from a uniform
distribution scaled from 0 to 1 – S , where S is the sum of
the previously defined haplotype frequencies.

4. Steps 2 and 3 were repeated until all the haplotype fre-
quencies were defined, with the last haplotype frequency
taking the value remaining within the unit interval.

Once the eight haplotype frequencies had been assigned,
genotype data for 1,000 cases and 1,000 controls were simu-
lated using these haplotype frequencies and assuming mul-
tiplicative penetrance values of 0.01, 0.015 and 0.0225 for
genotypes containing 0, 1, and 2 causal alleles, respectively.
From each simulation replicate the following results were
recorded: (i) the anchor-partner SNP correlation using all
case/control data; (ii) the AI test statistic; and (iii) the single-
SNP logistic regression test statistic at the anchor SNP.
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To determine the usefulness of a given correlation, the
differences between the test statistics were calculated by sub-
tracting the single-SNP logistic regression test statistic from
the AI test statistic. A threshold was set to select the top 1%
of these differences. The correlations were then divided into
bins of size 0.05. For each correlation bin the probability of
the test statistic differences being in the top 1% was calculated
using all simulated anchor-partner SNP correlations falling
in that bin. That is, given a correlation in a certain correlation
bin, we estimated the probability that the corresponding test
statistic difference is in the top 1%. A map was then con-
structed to convert the anchor-partner SNP correlations to a
score by using the midpoints of the bins and the calculated
probabilities to fit a continuous curve, with additional points
specified at (0, 0) and (1, 0). A polynomial of degree 5 was
fitted to the points (excluding the three lowest and highest
correlation values, which were fitted separately, as the tails do
not follow the general pattern). The resultant curve and calcu-
lated points are shown in supplementary Figure S1 (leftmost
panel), scaled so that the maximum of the curve takes value
100. The top anchor-partner scores are seen to lie within the
correlation interval [0.257, 0.357], suggesting that anchor-
partner SNP combinations whose correlation lies within this
range are most useful for the AI test, consistent with our in-
tuition that we should seek a partner SNP whose correlation
is not “too high” and not “too low” with the anchor SNP.

The same procedure was repeated using different sets of
multiplicative penetrances and for different numbers of cases
and controls, with no discernable difference between the re-
sultant curves. Decreasing the top percentage test statistic
difference threshold used to construct the curve (to a value
lower than 1%) resulted in a shift of the curve peak toward
0.25 (i.e., toward lower correlations). However, lower cor-
relations are also more likely to give a nonsignificant AI test
result. There is a trade-off between: (i) a low chance of finding
a partner SNP with a possibly very significant AI test result;
and (ii) a higher chance of finding a suitable partner SNP but
with a possibly lower AI test result. We deemed the top 1%
threshold to be a sensible choice in practice.

We also constructed similar correlation maps under the
assumption of dominant and recessive penetrances at the
causal SNP. The resultant curves are shown in supplemen-
tary Figure S1. The top anchor-partner SNP scores lie within
the correlation intervals [0.356, 0.456] and [0.376, 0.476] for
the dominant and recessive metrics respectively. It should be
noted that multiplicative (on the odds scale) logistic regres-
sion models were still used when calculating the AI test, as
use of dominant and recessive regression models in general
reduces the power of the AI test (see Results).

We note that the algorithm used to choose the partner SNP
is statistically independent of the subsequent AI test carried
out using these two SNPs. (Effectively, the choice of partner
SNP is determined by the correlations in genotype observed
between the two SNPs, while the subsequent AI test is deter-
mined by their mutual correlation with phenotype). Thus,
we expect the type I error rate of the overall procedure to
be comparable to that of a standard single-SNP GWAS in

which we analyse each genotyped SNP individually; we do
not expect the type I error rate to be inflated on account of
the search procedure used to choose the partner SNPs. Sim-
ulations (see Results) suggest that this expectation is indeed
correct.

Implementation

The AI test has been implemented in C++ in an ac-
companying software package, SnipSnip, which is freely
available from http://www.staff.ncl.ac.uk/richard.howey/
snipsnip/. Execution times are favorable, even when single-
SNP analyses are also performed. For example, for 2,118
subjects and 17,515 SNPs, analysis using a 10-SNP window
without inclusion of covariates takes around 17 sec in Snip-
Snip (compared to 30 sec in PLINK [Purcell et al., 2007])
when the linear regression version is used, or 8 sec in SnipSnip
(compared to 33 sec in PLINK) when the logistic regression
version is used. (Timing comparisons performed in Linux on
Six-Core AMD OpteronTM Processors with 2.6 GHz CPUs,
using 64 bit versions of SnipSnip and PLINK).

Results

Evaluation of AI Method Using Simulated Data

We used computer simulations to evaluate the performance
of our proposed AI test and to compare it to other approaches.
Figure 1 (left hand panels) shows a comparison of the powers
to achieve various P -values in three different simulation sce-
narios for imputation, haplotype analysis, single-SNP logistic
regression in PLINK, and the AI test (with the AI test tak-
ing different SNP window sizes, see Methods) respectively.
Imputation was carried out using the program IMPUTE2
[Howie et al., 2009; Marchini et al., 2007] with prephasing
[Howie et al., 2012] in SHAPEIT [Delaneau et al., 2012], using
data from the 1000 Genomes Project [1000 Genomes Project
Consortium et al., 2012] (Phase I interim data, updated re-
lease April 2012) as a reference panel. Haplotype analysis
was carried out using the haplotype regression approach im-
plemented in the program UNPHASED [Dudbridge, 2008;
Dudbridge et al., 2011], using a sliding window of 5-SNP
haplotypes.

The different scenarios considered corresponded to
“causal” SNPs located in different regions on chromosome
11. Specifically, the causal SNPs were: Scenario 1: rs240686
at Build 36 base pair (BP) position 63989461; Scenario 2:
rs10501081 at Build 36 BP position 27192637; Scenario 3:
rs9804546 at Build 36 BP position 7088763. In each scenario
the genotype relative risks were assumed to be 1.5 and 2.25
for possession of one and two risk alleles at the causal SNP,
respectively. (We note that an allelic relative risk of 1.5 is
probably an upper limit for the kind of effect sizes generally
observed in GWAS; however, we do not expect our results—in
terms of the comparison between different methods—to be
overly sensitive to our choice of this value. The use of smaller
relative risks—with the same sample size—would simply
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Figure 1. Powers and type I errors for Scenarios 1–3, windows defined by number of SNPs. Shown are bar plots of the calculated powers (for
P -values 10−8, 10−6, and 10−4) and type I errors (for P -values 10−4, 5 × 10−4 and 10−3) for Scenarios 1–3 for imputation (Imp), haplotype analysis
(Hap), single-SNP logistic regression (LR), and the AI test with different SNP window sizes. The standard multiplicative model and correlation
metrics were used in the AI test. Rows 1-3 show Scenarios 1-3, respectively.

result in lower powers for all methods considered, while the
use of smaller relative risks but with larger sample sizes— as
are generally, in fact, used in GWAS—would result in sim-
ilar or increased powers for all methods, depending on the
precise effect size and sample size chosen).

