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Abstract: Checkpoint inhibitors were a major breakthrough in the field of oncology. In September
2014, based on the KEYNOTE-001 study, the Food and Drug Administration (FDA) approved
pembrolizumab, a programmed cell death protein 1 (PD-1) inhibitor, for advanced or unresectable
melanoma. Up until now, seven PD-1/PD-ligand(L)-1 inhibitors are approved in various solid
cancers and hundreds of clinical studies are currently ongoing. In hematology, PD-1 inhibitors
nivolumab and pembrolizumab were approved for the treatment of relapsed/refractory (R/R) classic
Hodgkin lymphoma, and later pembrolizumab was approved for R/R primary mediastinal large
B-cell lymphoma. In acute myeloid leukemia (AML), the combination of hypomethylating agents
and PD-1/PD-L1 inhibitors has shown promising results, worth of further investigation, while other
combinations or single agent therapy have disappointing results. On the other hand, rather than in
first line, these therapies could be useful in the consolidation or maintenance setting, for achieving
minimal residual disease negativity. Furthermore, an interesting application could be the use of
PD-1/PD-L1 inhibitors in the post allogeneic hematopoietic stem cell transplantation relapse. There
are several reasons why checkpoint inhibitors are not very effective in treating AML, including
the characteristics of the disease (systemic, rapidly progressive, and high tumor burden disease),
low mutational burden, and dysregulation of the immune system. We here review the results of
PD-1/PD-L1 inhibition in AML and discuss their potential future in the management of this disease.

Keywords: acute myeloid leukemia; checkpoint inhibitors; immune system; cancer

1. Introduction

The immune system has a complex role in defending the host against infections,
against the growth of tumor cells, and also in tissue repair [1]. When an antigen is identified
by the adaptive immune system, the antigen-presenting cells (APCs) become active and
migrate to the lymph nodes in order to activate B and T cells. For the activation of the
T cells, two signals are needed. The first signal requires the interaction between the T
cell receptor (TCR) situated on the T cells, and the epitope of the antigen, presented
together with the MHC (major histocompatibility complex) molecules, situated on the
APCs. The second, co-stimulatory, signal represents the interaction between CD28 (on
the T cells) and B7.1 (CD80) and respectively B7.2 (CD86) (on the APCs) [2]. These two
signals promote the proliferation, differentiation, and survival of T cells. In addition to
the aforementioned co-stimulatory signaling, co-inhibitory signals also exist [3]. There are
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several molecules that control the response of the immune system and downregulate T
cell activation, called immune checkpoints. The most investigated immune checkpoints
are: cytotoxic T-lymphocyte-associated protein 4 (CTLA4) [4], programmed cell death
protein 1 (PD-1) [5], T cell immunoglobulin-3 (TIM-3), lymphocyte activation gene-3
(LAG-3) [6], B and T lymphocyte attenuator (BTLA) [7], V-domain Ig suppressor of T cell
activation (VISTA) [8], and T cell immunoglobulin and ITIM domain (TIGIT) [9]. Several
studies revealed that tumor cells use these pathways to escape the immune system and to
disseminate [10]. These discoveries led to the development of novel agents—checkpoint
inhibitors, which “release the brakes” of the immune system.

2. PD-1, PD-L1, and PD-L2 Biology

PD-1, also called CD279, is a glycoprotein cell receptor which is part of the superfamily
of B7-CD28 and it is encoded by a gene (pdcd-1) situated on chromosome 2 (2q37) [11].
Pdcd-1 consists of five exons [12]. Exon 1 encodes an extracellular peptide, exon 2 an
immunoglobulin variable domain, exon 3 a transmembrane domain, and exons 4 and
5 encode an intracellular domain. PD-1 is a 50–55 kDA protein composed of 288 amino
acids [13,14].

PD-1 cDNA was first isolated in 1992 [15]. Its role in regulating the response of
the immune system has been proved by PD-1 negative mouse models, which developed
different autoimmune diseases [16,17]. Under physiological conditions, the PD-1-PD-
ligand(L)1 pathway protects against autoimmunity, promoting apoptosis of effector T cells
and stimulating the development of regulatory T cells (Tregs) from naïve T cells. Tregs
are a subtype of T cells involved in maintaining peripheral tolerance, by downregulating
effector T cells. They express CD4, CD25, and FOXP3 [18].

PD-1 is expressed on B cells, natural killer cell (NK cells), CD4+ T cells, CD8+ T
cells, CD4- CD8- T cells, activated monocytes, dendritic cells (DC), macrophages, and
immature Langerhans cells [11]. Its expression is enhanced by IL-2, IL-21, IL-15, IL-7, type 1
interferons (IFNs), IL-6, and IL-12 [11,19]. PD-1 has two known ligands: PD-L1 and PD-L2.