Detection power was defined as the proportion of repli-
cates in which we detected a SNP (or the middle SNP of a
5-SNP haplotype) lying within 110 kb of the causal SNP, with
“detection” corresponding to the SNP or haplotype achiev-
ing a nominal P -value of 10–8, 10–6, or 10–4, respectively. Any
detected SNP lying within 110 kb of the causal SNP was thus
considered as a true-positive. To evaluate type I error, data
were simulated under the null hypothesis by assuming geno-
type relative risks of 1.0 and 1.0 for possession of one and two
risk alleles, respectively, with (false) detections of any SNPs
lying within 110 kb of the “null” causal SNP calculated at
nominal P -value thresholds 10–4, 5 × 10–4, and 10–3.

Figure 1 (left hand panels) shows that the AI test clearly
outperforms single-SNP logistic regression in these scenarios,
regardless of window size, capturing part (although not all)
of the signal that is achievable through use of imputation,
and often outperforming haplotype analysis (depending on
the window size chosen). The different window sizes in AI do
show different patterns of detection power for the different

scenarios. In Scenario 1, it can be seen that window size does
not make any discernable difference to the detection power of
the AI test. This is due to an anchor SNP having a nearby SNP
that gives a significant result when picked as the partner SNP,
but also a very good correlation score (see Methods), ensuring
it remains chosen as the window size increases. In Scenario 2,
the optimal combination of anchor and partner SNP does
not have a favorable correlation score when compared to
other possible partner SNPs, and thus the detection power
decreases as the window size increases. This highlights the
fact that the correlation score is only a rough guide as to
which SNP is most likely to be the optimal partner SNP. In
Scenario 3, it can be seen that the SNP window size must be
increased to eight SNPs for the AI test to achieve maximum
detection power, after which the detection power decreases
as the SNP window size increases. This is due to the best
partner SNP occurring 4 SNPs from the anchor SNP, with
worse-performing partner SNPs (but with better correlation
scores) not appearing until seven SNPs from the anchor SNP.

The optimal SNP window size for AI is clearly dependent on
the data, and so cannot be known in advance. Different SNP
window sizes could be tried but this would raise a multiple
testing issue. If the SNP window size is too large, then there is
a greater chance of picking a poorly performing partner SNP.
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This is because, if the anchor and partner SNP are far apart,
they are less likely to be both correlated with a causal variant
but may still achieve a high correlation score. Conversely,
if the SNP window is too small, then we do not allow a
sufficient choice of partner SNPs as to pick the optimal one.
A compromise has to be made between these extremes. We
suggest using a SNP window size of 10 SNPs (and probably
no more than 20 SNPs), which seems to provide a reasonable
compromise in practice.

Figure 1 (right hand panels) shows the proportion of repli-
cates showing type I errors in the different scenarios for im-
putation, haplotype analysis, single-SNP logistic regression,
and the AI test using different SNP window sizes. Because we
define “detection” here as any SNP that lies within 110 kb of
the causal SNP achieving a nominal P -value of 10–4, 5 × 10–4,
or 10–3, respectively, for single-SNP logistic regression, haplo-
type analysis, and the AI test we expect the overall probability
of type I error to correspond to a times the nominal P -value,
where a is the number of tested anchor SNPs (or haplotypes)
within the 110 kb detection region (36, 65, and 43 SNPs for
scenarios 1, 2, and 3, respectively), assuming independence
of the a tests. These expected proportions of type I errors

are shown as dashed lines. The observed probabilities of type
I error for AI, single-SNP logistic regression and haplotype
analysis lie, as expected, mostly below these lines because the
tested anchor SNPs (or haplotypes) are not completely in-
dependent, and so use of a Bonferroni correction to account
for multiple testing of a anchor SNPs is overly conservative.
The type I error probabilities thus achieve their desired levels
and do not appear to be overly sensitive to the choice of SNP
window size.

Interestingly, Figure 1 shows that, with imputation, the
proportion of replicates showing type I errors is much larger
than with single-SNP logistic regression, haplotype analysis,
and AI. Thus, although the left hand panels of Figure 1 sug-
gest that imputation has generally slightly higher detection
power than AI, this higher detection power is achieved at
the expense of a higher number (although not necessarily a
higher rate) of type I errors. We attribute this phenomenon to
the larger multiple testing burden that is incurred when car-
rying out imputation, on account of larger number of SNPs
that are imputed (and therefore tested). To illustrate this
phenomenon, we present in Figure 2 the results seen within
a single simulation replicate of power (top plot) or type I

Figure 2. Results from a single power replicate (top plot) and a single type I error replicate (bottom plot) of Scenario 1. Gray crosses show the
results obtained from imputation (Imp), black dots show the results obtained from AI and black crosses show the results obtained from single-SNP
logistic regression (LR) analysis in PLINK.

178 Genetic Epidemiology, Vol. 38, No. 3, 173–190, 2014



error (bottom plot). In the power replicate, both imputa-
tion and AI are successful in detecting the simulated disease
SNP. However, in both the power replicate and the type I
error replicate, the much larger number of tests performed
when using imputation results in a much higher likelihood
of observing a false detection (at any given significance level)
within any region, compared to single-SNP analysis, or AI,
even though we anticipate that the nominal (i.e., per-SNP)
type I error rate for all three methods should be the same.

The logical consequence of this observation is that the
threshold for declaring “genome-wide significance” when
carrying out an imputation-based GWAS should be higher
than when carrying out a standard (genotyped SNPs only)
GWAS, if one wishes to maintain the same number of false-
positives (or overall probability of making any false-positive
detections) as is incurred in a standard GWAS. The precise
threshold to be used will depend on how many SNPs have
been successfully imputed (and are thus tested) and the de-
gree of LD between them; visually, in this example, it appears
that increasing the required – log10(P -value) threshold by
one unit would achieve approximately the right level. Taking
this “rule-of-thumb,” we should therefore logically compare
the powers to detect P -values of 10–8, 10–6, or 10–4 using AI
with the powers to detect P -values of 10–9, 10–7, or 10–5 us-
ing imputation, if we are to be comparing “like with like.”
Applying this idea to our current results, we find this has
the effect of reducing the detection power of imputation (at
P -value thresholds 10–9, 10–7, or 10–5) in these scenarios to a
value similar to that of AI (at P -value thresholds 10–8, 10–6,
or 10–4), while maintaining a comparable number of type I
errors (data not shown).

To our knowledge, it has not generally been appreciated
that use of imputation may require the use of a more strin-
gent threshold for declaring genome-wide significance, at
least when using standard frequentist tests of association.
Most studies using genome-wide imputation (e.g., Ripke
et al. [2013]) have used the same thresholds for highlight-
ing “suggestive” and “significant” findings as were used in
the pre-imputation era, when tests in GWAS were carried
out at genotyped SNPs only. Although not, strictly speak-
ing, “correct,” in practice this is unlikely to have caused any
serious increase in false-positive findings on account of the
fact that most “suggestive” and “significant” findings from
a primary GWAS analysis are taken forward for replication
in independent studies. Thus, any additional false-positives
arising at the primary stage are likely to be removed at the
replication stage. However, it does highlight the importance
of comparing like with like (in terms of expected numbers of
type I errors) when comparing the relative detection powers
of different methods.

Supplementary Figure S2 shows the detection powers and
type I errors of the AI test compared to imputation and
haplotype analysis when the SNP window sizes are defined
using BP distances rather than numbers of SNPs. The patterns
are very similar to those seen in Figure 1, although we do find
slightly lower powers than when using a fixed number of SNPs
to define the window size. For this reason, we prefer to use a

fixed number of SNPs. The number of SNPs in the window
will obviously vary depending on the number of genotyped
SNPs in the region; for samples genotyped on a very dense
SNP array the use of BP distances may be preferred.

Figure 3 (top) shows the detection power and type I error
for standard imputation, haplotype analysis, AI, and single-
SNP logistic regression for data simulated under a more com-
plicated scenario (Scenario 4), a haplotype model in which
disease was assumed to be caused by a haplotype effect defined
by two underlying causal nongenotyped SNPs, rs7926004,
and rs10500679. Possession of a T-G haplotype at these two
SNPs was assumed to increase the risk of disease by a factor
of 1.8, while possession of a C-C haplotype at these two SNPs
increased the risk of disease by a factor of 1.5, in comparison
to haplotypes T-C and C-G. As in Scenarios 1-3, standard im-
putation, haplotype analysis and AI considerably outperform
single-SNP logistic regression in terms of detection power, al-
though the type I error is greater for imputation than for AI
or haplotype analysis. We were not surprised to find that hap-
lotype analysis performed well in this scenario, even though
the causal SNPs were not genotyped. This result is loosely
consistent with the results of Morris and Kaplan [2002], who
showed that haplotype analysis performed better than single
SNP testing when disease was attributable to multiple alleles
at a single locus; from a statistical point of view, a haplotype
effect at two unobserved loci could be considered statisti-
cally equivalent to multiple susceptibility alleles at a single
unobserved locus. We were surprised that standard imputa-
tion showed such high power, as this scenario was specifically
designed to encapsulate a situation where there is a strong
haplotype effect that results in much weaker marginal effects
at each of the contributing SNPs, when analyzed individually.
The bottom plots of Figure 3 go some way toward explaining
this slightly counter-intuitive result. In each of these exam-
ple replicates, we see that both AI and standard imputation
are able to capture a signal in the vicinity of the two causal
SNPs. However, the signal captured by imputation is not,
in fact, a signal at either of the causal SNPs, which have
been well imputed but show only weak marginal effects, as
expected. Rather, the imputation signal comes from other
well-imputed SNPs in the region that presumably mark the
causal haplotype. Just as haplotype analysis can capture the
effect of an untyped causal variant through testing a hap-
lotype that marks (i.e., is a good surrogate for) the untyped
causal variant, it seems that imputation can capture the effect
of an underlying causal haplotype through testing a SNP that
marks this underlying causal haplotype. This is a potentially
attractive property of imputation that has not, to our knowl-
edge, been previously demonstrated. However, it does raise
an important issue regarding the interpretation of imputa-
tion results. Given a set of imputation results such as those
seen in the bottom plots of Figure 3, the usual interpretation
would be that the signal is due to a causal effect at the top
scoring SNP (or possibly due to a causal effect at another
SNP in strong LD with the top scoring SNP). Our results
demonstrate that this is by no means the only explanation
for such a signal. Indeed, our results suggest that it is not
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Figure 3. Results from Scenario 4 (haplotype effects). The top plots shows bar plots of the calculated powers (for P -values 10−8, 10−6, and 10−4)
and type I errors (for P -values 10−4, 5 × 10−6, and 10−3) for imputation (Imp), haplotype analysis (Hap), single-SNP logistic regression (LR), and the
AI test. The bottom plots show examples of results from four separate power replicates. Gray crosses show the results obtained from imputation,
black dots show the results obtained from AI, and triangles show the imputation results obtained at the two causal SNPs. The default window size
of 10 SNPs was used in the AI test.

possible, statistically speaking, to distinguish between this
simple explanation and other, more complicated explana-
tions; distinguishing between different possible explanations
may require different types of experiment, based on different
types of data.

As an additional check on the type I error rate for AI, we
constructed quantile-quantile (Q-Q) plots and calculated ge-
nomic control inflation factors [Devlin and Roeder, 1999], λ,
for the AI test statistics from Scenarios 1-3. Figure 4 (left hand
plots) shows the test statistics obtained within the 110 kb
detection window for 1,000 replicates simulated under the
null hypothesis. Figure 4 (right hand plots) shows the results
for 20 replicates of the whole of chromosome 11 simulated

under the alternative hypothesis, where gray crosses indicate
test statistics of SNPs that lie within the 110 kb detection win-
dow, which might therefore be considered as “true” findings.
The Q-Q plots of the test statistics show an acceptable dis-
tribution, indicating that the AI approach provides inference
that can be considered to have essentially the same properties
as inference from standard single-SNP testing in GWAS.