PD-L1 (called CD274 or B7-H1) was discovered in 1999 [20] and is a type I transmem-
brane protein, composed of 290 amino acids. It has 33 kDa and it is composed of two extra-
cellular domains (IgV- and IgC-like domains), one transmembrane and one intracellular
domain. PD-L1 is encoded by the Cd274 gene on chromosome 9 (9p24) [12]. It is expressed
on lymphoid tissue (T cells, B cells, macrophages, and DC) and also on non-lymphoid
structures (vascular endothelial cell, beta cells in the pancreas, placenta, and testicle) [11,21].
PD-L1 is expressed on cells infected by viruses such as Ebola virus, friend retrovirus, hu-
man immunodeficiency virus, herpes simplex virus type 1, hantavirus, influenza A virus,
Japanese encephalitis virus, Kaposi’s sarcoma-associated herpesvirus, lymphocytic chori-
omeningitis virus, respiratory syncytial virus, and varicella zoster virus [22]. Furthermore,
PD-L1 is overexpressed in several types of cancers and hematological malignancies such
as colorectal, ovarian, pancreatic, gastric, renal, breast, lung, thyroid, testicular cancer,
melanoma, and Hodgkin lymphoma (HL) [23,24]. PD-L1 overexpression is upregulated
by interferon gamma through the JAK-signal transducer and activator of transcription
(STAT) pathway [25]. Other studies have shown PD-L1 overexpression in diffuse large B
cell lymphoma (DLBCL), follicular lymphoma, peripheral T-cell lymphoma [26,27], mul-
tiple myeloma (MM) [28], chronic lymphocytic leukemia (CLL) [29], and acute myeloid
leukemia (AML) [30].

PD-L2 (called CD273 or B7-DC) is also a type I transmembrane receptor, composed
of 273 amino acids, and encoded by Pdcd1lg2 gene, situated on chromosome 9. It is
expressed on macrophages, DC, and mast cells [12]. PD-L2 is associated with a higher
production of T-cells and IFN gamma [31]. However, its role and mechanism of action is
not completely understood.
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3. PD-1 and PD-L1 Inhibitors in Cancer

The advent of PD-1 and PD-L1 inhibitors was a major breakthrough in the treatment
of several solid cancers. One of the first clinical studies, in 2010, showed the efficacy of
MDX-1106 (nivolumab), a PD-1 inhibitor. Thirty-nine patients with refractory metastatic
melanoma, renal cell carcinoma, non-small-cell lung cancer (NSCLC), prostate cancer, or
colorectal cancer (CRC) were included in the study. Out of the 39 patients, one achieved
complete remission (CR), and two partial remissions (PR) [32]. Later, pembrolizumab, a
humanized monoclonal antibody which blocks the interaction between PD-1 and PD-L1,
was approved in 2015 for unresectable or metastatic melanoma and in 2016 for metastatic
NSCLC and head and neck squamous carcinoma (HNSCC) with progression on or after
platinum-containing therapy. In October 2016, pembrolizumab received approval for the
treatment of patients with metastatic NSCLC which express PD-L1, and who have pro-
gressed on or after platinum-containing treatment. In 2017, pembrolizumab was approved
for the treatment of refractory classic HL (cHL) [33]. Later, the CkeckMate 227 trial showed
better results (prolonged overall survival (OS), better response rate) in the treatment of
NSCLC with the combination of nivolumab and ipilimumab (anti-CTLA-4 antibody) [34].

Atezolizumab is a humanized monoclonal antibody which targets PD-L1, and inhibits
the interaction between PD-1 and its ligand [35]. Phase II and phase III trials showed
efficacy of atezolizumab (MPDL3280A) in invasive bladder cancer [36], in platinum treated
patients with locally advanced/metastatic urothelial carcinoma [37], in triple negative
advanced/metastatic breast cancer [38], and in NSCLC [35].

Cemiplimab is a human monoclonal antibody targeting PD-1. Based on EMPOWER-
CSCC 1 trial, cemiplimab was approved by FDA in 2018 and by EMA in 2019, for the
treatment of locally advanced/metastatic cutaneous squamous cell carcinoma not eligible
for curative radiotherapy or surgery [39]. Several studies in other solid cancers and
hematological malignancies are currently ongoing.

Durvalumab (MEDI4736) is a fully human monoclonal antibody targeting PD-L1 [40]
which improved the OS of patients with advanced NSCLC [41], advanced urothelial
bladder cancer [42], HNSCC progressed on platinum-based chemotherapy [43]. Several
phase I and phase II studies showed efficacy in triple negative breast cancer [44] and in
advanced-stage ovarian cancer in combination with tremelimumab [45] or olaparib [46].
Studies are ongoing.

Avelumab (MSB0010718C) is a fully human IgG1 anti-PD-L1 monoclonal antibody [47]
which showed promising results in phase Ib clinical studies in patients with metastatic
Merkel cell carcinoma [48], advanced unresectable mesothelioma [49], ovarian cancer [50],
NSCLC [51], gastric or gastroesophageal junction cancer [52], refractory metastatic urothe-
lial carcinoma [53], and renal cell carcinoma [54].