The effect of using a dominant or recessive analysis model
and/or a dominant or recessive correlation metric, when the
causal SNP was simulated to operate under a dominant or
recessive model, was also investigated for Scenarios 1-3. Sup-
plementary Figure S3 shows the powers for single-SNP lo-
gistic regression and the AI test using a SNP window size
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Figure 4. Q-Q plots of the AI test statistics for Scenarios 1–3. The plots on the left show results from 1,000 replicates under the null hypothesis
with no causal variants. The plots on the right show results from 20 replicates of the whole of chromosome 11 under the alternative hypothesis,
where crosses denote SNPs that are within 110 K base pair positions of the causal SNP.

of 10 SNPs. Single-SNP logistic regression using the correct
analysis model performed worse than using a multiplicative
analysis model, as previously demonstrated [Iles, 2010] for
SNPs in low LD with a causal SNP. This observation ex-
tends to the AI test: when a dominant/recessive regression
model is used (see Methods) the power is lower than when

using a multiplicative model, even for data simulated under
a dominant/recessive model. Our implementation of the AI
test therefore always uses a multiplicative analysis model. Us-
ing a correlation metric constructed for a dominant/recessive
causal SNP (see Methods) when the causal SNP really is
dominant/recessive tends to perform slightly better than
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Figure 5. Manhattan plots on chromosome 11 for the case/control severe malaria dataset from The Gambia. The top plot shows single-SNP
logistic regression P -values obtained from analysis in PLINK. The middle plot shows AI test P -values. The lower plot shows a close-up of the
AI test P -values around the causal SNP. The horizontal dashed line shows 10−8 (a common threshold indicating genome-wide significance). The
vertical dashed line indicates the position of the causal SNP, rs334. Light gray points show SNPs with logistic regression P -value below a threshold
of 10−7, which were presumably removed (by eye, following cluster plot checks) in the analysis by Jallow et al. [Jallow et al., 2009]

using one constructed for a multiplicative causal SNP. How-
ever, the difference in power is not large and the multiplica-
tive metric still has higher power in some instances. For AI
we therefore recommend using the multiplicative correlation
metric unless there is a strong prior belief in a dominant or
recessive causal variant.

Application to MalariaGEN Case/Control Data

As a demonstration of our method applied to real data, we
used a case/control study of severe malaria from The Gambia,
genotyped on the Affymetrix 500K array (data provided by
the MalariaGEN consortium, www.MalariaGEN.net). It is
expected that many SNPs may be poorly tagged as this array
was originally developed for European rather than African
populations. The original dataset consisted of 1,059 cases and
1,496 controls typed at around 500,000 SNPs. These data were
previously analyzed by Jallow et al. [2009], who performed
quality control resulting in the retention of 958 cases, 1,382
controls, and 402,814 SNPs, where, in addition to automated
SNP exclusions, many poorly-clustering SNPs (with respect
to cluster plots of the intensity values) were removed “by eye.”
Unfortunately we were unable to obtain precise lists of which

cases, controls and SNPs had been removed, so we performed
our own (slightly more stringent) quality control within the
computer package PLINK [Purcell et al., 2007], resulting in
the retention of 831 cases, 1,287 controls, and 328,399 SNPs
(with no SNPs removed by eye). We focus here initially on
the results from chromosome 11, which consisted of 17,515
SNPs.

Figure 5 (top) shows a Manhattan plot of the – log10
P-values for chromosome 11 in the Gambian case/control
dataset using single-SNP logistic regression implemented in
PLINK. To adjust for population stratification, we first per-
formed principal component analysis (PCA) using the smart-
pca routine of the EIGENSOFT package [Price et al., 2006]
on 139,445 autosomal SNPs (pruned to be in low levels of
LD with one another using the PLINK command “--indep
50 5 2”). The first three principal components from
smartpca were then included as explanatory variables in the
logistic regression models fitted by PLINK. (Note that Jallow
et al. [2009] also included the first three principal compo-
nents to correct for population stratification, within a stan-
dard logistic regression framework). Colored in light gray in
Figure 5 (top) are points that appear to be spurious associ-
ations and do not appear in the corresponding Manhattan
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plot shown in Jallow et al. [2009]; we presume that these cor-
respond to untrustworthy poorly-clustering SNPs that were
removed “by eye.” A weak association signal (P = 1.59 × 10–6

at rs11036635) can be seen in the vicinity of the known causal
SNP, rs334, whose position is shown as a dashed vertical line.

Figure 5 (middle) shows the results obtained from AI
analysis in SnipSnip (with the first three principal compo-
nents included as covariates and the same presumed un-
trustworthy SNPs colored in gray). The most significant SNP
(rs16931041) has a P -value of 6.05 × 10–11 and lies 215 kb
from the known causal SNP, rs334. The lower plot shows a
close-up plot of the AI results in this region. The AI results
are considerably more compelling than the results from stan-
dard logistic regression in the region of this known causal
SNP, comfortably reaching genome-wide levels of signifi-
cance. The overall genomic control inflation factor (from
all 328,399 SNPs tested across the genome) was 1.07 for the
AI test, just within acceptable levels for a GWAS. Without
adjustment for population stratification the genomic con-
trol inflation factor was 1.21. Standard logistic regression in
PLINK gave genomic control inflation factors of 1.08 (with
adjustment for population stratification) or 1.29 (without
adjustment for population stratification), respectively.

To examine the source of the association signal identified
by SnipSnip, we obtained from the MalariaGEN investigators
genotype data (generated using the Sequenom iPlex plat-
form) for the Gambian case/control samples at the known
causal SNP, rs334. Table 1 shows estimated haplotype fre-
quencies and expected haplotype counts (estimated sepa-
rately within cases and controls) for haplotypes consisting of
the disease, partner, and anchor SNPs, generated using the
software UNPHASED [Dudbridge, 2008; Dudbridge et al.,
2011]. Allele A at rs334 is protective, having a much higher
frequency in controls than cases. This protective allele occurs
exclusively in coupling with either a C-C or C-T haplotype
at the partner and anchor SNP respectively, although the
nonprotective T allele at rs334 additionally occurs in cou-
pling with T-C (or very occasionally with T-T) haplotypes.
Logistic regression analysis using either expected haplotype
counts or observed genotype variables, with three princi-
pal components again included as covariates, indicated that,
once rs334 was included in the model, neither the anchor
SNP (rs16931041), the partner SNP (rs2340349), nor the test

Table 1. Estimated haplotype frequencies and expected counts
for haplotypes consisting of the causal SNP (rs334), partner SNP
(rs2340349) and anchor SNP (rs16931041) in MalariaGEN
case/control data