Spartalizumab (PDR001) is a humanized IgG4 anti PD-1 monoclonal antibody tested
in various types of advanced or metastatic solid cancers [55,56]. A phase Ib open label study
of spartalizumab and/or MBG453 and/or decitabine in patients with relapsed/refractory
(R/R) AML or high-risk myelodysplastic syndrome (HR MDS) is currently recruiting [57].

Up until now, FDA approved PD-1 and PD-L1 checkpoint inhibitors for melanoma,
renal cell carcinoma, head and neck cancer, urothelial carcinoma, CRC, hepatocellular carci-
noma, small and non-small cell lung cancer, esophageal squamous cell carcinoma, cervical
cancer, Merkel cell carcinoma, bladder cancer, certain types of endometrial carcinoma, and
breast cancer. In hematologic malignancies PD-1, PD-L1 inhibitors are approved in HL and
primary mediastinal large B-cell lymphoma (PMBCL).

Interestingly, a meta-analysis including 19 randomized clinical trials and 11,379 pa-
tients, showed that PD-1 inhibition leads to a higher OS and progression free survival (PFS)
compared to PD-L1 inhibition (as single agent or in combination), in different types of
cancers. While PD-1 inhibitors block the interaction between PD-1 and PD-L1 and, respec-
tively, PD-L2, PD-L1 blockers inhibit only the PD-1/PD-L1 axis, allowing the tumor cells to
escape the immune system via PD-1-PD-L2 axis and thus explaining the abovementioned
results [58].
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A high tumor mutational burden (TMB) can increase the diversity of tumor cell
antigens, and will increase the chance that some of the antigens will be recognized by the
immune system. It has been demonstrated that a high TMB is associated with a better
response to PD-1 inhibition [59]. Moreover, as expected, a high expression of PD-L1 on
tumor cells is associated with better response to checkpoint inhibitors [59].

4. PD-1 and PD-L1 Inhibitors in AML
4.1. Introduction

AML is a heterogenous disease characterized by the proliferation of abnormal
myeloblasts in the bone marrow. AML has a dismal prognosis in young patients ca-
pable of withstanding high doses of chemotherapy and even worse in elderly, frail patients
with comorbidities. Even though the understanding of AML pathogenesis has improved
over the last decades, the standard treatment for AML patients dates back to 1973 [60]. The
discovery of t(15;17) and its personalized treatment, FLT3-inhibitors, BCL2-inhibitors, mon-
oclonal antibodies, epigenetic regulators, and bispecific T-cell engager (BiTE) antibodies
improved the OS of these patients [61]. The five year OS in young patients increased from
13% to 49% and in elderly patients from 8% to 13% from 1970 to 2015 [62]. Even so, there is
an urgent need of novel, personalized drugs.

4.2. Immune Checkpoint Blockade in AML—Why Was It Bound to Fail?

Checkpoint inhibitors were a major breakthrough in the treatment of solid cancers, es-
pecially in those with high mutational burden due to the higher amount of neo-antigens [63].
This paradigm was later applied to hematological malignancies but with less success pos-
sibly due to different immune pathways and a higher immune tolerance [64]. However,
as expected, in cHL, PD-1 inhibitors are of great benefit and demonstrated excellent re-
sults [65,66].

Compared with cHL, AML has different characteristics. It is an aggressive, rapid
progressive disease, which does not allow the immune system to develop a proper anti-
leukemic response. A study in a murine model showed that localized implantation (sub-
cutaneous) of leukemic cells triggers a response from the immune system, as opposed to
a systemic (intravenous) route, which generates a tolerant state towards the malignant
cells [67]. Moreover, the high tumor burden affects the response to PD-1 inhibitors [68]. Fur-
thermore, AML has a low mutational burden and the newly formed antigens are expressed
in different other tissues of the host [69]. Interestingly, some case series were reported,
which describe spontaneous remissions in patients with AML, especially after an immune
event (e.g., infections) suggesting the importance of the immune response [70]. Several
studies suggested that Tregs are increased, both in peripheral blood and bone marrow
of patients with AML, compared to healthy participants. However, there are conflicting
results regarding the significance of increased Tregs [71]. Wang et al. demonstrated with
their mouse model that the accumulation of Tregs in the leukemic microenvironment
has a dismal prognosis. Interestingly, the destruction of Tregs in the tumor environment
inhibits the anti-leukemic immune response. Thus, blocking the accumulation of Tregs
in the tumor environment would be an attractive therapeutic approach. Wang et al. also
demonstrated that a low number of Tregs increased survival and decreased leukemia
burden [72]. Careful consideration must be given to the depletion of Tregs, which could
lead to severe autoimmune events. Gutierrez et al. demonstrated in in vivo and in vitro
studies that midostaurin, a FLT3 inhibitor, decreases Tregs in AML patients and healthy
participants suggesting that a combination with immunotherapy could be possible and
needs further investigation [73]. Other factors that promote tumor evasion and suppression
are exhausted T cells, decreased function of T helper cells and production of cytokines
and enzymes that suppress the immune system (e.g., indoleamine 2,3-deoxygenase 1,
L-kynurenine, and 2-hydroxyglutarate) [71]. Another way to escape the immune system is
for the AML cells to downregulate the MHC class II, a phenomenon especially seen in the
post-transplantation setting [74].
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In AML, the overexpression of CD47 inhibits phagocytosis via signal receptor protein-
alfa (SIRP-alfa) on macrophages and DC and is associated with poor survival [75,76]. These
discoveries led to the development of CD47 checkpoint inhibitors which are currently
examined in several studies, for different types of cancer [77].

In conclusion, AML cells develop several mechanisms for hijacking the immune
system via the immune checkpoints (Figure 1).
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(inhibitors—marked with red arrows). PVR—poliovirus receptor, PVRL2—poliovirus receptor-
related 2, HVEM—herpesvirus entry mediator.

4.3. Immune Checkpoint Blockade in AML—Why Was It Bound to Succeed?

A trial which included 124 bone marrow biopsies from patients with MDS, AML
and chronic myelomonocytic leukemia (CMML) showed that PD-1, PD-L1, PD-L2 and
CTLA4 were upregulated in CD34+ cells. AML and MDS bone marrow biopsies showed
PD-1 positivity on the stroma and PD-L1 positivity on the blast population. Statistic
correlations demonstrated that PD-1 expression is associated with increased age while PD-
L2 expression is associated with female gender [78]. While there are several clues that PD-1
and PD-L1 inhibitors would lack the success seen in solid cancers, some combinations are
worth further investigations. PD-1 expression on T cell is regulated by DNA methylation.
Apparently, hypomethylating agents (HMAs) are able to upregulate PD-1 expression on T
cells, thus creating a resistance mechanism [79]. A clinical trial testing HMA and vorinostat
showed that upregulated PD-L1 and PD-L2 leads to a lower median survival as compared
to patients without upregulated PD-L1 and PD-L2 (6.6 months vs. 11.7 months) [80]. These
conclusions led to the development of several clinical trials that tested the combination
between a HMA and PD-1/PD-L1 blockers.

4.4. Results in AML

Based on the Viale-A study, in USA, the standard of care for elderly patients with
AML is now the combination of HMAs (azacitidine/decitabine) plus a BCL2 inhibitor
(venetoclax). This combination improved OS (14.7 months vs. 9.6 months) and increased
CR (36.7% vs. 17.9%) as compared with azacitidine alone [81]. Even with this combination
elderly patients have a dismal prognosis. Thus, further investigation is needed. Currently,
the combination of venetoclax + HMAs + pembrolizumab is evaluated to assess the per-
centage of patients who achieve undetectable minimal/measurable residual disease (MRD)
compared to venetoclax + HMA (Blast MRD AML-2 study) [82].

PD-1, PD-L1 inhibitors are also studied in the R/R setting. A single arm, phase II
clinical trial assessed the efficiency of azacitidine plus nivolumab in 70 elderly patients with
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R/R AML. The overall response (OR) was 33% (15 CR/complete remission with incomplete
hematological recovery (CRi), 1 partial remission (PR), 7 hematological improvement,
9% had stable disease (SD), and 58% no response). Overall response rate (ORR) to HMAs
was better in naïve patients [83]. Another clinical trial, which enrolled 10 patients, tested
the efficacy of pembrolizumab and decitabine in R/R AML. At the end of the eighth cycle,
four patients presented SD, four progressed, one was MRD negative, and one was excluded
from the study due to toxicity, during the fifth cycle. Median OS was 7 months with a
median time of follow-up of 13 months [84].

Resistance to PD-1 inhibitors may be due to up-regulated CTLA-4 [85]. This obser-
vation led to studies that assessed the combination of HMA + PD-1 inhibitor + CTLA-4
inhibitor. Daver et al. showed in a phase II trial that azacitidine + nivolumab + ipilimumab
improved OS compared to azacitidine + nivolumab and azacitidine alone (10.5, 6.4, and
4.6 months, respectively) [83].

PD-1 inhibitors were also tested in combination with high dose chemotherapy. A
single arm phase I–II clinical trial assessed nivolumab plus cytarabine and idarubicin in
44 patients with newly diagnosed AML or HR MDS. Median event free survival (EFS) was
not reached at a median follow-up of 17.25 months. The median OS was 18.54 months [86].
Pembrolizumab was associated with high dose cytarabine in a clinical trial, which en-
rolled 37 patients with R/R AML. OR was 46% and CR was 38%. Nine patients received
maintenance with pembrolizumab but seven of them relapsed [87].