Haplotype (rs334-
partner-anchor) Case frequency Control frequency Case count Control count

A-C-C 0.005611 0.053530 8.978 131.700
A-C-T 0.001889 0.021680 3.022 53.330
A-T-C 0.000000 0.000000 0.000 0.000
A-T-T 0.000000 0.000000 0.000 0.000
T-C-C 0.026310 0.026960 42.100 66.330
T-C-T 0.922400 0.853100 1,476.000 2,099.000
T-T-C 0.043080 0.044720 68.930 110.000
T-T-T 0.000671 0.000000 1.074 0.000

Table 2. Squared correlation coefficients (r 2) between the
causal SNP (rs334) and the anchor SNP (rs16931041), partner SNP
(rs2340349) or additive anchor/partner SNP combination, in
MalariaGEN case/control data

r2 based on haplotypes r2 based on genotypes

SNP pair Controls Cases Combined Controls Cases Combined

rs334-partner 0.004 3 × 10–4 0.002 0.002 9 × 10–6 0.001
rs334-anchor 0.255 0.043 0.199 0.258 0.055 0.205
rs334-anchor/

partner
combination

0.438 0.109 0.374 0.446 0.149 0.397

of the anchor SNP given the partner SNP were significant (all
P > 0.41) suggesting that the significance seen in the orig-
inal AI test could indeed be accounted for by genotype at
the true causal SNP, rs334. Haplotype analysis of the part-
ner and anchor SNPs alone using UNPHASED [Dudbridge,
2008; Dudbridge et al., 2011] (cases and controls combined,
including the first three principal components as covariates)
indicated that haplotypes at these SNPs were significantly
associated with disease status at stronger significance levels
(P = 3.84 × 10–9) than either the partner (P = 0.95) or an-
chor (P = 4.90 × 10–6) SNP alone; the significance of adding
the anchor SNP into a haplotype model that already includes
the partner SNP was P = 4.82 × 10–10, highly consistent with
the results from the similar test implemented in SnipSnip.

Table 2 shows correlations (assuming an additive allelic
coding) between rs334 and the top anchor SNP (rs16931041),
between rs334 and the top partner SNP (rs2340349) and be-
tween rs334 and a “combination” variable constructed by
adding together the genotype variables at rs16931041 and
rs2340349. The anchor/partner combination variable is seen
to be considerably more correlated with rs334 than are either
the anchor or partner SNP alone. Although this observa-
tion does not precisely correspond to the AI test performed
in SnipSnip, there is a loose correspondence between these
results. In particular, this observation illustrates that the in-
formation provided by the anchor and partner together (each
coded in an allelic fashion) is a reasonably good surrogate for
the information that would be provided by rs334 alone, ex-
plaining why a logistic regression model that includes both
rs16931041 and rs2340349 as predictors predicts disease sta-
tus better than either variable individually, and why such a
model provides a reasonable approximation to the “gold-
standard” model that would include, instead, a single predic-
tor consisting of genotype at the true causal variant.

Application to MalariaGEN Trio Data

We also analyzed an additional MalariaGEN Gambian case-
parent trio dataset, consisting of 658 severe malaria cases and
their parents genotyped on the Illumina 650Y array (584,945
SNPs). Our method is designed for analysis of case/control
rather than trio data, but trio data can be analyzed by con-
verting it to cases and pseudocontrols (with pseudocontrols
constructed based on the alleles not transmitted from the par-
ents to the case, see Cordell and Clayton [2002] and Cordell
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Figure 6. Manhattan plots of each chromosome for the case-parent trio severe malaria dataset from The Gambia. The top plot shows P -values
using the transmission disequilibrium test as implemented in PLINK. The lower plot shows AI test P -values. The black and gray points highlight
different chromosomes.

et al. [2004] for details). The resulting case/pseudocontrol
dataset was then analyzed using both our approach and stan-
dard single-SNP logistic regression, and compared with a
trio analysis using the transmission disequlibrium test (TDT)
[Spielman et al., 1993] implemented in PLINK.

Figure 6 shows Manhattan plots across the whole genome
for the Gambian case-parent trio dataset, using either the
TDT implemented in PLINK (top panel) or the AI test im-
plemented in SnipSnip applied to cases and pseudocontrols
(bottom panel). The overall genomic control inflation fac-
tor was 1.02 for the TDT and 1.00 for the AI test. Both
methods gave reasonably compelling results in the vicin-
ity of the known causal SNP (rs334) on chromosome 11,
but the top AI result (P = 7.56 × 10–9 at rs979752) was an
order of magnitude more significant than the top TDT re-
sult (P = 8.68 × 10–8). Standard logistic regression applied
to same case/pseudocontrol data gave similar results to the
TDT but with less significant P -values. The top anchor (and
partner) SNP in the case-parent trio study differed from that
found in the case/control study, most likely due to the differ-
ent genotyping arrays used in the two studies, which contain
SNPs that show varying patterns of LD with the causal SNP,
rs334.

Imputation Analysis of MalariaGEN Data in rs334 Region

We carried out imputation (without prephasing) within
the Gambian case/control samples, and within the cases and
pseudocontrols derived from the Gambian case-parent trio
samples, in the 4 Mb region around the known causal SNP
(rs334) on chromosome 11. We used the program IMPUTE2
[Howie et al., 2009; Marchini et al., 2007] with data from
the 1000 Genomes Project [1000 Genomes Project Con-
sortium et al., 2012] (Phase I interim data, updated re-

lease April 2012) as a reference panel. 22,907 SNPs (in the
case/control data) or 31,757 SNPs (in the case/pseudocontrol
data) passing postimputation quality control (“info” score
> 0.5) from an original 66,754 imputed SNPs were analyzed
using the “-method threshold” method in the program
SNPTEST (allowing for the first three principal components
as covariates in the case/control analysis) to test for asso-
ciation with disease status. Figure 7 shows the results from
this analysis. Imputation followed by single-SNP analysis is
able to improve the signal of association to P ≈ 1.09 × 10–11