There are several ongoing studies that investigate PD-1 inhibitors and MRD, and
results are pending. Blast MRD AML-1 trial, which is currently ongoing, assesses the
percentage of patients who achieve undetectable MRD with pembrolizumab in combina-
tion with intensive chemotherapy compared to chemotherapy alone. In a similar manner,
the Blast MRD AML-2 trial assesses pembrolizumab in combination with azacitidine and
venetoclax compared to azacitidine and venetoclax alone [88,89]. Moreover, nivolumab
is tested as a single agent for eliminating MRD positivity in patients in complete remis-
sion [90]. Several authors consider PD-1/PD-L1 inhibitors a possible therapeutic approach
in eliminating MRD positivity [68,91].

Allogenic hematopoietic stem cell transplantation (allo-HSCT) is an effective im-
munotherapy, for relapsed or high risk patients with AML, which uses the donor’s immune
cells to develop a response towards the disease (graft versus tumor effect). Patients who
relapse after allo-HSCT have a poor prognosis. In these conditions, treatment is channeled
towards harnessing the immune system either with a second HSCT, in selected cases,
or with donor lymphocytes infusion (DLI) [92]. Another option, available in the future
could be the PD-1/PD-L1 blockade. Several studies suggest that PD-1/PD-L1 blockers
are capable of inducing graft versus leukemia effect (GVL) [2,93]. Interestingly, adding
PD-L1 inhibitors early after allo-HSCT triggers GVL but with high graft versus host disease
(GVHD) in comparison to adding them later in the course of the treatment which is associ-
ated with GVL with no GVHD [93]. Pembrolizumab was assessed in the setting of relapsed
hematological malignancies following allo-HSCT. Eleven patients were included in the
study, eight with AML, two with DLBCL, and one with HL. Of the seven patients evaluable,
three patients progressed, two had SD, and two achieved CR [94]. The combination of
nivolumab and ipilimumab is currently investigated in post allo-HSCT relapse in patients
with AML and MDS [95]. A case series reported three AML patients treated with PD-1
inhibitors in the post allo-HSCT setting from which one achieved CR, one SD and one
progressed [96]. PR was achieved with nivolumab in a heavily treated patient with HL,
relapsed after allo-HSCT with the expense of gastrointestinal and hepatic GVHD [97].
Furthermore, another case series comprised of 31 patients, mostly HL cases, reported 77%
ORR with PD-1 inhibitors treatment in the aforementioned setting [98].

A meta-analysis of 24 articles evaluated the benefit of checkpoint inhibitors before
or after allo-HSCT in different hematological malignancies and revealed that adding
checkpoint blockers before or after allo-HSCT leads to higher rate of chronic, acute and
hyperacute GVHD. T cells with low expression of PD-1 persist for 10 months or more
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leading to a higher risk of GVHD [99]. Several studies, especially in cHL, showed that
PD-1 inhibitors are highly efficient in the relapsed setting, after allo-HSCT, at the cost of a
higher rate of GVHD [96,98,100]. Thus, these agents could be used in relapsed AML but
the risk GVHD flares should be thoughtfully considered [68]. On the other hand, Oran et al.
demonstrated that the use of checkpoint inhibitors prior to allo-HSCT is feasible and post
allo-HSCT administration of cyclophosphamide reduces the risk of acute GVHD [101].

After IFN-gamma exposure, PD-L1 expression had a minor increase in healthy patients
but increased significantly in AML patients [102]. Several studies demonstrated that the
expression of PD-L1 in AML blasts is restricted at diagnosis [102,103] and upregulated in
relapse, progression, and CR [102]. The overexpression of PD-L1 in AML patients in CR is
explained as a response of the malignant cells to chemotherapy (adaptive resistance) [102].
A study from 2018, conducted on 55 patients, demonstrated that the incidence of PD-L1
expression is higher in patients with leukocytosis [30]. Other studies showed a correlation
between TP53 mutation and the overexpression of PD-L1 [2,104].

A 36 patient study demonstrated that PD-L1 expression level is a negative prognostic
factor in patients with FLT3- ITD (internal tandem duplications) and concomitant NPM1
mutation [105]. A small study published in 2018 showed that NPM1 mutated blasts showed
a higher expression of PD-L1 when compared to NPM1wild type AML blasts [106].

A review of ongoing or completed clinical trials of PD-1, PD-L1 inhibitors in AML is
presented in Table 1.

Table 1. Completed and ongoing clinical trials of programmed cell death protein 1 (PD-1), PD-ligand(L)1 inhibitors in AML.

Disease Stage Therapeutic Agents Study Design Participants References

AML/HR MDS
18–60 years or >60
eligible for intense

chemotherapy

cytarabine 1.5 g/m2 by 24 h continuous
infusion daily on days 1–4 (3 days in
patients > 60 years) and idarubicin

12 mg/m2 daily on days 1–3. nivolumab
3 mg/kg, day 24 every 2 weeks, 1 year

for responders

Single-arm, phase II part
of the phase I/II study n = 44 [86]

R/R AML > 18 years
azacitidine iv/sc 75 mg/m2 days 1–7 +
nivolumab iv 3 mg/kg days 1 and 14,

every 4 to 6 weeks

Non-randomized,
open-label, phase

II study
n = 70 [83]

Newly diagnosed
patients with TP53

mutated AML

Induction: nivolumab iv day 15 of cycle
1 and days 1 and 15 of subsequent cycles,
decitabine 1–10 of induction cycle 1 and

venetoclax orally daily on days 1–21
Maintenance: nivolumab iv: days 1 and

15, decitabine iv: days 1–5, and venetoclax
po: days 1–21

Non-randomized,
open-label, pilot study n = 13 [107]

AML patients in first
CR/CRi after intense

chemotherapy not
candidates for HSCT

nivolumab iv every 2 weeks for 46 cycles
vs. clinical observation

Randomized, open-label,
phase II study n = 82 [90]

AML/HR MDS
18–60 years or >60
eligible for intense

chemotherapy or R/R
AML/MDS for phase I

Phase I: nivolumab iv 1 mg/kg on day 24
of a 28 days cycle and after cycle 2,

nivolumab iv every 2 weeks, 1 year +
idarubicin 12 mg/m2 IV days 1–3 +
cytarabine iv 1.5 g/m2 days 1–4 +

solumedrol 50 mg/dexamethasone iv
10 mg days with 1–4. Phase II: nivolumab

maximum tolerated dose

Non-randomized, open
label, phase I/II study n = 75 [108]

R/R AML or MDS
patients following

allogenic HSCT

nivolumab iv, days 1 and 15 vs.
ipilimumab iv day 1 vs. nivolumab iv,

days 1, 14, and 28 + ipilimumab iv, day 1

Non-randomized, open
label, phase I study n = 55 [95]
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Table 1. Cont.

Disease Stage Therapeutic Agents Study Design Participants References

AML
patients ≥ 55–85 years, in

first/second CR,
suitable for

haploidentical
transplant

cytarabine iv 500–1000 mg/m2 bid
days-2–4 + G-CSF, day 0 + nivolumab

40 mg, day 5 vs. cytarabine iv
500–1000 mg/m2 bid days 1–3 +

nivolumab 40 mg day 1

Randomized, open-label,
phase II study n = 16 [109]

R/R
AML/biphenotypic

patients or newly
diagnosed ≥ 65 years

AML patients, unfit for
in high dose

chemotherapy

azacitidine iv/sc, days 1–7 or days 1–4
and 7–9 + nivolumab iv, days 1 and 14

(cycle 1–4) and day 1 (cycle 5 and
subsequent) vs. same regimen +

ipilimumab iv day 1 and then every
6–12 weeks

Non-randomized, open
label, phase II study n = 182 [110]

HR of relapse in AML
patients in

CR/CRi/CRp/PR

nivolumab iv, days 1 and 15. (cycles 1–5)
and nivolumab iv, day 1, (cycle 6–12), and
nivolumab iv, day 1(every 3 cycles starting

from cycle 12) or continue nivolumab
days 1 and 15 if progressive disease

Non-randomized, open
label, phase II study n = 30 [111]

R/R AML/HR-MDS,
IDH1 mutated

ivosidenib PO 500 mg/day + nivolumab
480mg on day 1 cycle 2.

Non-randomized, open
label, phase II study n = 45 [112]

18–70 years AML/HR
MDS eligible for HSCT

nivolumab iv (1 mg/kg or 3 mg/kg),
12 doses, day 1 every 3 weeks, 12 cycles

vs. Ipilimumab (0.3 mg/kg/1.0
mg/kg/3.0 mg/kg), day 1, every 3 weeks,

6 cycles vs. nivolumab iv (3 mg/kg),
12 doses, day 1 every 3 weeks, 12 cycles +
ipilimumab (0.3 mg/kg/0.6 mg/kg/1.0
mg/kg), day 1, every 3 weeks, 6 cycles

Non-randomized, open
label, phase I study n = 21 [113]

IPSS-1, IPSS-2, HR MDS,
low blast count AML

DEC-205/NY-ESO-1 fusion protein
CDX-1401 intracutaneously + poly ICLC
sc, day-14 and day 15 (cycle 1–4), and day
1 of every 4 courses (cycle 5 and after) +

nivolumab iv days 1 and 15 and
decitabine iv, days 1–5

Non-randomized, open
label, phase I study n = 8 [114]

Recurrent
AML/ALL/CLL/CML

BCR-
ABL+/HL/MM/non-

Hodgkin
Lym-

phoma/MDS/MPN/Other
hematologic

malignancies after
allo-HSCT

Induction: ipilimumab iv, day 1+
nivolumab iv, day 1. (cycles of 21 days).
Maintenance: ipilimumab iv every 12

weeks + nivolumab iv every 2 weeks in
the absence of progressive disease

or toxicity.