in the case/control dataset (compared to P = 1.59 × 10–6

seen previously when using real genotyped SNPs alone)
and to P ≈ 8.34 × 10–12 in the trio dataset (compared to
P = 8.68 × 10–8 seen previously when using real genotyped
SNPs alone). Thus, the signals detected through the AI test
in SnipSnip could potentially have been detected through
use of genome-wide imputation. However, imputation on a
genome-wide scale is computationally demanding and re-
quires careful postimputation quality control and filtering
to remove untrustworthy results. An initial (much faster)
analysis using SnipSnip could allow one to focus one’s im-
putation efforts on the most promising regions before em-
barking on a full genome-wide imputation analysis. In the
current example, imputation of this 4 Mb region (compris-
ing 960 genotyped SNPs) in the 2,118 Gambian case/control
individuals using IMPUTE2, followed by single-SNP anal-
ysis in SNPTEST, took approximately 18 h on our Linux
system (not including the time required to reformat files,
including performing a liftover from Build 36 to Build 37
positions in order to match up the study samples with the
1000 Genomes data); we estimate that to carry out the same
analysis across the entire genome (328,399 genotyped SNPs)
would have taken over 36 weeks. This time can, of course,
be reduced substantially through pre-phasing [Howie et al.,
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Figure 7. Imputation results for Gambian case/control and trio (case/pseudocontrol) datasets. The position of the causal SNP, rs334 (not present
in 1000 Genomes) is shown with a vertical dashed line. The position of the top anchor SNP identified by SnipSnip is shown with a vertical dotted
line.

2012] and/or implementation in parallel on a compute clus-
ter (see whole-genome imputation results presented below),
but still compares unfavorably with the 37 min (with covari-
ates) or 44 sec (without covariates) taken by SnipSnip (which
can also similarly be reduced through implementation in
parallel) to perform a whole-genome analysis on the same
samples.

We note that the signal at rs334 detected here using 1000
Genomes Project samples as a reference panel for imputa-
tion (Fig. 7) is considerably weaker than the imputed signal
(P = 4.5 × 10–14) found at rs334 by Jallow et al. [2009] when
using an arguably more appropriate (but not publicly avail-
able) reference panel of 62 Gambian controls that they rese-
quenced themselves in the rs334 region. To our knowledge,
Phase I of 1000 Genomes Project does not contain any Gam-
bian samples (although their inclusion is planned for later
releases), nor did the reference panels we used (provided on
the IMPUTE2 website) contain the actual causal SNP, rs334.
Nevertheless, it seems that the effect of rs334 can be at least
partly detected via its LD pattern with SNPs that have been
reliably called within populations currently included in 1000
Genomes. Interestingly, our imputation results around rs334
using 1000 Genomes as a reference panel do show consid-
erably stronger signals of association than were obtained by
Band et al. [2013] on a partially-overlapping set of Gambian
samples using HapMap3 as a reference panel, possibly due to

the better coverage of SNPs marking rs334 provided by the
1000 Genomes Project compared to HapMap3. This observa-
tion illustrates the importance of (and potential sensitivity to)
the choice of reference panel when conducting imputation.

Genome-Wide Imputation Analysis of MalariaGEN Data

We additionally carried out genome-wide imputation
with prephasing [Howie et al., 2012] using the programs
IMPUTE2 [Howie et al., 2009; Marchini et al., 2007] and
SHAPEIT [Delaneau et al., 2012]. 263,565 genotyped SNPs
(case/control data) or 561,510 genotyped SNPs (trio data)
passing pre-imputation quality control (minor allele fre-
quency > 0.01, < 5% missing genotypes, no A/T or C/G SNPs
or other possible strand discrepancies) were used to gener-
ate tests (using the “-method threshold” method in the
program SNPTEST) at up to 13.2 million imputed SNPs that
passed post-imputation quality control (“info” score > 0.5
and minor allele frequency > 0.01). Supplementary Figure S4
shows the Manhattan plots obtained, together with results
from AI. Imputation results on odd-numbered chromosomes
are colored in pink and those on even-numbered chromo-
somes are colored in green; black circles represent the AI
results. For the case/control dataset (upper plot), the results
are dominated by a signal at rs12315364 on chromosome
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12, which is detected by both AI and standard imputation.
Given the extreme significance of this result, the fact that
it was not reported by Jallow et al. [2009] and the fact
that it does not appear in the lower (case/pseudocontrol)
Manhattan plot, it seems likely that this is an artifactual find-
ing caused by poor-quality genotype data at rs12315364. This
conclusion is substantiated by the fact that the signal com-
pletely disappears when the imputation exercise is repeated
with rs12315364 removed from the set of genotyped SNPs
used to inform imputation (middle plot). A number of other
(presumed artifactual) signals remain; we assume that these
correspond to untrustworthy poorly clustering SNPs that
were removed (postanalysis) by Jallow et al. [2009]. With
respect to rs12315364, it is interesting that inclusion of a sin-
gle poor-quality SNP can result in such a large number of
imputed SNPs (which pass post-imputation quality control)
apparently marking the same signal; we have noticed this phe-
nomenon occurring in other imputed datasets that we have
analyzed. In a standard GWAS (of genotyped SNPs only), the
presence of a number of SNPs in the same region showing
the same signal is generally considered an indication that the
signal is reliable; however, the same can clearly not be said for
an imputation-based GWAS. Although such artifacts would
hopefully be picked up through careful inspection of all inter-
esting signals (including inspection of cluster plots for those
genotyped SNPs in the region), it does highlight the impor-
tance of carrying out careful quality control of the real geno-
type data before embarking on imputation. In this instance, it
is unclear whether the problem with rs12315364 would have
been automatically detected becaus it is not, in fact, signif-
icant (P = 0.98) when analyzed in PLINK using single-SNP
logistic regression (with 3 principal components included
as covariates), although it is highly (and suspiciously) sig-
nificant (P = 1.1 × 10–211) when analyzed instead using the
Armitage trend test.

For the case/control dataset, the results shown in sup-
plementary Figure S4 at the known causal SNP, rs334
on chromosome 11, are scarcely visible on the back-
ground of presumed artifactual signals, but for the trio
(case/pseudocontrol) dataset, the signal at rs334 is much
clearer. Both imputation and AI are successful in detect-
ing the location of the true causal SNP, with imputation
achieving an overall higher level of statistical significance.
However, the clearly visible imputation results (pink and
green crosses) seen poking above the AI results (black dots)
across the whole genome illustrate the higher number of false-
positives expected from genome-wide imputation analysis, if
the significance threshold for “detection” is set at standard
genome-wide significance levels, consistent with our simula-
tion results presented earlier.