Non-randomized, open
label, phase I/IB study n = 71 [115]

HR AML in remission
not eligible for HSCT

nivolumab 3 mg/kg iv every 2 weeks for
6 months. After 6 months nivolumab was
given every 4 weeks until 12 months on

the study, and every 3 months
until relapse

Non-randomized, open
label, phase II study n = 8 [116]

R/R AML who have
exhausted standard of

care options

flotetuzumab in step-up dose, followed by
continuous infusion flotetuzumab,

starting at week 2 of cycle 1 and
continuing through each 28-day cycle.

MGA012 every two weeks.

Non-randomized phase
I study [117]
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Table 1. Cont.

Disease Stage Therapeutic Agents Study Design Participants References

R/R AML

atezolizumab iv on day 22 of cycle 1 and
on days 8 and 22 on subsequent cycles +

Hu5F9-G4 1 mg/kg on days 1 and 4,
15 mg/kg on day 8, 30 mg/kg on day 11,
and continue with 30 mg/kg every week

Non randomized,
Open-label phase

Ib study
n = 21 [118]

R/R or newly diagnosed
patients with AML unfit

for intensive
chemotherapy

atezolizumab 840 mg iv on days 8 and 22
+ guadecitabine 60 mg/m2 sc on Days 1–5

Non randomized,
open-label phase

Ib study
n = 40 [119]

≥60 years AML patients
in CR/CRi, MRD+ not

eligible for HSCT

BL-8040 SC 1.25 mg/kg days 1–3 of each
cycle +

atezolizumab 1200 mg iv on Day 2 of
every cycle.

Non-randomized, phase
Ib/II, Multicenter, single

arm, open-label study
n = 60 [120]

R/R AML patients
FLT3+

Phase I: establishing the right dose for
gilteritinib

Phase II: gilteritinib + atezolizumab

Non-randomized, phase
I/II, open-label study n = 61 [121]

Relapsed
AML/MDS/ALL after

allo-HSCT
pembrolizumab 200 mg iv every 3 weeks

Non-randomized,
open-label, phase IB

study
n = 20 [122]

Untreated AML, unfit
for intensive

chemotherapy

decitabine 20 mg/m2 iv day 1–5, every
28 days and avelumab was given at
10 mg/kg iv day 1, every 14 days

Non-randomized, single
arm, open label phase

I study
n = 7 [123]

R/R AML

azacitidine sc/iv days 1–7 or on days 1–5
and 8–9 + avelumab iv days 1 and 14 for

4 courses or until CR and on day 1 for
subsequent courses.

Non-randomized,
open-label phase

Ib/II study
n = 19 [124]

MDS patients ≥ 18 years
with IPSS-R

intermediate, high, and
very high or AML
patients ≥ 65 years

ineligible for intense
chemotherapy

azacitidine 75 mg/m2 sc, days 1–7 and
durvalumab 1500 mg iv on Day 1 every

four weeks vs. azacitidine alone

Randomized, open-label,
international,

multicenter, phase
II study

n = 213 [125]

R/R AML
pembrolizumab iv 200 mg, day 1 of every
three-week cycle + decitabine 20 mg/m2,

days 8–12 and 15–19

Single-arm open-label,
phase I/II study n = 10 [84]

R/R AML patients and
newly diagnosed elderly

(≥65 Years) AML
patients

azacitidine 75 mg/m2 iv/sc on days 1–7
every 28 days + pembrolizumab 200 mg iv
every 3 weeks starting on day 8 of cycle 1

Multicenter,
nonrandomized,
open-label phase

II study

n = 40 [43]

≥60 years AML patients
ineligible/refuse

intensive chemotherapy

azacitadine iv/sc days 1–7 and venetoclax
po days 1–28 of cycle 1 and days 21–28 vs.
pembrolizumab iv day 8 cycle 1 and every
3 weeks in cycle 2–6 + azacitadine iv/sc
days 1–7 + venetoclax po days 1–28 of

cycle 1 and days 21–28 of
subsequent cycles.

Randomized phase II,
open-label trial n = 76 [88]

≥60 years AML patients
in CR not eligible for

HSCT

pembrolizumab 200 mg iv once every
three weeks

Non-randomized,
open-label, phase II trial n = 40 [126]

18–70 years R/R AML
patients

Age-adjusted HiDAC followed by
pembrolizumab 200 mg iv on day 14 in

R/R AML patients

Non-randomized,
open-label, phase II trial n = 37 [127]
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Table 1. Cont.

Disease Stage Therapeutic Agents Study Design Participants References

Newly-diagnosed
AML patients

Induction phase: 3 + 7 + pembrolizumab
(day 8) vs.