It took about 10 days to carry out genome-wide pre-
phasing and imputation of these two datasets, which was
enabled by running the analyses for each of the 22 chromo-
somes in parallel; without access to a compute cluster we an-
ticipate this analysis would have taken several months. More
importantly, prephasing and imputation (followed by anal-
ysis in SNPTEST) of these two datasets generated around

270 GB (for the case/control dataset) and 488 GB (for the
case/pseudocontrol dataset) of output and intermediate files
respectively, i.e., a total of 758 GB of storage was required
in order to run this experiment. In comparison, analysis us-
ing AI in SnipSnip took between 1 second and 2.5 min per
chromosome and generated a mere 105 MB of output files.

Genome-Wide Haplotype Analysis of MalariaGEN Data

We also carried out genome-wide haplotype analysis of
the MalariaGEN data in UNPHASED, using a sliding win-
dow of 5-SNP haplotypes (see supplementary Fig. S5). For
the case/control dataset (top plots), similar to supplementary
Figure S4, the signal at the known causal SNP rs334 is scarcely
visible on the background of presumed artifactual signals, re-
gardless of whether or not “suspicious” SNP rs12315364 is
excluded. For the case/pseudocontrol dataset (bottom plot),
the signal at rs334 is clearly visible, reaching similar signifi-
cance to that seen using imputation. In theory, greater power
for haplotype analysis could be obtained by keeping trios in-
tact rather than analyzing them as cases and pseudocontrols.
However, we found that the default maximization procedure
in UNPHASED did not converge reliably with the trio dataset,
generating large numbers of presumed erroneous artifactual
signals. We found this problem in UNPHASED could be
avoided by use of the slower (Nelder-Mead) maximization
option, however, this option was not feasible on a genome-
wide scale; we estimated that the analysis would have taken
several months to run on our system, even when divided into
22 (or more) parallel jobs. Analysis of the case/pseudocontrol
dataset in UNPHASED (using the default maximization op-
tion) was relatively fast, taking around 12 h to process the
longest chromosomes and producing a total of 875 MB of
output files. Analysis of the case/control dataset was much
slower on account of including three principal components
as covariates; it took around 10.5 days to process the longest
chromosomes and produced a total of 665 MB of output files.

Discussion

Here we have described a new method and accompanying
software package, SnipSnip, that is designed for analysis of
GWAS data to improve the signal of association in situations
where there are a number of SNPs in low LD with the causal
variant. Our computer simulations demonstrate that, in some
circumstances (depending on the LD structure between the
causal variant and SNPs that have been genotyped, within the
population under study), we can gain a considerable boost in
power compared to single-SNP analysis. Our application to
the MalariaGEN data illustrates the utility of our approach
in identifying, at genome-wide levels of significance, a region
known to harbor a causal SNP that confers protection from
malaria.

One might expect that, in many cases, imputation anal-
ysis using an appropriately chosen reference panel could
reproduce the signals identified by SnipSnip. Indeed, our
goal in developing AI was not to generate a method that
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necessarily showed any higher power than imputation, but
rather to generate a method that captured much of the sig-
nal that is captured by imputation, while taking a fraction of
the time, computational effort and disc space. Both AI and
imputation capitalize on the fact that, although there may
be no genotyped SNPs in strong LD with the causal variant,
there may be several genotyped SNPs in weak LD with the
causal variant that, when considered together, provide equiv-
alent information. However, capturing this signal through
genome-wide imputation is computationally demanding, re-
quires careful postimputation filtering and quality control to
produce reliable results, and generally requires a relatively
high level of expertise in scripting (e.g., shell scripts, Perl
scripts, Python scripts etc.) as well as access to (and familiar-
ity with using) high performance computing facilities such as
a multinode Linux cluster, if the analysis is to be performed
in a reasonable time. Setting up the required input files and
pipelines for analysis (including performing a “liftover” to
the current genome build and checking strand alignments)
can be quite fiddly and, in our experience, even well-qualified
and experienced researchers can make inadvertant mistakes
when setting up these analyses, frequently resulting in an
analysis, or part of an analysis, needing to be repeated. Fi-
nally, the output (and intermediate) files generated by this
procedure are often unwieldy, taking up many GB of disc
space. Clearly none of these concerns are major obstacles for
the numerous well-funded and appropriately staffed research
groups and consortia that routinely use imputation, but they
do highlight the attraction of a convenient (and much faster)
complementary approach such as the AI test proposed here.
The question is not, perhaps, so much, whether AI improves
over imputation, but whether imputation analysis improves
significantly over AI, given its higher computational (includ-
ing disc space) and manpower cost.

On that note, standard imputation is obviously a much
more attractive option if the goal is to generate common
panels of SNPs (genotyped or imputed), in order to enable
large-scale meta-analyses of studies that have been carried
out using different genotyping arrays [Band et al., 2013;
Berndt et al., 2013; Zeggini et al., 2008]. Similarly, if one gen-
uinely wishes to infer (albeit probablistically) nongenotyped
SNPs within a set of study samples (perhaps as a precur-
sor to performing some kind of rare-variant analysis [Mägi
et al., 2012]), imputation is again an extremely convenient
approach. Our quarrel is not with imputation per se, which
we consider an elegant and effective analysis tool, but rather
with the fact that imputation is often presented as itself being
the main goal of an analysis, whereas for many researchers the
main (and more important goal) is relating genotypic varia-
tion to phenotypic variation. For that purpose, at least when
surveying common variation in a single study dataset from
a population that is well-tagged by current genotyping ar-
rays, it is unclear whether either AI or imputation offers any
great advantage over single-SNP association testing. How-
ever, for populations that are less well-tagged by the array
that has been used, both AI and imputation could be used
to improve the signal of association at poorly tagged causal

variants, with AI performing the analysis in a fraction of the
time.

A drawback of standard imputation is that it, in principal,
requires access to an appropriate reference sample; results
can be highly sensitive to the reference panel used (as seen
from the disparity between our imputation results around
the MalariaGEN causal SNP, rs334, using 1000 Genomes as
a reference panel, compared to those obtained by Band et al.
[2013] using HapMap3 as a reference panel). For popula-
tions that are not closely related to populations for which
dense SNP data or genome-wide sequence data is currently
available, this can be a problem. The AI test implemented
in SnipSnip does not require access to an external reference
panel, making use only of the LD pattern amongst SNPs geno-
typed within the study samples (together with their multi-
marker correlation with a disease or quantitative phenotype)
to construct a test of association. This fact means that there
may even be situations in which the AI test implemented in
SnipSnip succeeds better than imputation. One such situa-
tion is if the causal variant has only recently arisen within the
population under study, and does not appear in (or show a
strong LD pattern with SNPs genotyped in) any available ref-
erence panel. The extent to which this will occur in practice is
unknown, but it is not inconceivable that there may be situ-
ations where this occurs, particularly, for example, in studies
of indigenous or isolated populations [Bourgain et al., 2001;
Gusev et al., 2011; Zhang et al., 2013].

Another situation where one might, in principal, expect AI
to succeed better than imputation is when the causal associ-
ation is due to a genuine haplotype effect (perhaps caused by
interactions between nearby SNPs) and not to the effect of
any single untyped SNP. Our simulation results from Scenario
4 suggest that this type of signal may, in fact, be detectable
through standard imputation, although this comes with a
higher cost in terms of the probability of making a type I er-
ror. Although methods for genome-wide haplotype analysis
exist [Allen and Satten, 2009a, 2009b; Browning and Brown-
ing, 2007a, 2008; Gusev et al., 2011], these approaches, like
imputation, tend to be highly computer-intensive and have
not been frequently used, possibly because of this fact as well
as their requirement for extensive postanalysis quality control
to produce reliable results [Browning and Browning, 2008].
Prior to the GWAS era, haplotype methods (or at least the
development thereof) achieved high popularity [Bourgain
et al., 2002; Chapman et al., 2003; Clayton and Jones, 1999;
Clayton, 1999; Cordell, 2006; Dudbridge et al., 2000; Dur-
rant et al., 2004; Lin et al., 2004; Molitor et al., 2003; Morris,
2005, 2006; Schaid et al., 2002; Seltman et al., 2001; Stram
et al., 2003; Templeton et al., 1987, 1988, 1992; Templeton
and Sing, 1993; Toivonen et al., 2000; Tzeng et al., 2003;
Zaykin et al., 2002] but, in practice, since the advent of GWAS,
such tests have rarely been applied on a genome-wide scale,
perhaps on account of their computational burden combined
with a perception that such methods have been superceded
by imputation.

Our method has some similarities with previously pro-
posed multimarker tests that either directly test sets of
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adjacent (or nearby) SNPs [Chapman et al., 2003; Clayton
et al., 2004; Humphreys and Iles, 2005; Kim et al., 2010;
Slavin et al., 2011; Wason and Dudbridge, 2010] or else that
construct tests at untyped SNPs on the basis of the mul-
timarker genotypes observed [Allen et al., 2010; de Bakker
et al., 2005; Lin et al., 2008; Nicolae, 2006; Pe’er et al., 2006].
A full comparison of our approach with these previously pro-
posed methods is beyond the scope of the current manuscript,
but would be an interesting topic for further investigation.
Approaches that rely on observed multimarker genotypes to
construct tests at untyped SNPs have a close relationship to
imputation-based approaches, relying on a reference panel
(such as HapMap or 1000 Genomes) to infer information at
untyped SNPs on the basis of their correlation pattern (in
the reference panel) with genotyped SNPs. These approaches
can be computationally intensive although some faster im-
plementations do exist [Allen et al., 2010]. Approaches that
directly test sets of adjacent (or nearby) SNPs, have been
shown to improve power over single-SNP testing in sim-
ulation studies [Kim et al., 2010; Wason and Dudbridge,
2010], although it is less clear whether this power improve-
ment is always achieved in practice: Slavin et al. [2011] had
some success when applying this approach to GWAS data for
coronary artery disease and hypertension, while Wason and
Dudbridge [2010] had less success applying it to schizophre-
nia. A problem with the simultaneous testing of several adja-
cent SNPs is the increased degrees of freedom (df) incurred;
the main-effects test used by Wason and Dudbridge [2010]
and Slavin et al. [2011] has 2 df while their main+adj test has
3 df, in contrast to the 1 df AI test proposed here. The main-
effects test corresponds essentially to comparing our model
(1) with the global null hypothesis that neither SNP is associ-
ated with disease status (i.e., β1 = β2 = 0), while the main+adj
test corresponds to adding in an anchor-partner interaction
term and comparing the resulting 3 df model with the global
null hypothesis that neither SNP (nor the interaction) is as-
sociated with disease status. Part of the motivation for devel-
oping AI was our intuition that, in a scenario where the 2 df
main-effects test is more powerful than than the single-SNP
test, then model (1) with two main effects should, by def-
inition, fit these data better than model (3) with one main
effect (at the partner SNP) only. In AI, we assess this directly
through use of a 1 df (conditional) test. Another difference
between our approach and previously proposed approaches
is the fact that we have developed a specific algorithm to
choose the “optimal” partner SNP for each tested anchor
SNP. In contrast, Wason and Dudbridge [2010] and Slavin
et al. [2011] use pairs of adjacent SNPs (possibly subject to
an “LD pruning” step to filter out SNPs that are almost com-
pletely inferrable from nearby SNPs). It is not obvious that
pairs of adjacent SNPs will necessarily be the optimal unit
for this type of analysis; in construction of our correlation
metric we found the correlation between the SNPs to be a
useful measure of their compatibility, at least with respect to
the AI test.

Our proposed method makes use of conditional regression
models (testing the effect of one predictor conditional on the

inclusion of another in the regression model). Such condi-
tional regression models are not new in the genetics litera-
ture; following a suggestion by Cordell and Clayton [2002],
conditional or stepwise regression strategies have commonly
been used to help select independent variants and/or model
multiple loci that are in LD in a variety of different stud-
ies [Barratt et al., 2004; Broadbent et al., 2008; Cordell et al.,
2013; Fellay et al., 2007; Haiman et al., 2007; Hunt et al., 2013;
Knight et al., 2012; Lincoln et al., 2005; Liu et al., 2012; Plenge
et al., 2007; Scott et al., 2007; Trynka et al., 2011; Ueda et al.,
2003]. However, the use of such conditional regression mod-
els has generally been confined to dissecting or accounting for
signals that have already been detected through single-SNP
testing; to our knowledge such strategies have not generally
been used within sliding windows on a genome-wide scale,
with a view to detecting new signals at additional genomic
locations (over and above those locations detected through
single-SNP testing), as proposed here.

In conclusion, we propose here a complementary test
to more complex methods (such as sequencing and im-
putation or haplotype analysis) that takes only a frac-
tion of the time/computational complexity/disc space of
these more complex methods, and may be used with
standard GWAS data, without any requirement for ad-
ditional reference samples, to identify genetic regions
of interest. Software implementing our method is freely
available from http://www.staff.ncl.ac.uk/richard.howey/
snipsnip/.
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