3 + 7. Consolidation phase: HiDAC +
pembrolizumab

vs. HiDAC. Maintenance phase:
pembrolizumab every 3 weeks for up to

2 years

Randomized phase II,
open-label trial n = 124 [89]

R/R AML patients or
newly diagnosed AML
patients not suitable for

high-dose
chemotherapy or HR

MDS or newly
diagnosed MDS

AML: pembrolizumab iv days 1 and 22
and decitabine iv days 1–10 MDS:

Pembrolizumab iv days 1 and 22 and
decitabine on days 1–5.

Non-randomized,
open-label, phase Ib trial n = 54 [128]

NPM1 mutated AML
patients in CR or MRD

positivity or patients not
eligible for high-dose

chemotherapy or HSCT

pembrolizumab 200 mg iv + azacitidine
75 mg/m2 sc

Non-randomized,
open-label, phase II trial n = 28 [129]

HR AML
(18–78 years)

fludarabine + melphalan+ Autologous
HSCT followed by pembrolizumab on

day +1

Non-randomized,
open-label, phase II trial n = 20 [130]

AML/MDS/cHL, B cell
NHL relapsed after

alloHSCT
pembrolizumab 200 mg iv every 3 weeks

Non-randomized,
open-label, phase I

pilot study
n = 26 [131]

RFS—Relapse Free Survival, MTD—Maximum Tolerated Dose, MRD-CR—minimal/measurable residual disease negativity and complete
remission, ALL—acute lymphoblastic leukemia, DOR—duration of response, DFS—Disease-Free Survival, bid—bis in die, CRp—complete
response with incomplete platelet recovery, MPN—myeloproliferative neoplasm, CML—chronic myeloid leukemia, ADA—anti-drug-
antibodies, HiDAC—high dose Cytarabine.

5. Toxicities

Even though checkpoint inhibitors are not associated with the classic side effects of
chemotherapy, they are not completely harmless, as they are associated with immune-
related adverse events (irAEs). These adverse events can vary from asymptomatic to life
threating or rarely even death and they can affect almost every organ or system at any time
of the treatment. Depending on the severity of the adverse events the treatment may vary
from monitoring to high dose of corticosteroids [132]. Table 2 represents the most common
adverse events following the treatment with PD-1/PD-L1 inhibitors.

Table 2. Adverse events after PD-1, PD-L1 blockade.

Affected Organ/System Adverse Event Symptoms References

Lung Pneumonitis asymptomatic, cough, dyspnea, chest
pain, wheezing [132,133]

Sarcoidosis asymptomatic, cough, dyspnea

Gastrointestinal Colitis diarrhea, bloody stools, abdominal
discomfort or pain,

[132,134]Esophagitis
anorexia, nausea

loss of appetite, abdominal pain,
nausea, vomiting

Gastritis

Mucositis
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Table 2. Cont.

Affected Organ/System Adverse Event Symptoms References

Pancreatitis Fever, nausea, vomiting, abdominal pain with
irradiation in the back [135]

Liver Hepatitis asymptomatic, fever, nausea, vomiting [134]

Skin Skin Rash
[136]Pruritus

Vitiligo

Endocrine Hypophysitis fatigue, headache, nausea, postural hypotension,
anorexia, tachycardia [132,134]

Hypothyroidism asymptomatic, fatigue, constipation,
bradycardia, cold intolerance [132,137]

Hypertiroidism tachycardia, tremor

Diabetes mellitus
type I Asymptomatic, polyuria, polydipsia [132,137]

Ocular Uveitis eye redness and pain, decreased vision [138]

Neurologic
Meningitis, encephalitis, Guillain Barre

syndrome, myastenia
gravis, polyradiculitis,

nausea, fatigue, headache, blurred vision,
dysesthesia, fever, hallucinations, confusion,

muscle weakness, tetraplegia, paraplegia
[139]

Cardiac
Myocarditis, pericarditis

hypertension, arrhythmias,
myocardial infarction

palpitations, dyspnea, chest pain, fatigue [134,140]

Hematological Aplastic anemia, hemolytic anemia,
immune thrombocytopenia fatigue, bleeding, infections [132]

Rheumatologic Vasculitis, Sicca syndrome, polymiositis,
systemic lupus erythematosus

mialgia, joint swelling and pain, dryness of
mouth and eye [141]

6. Conclusions

Checkpoint inhibitors were a major breakthrough in the treatment of solid cancers,
and raised hope for a new, less aggressive therapy in hematological malignancies with
suboptimal treatment results like AML. Despite promising results in some subtypes of lym-
phoma, currently being approved in HL and PMCBL, PD-1/PD-L1 checkpoint inhibitors
have shown disappointing results in trials investigating their use as single agent, in both, de
novo and relapsed AML. However, the combination of these agents with non- aggressive
approaches, like HMAs, has shown promising activity in AML and is being currently
studied in ongoing clinical trials. We believe that another potential use of PD-1/PD-L1
inhibitors in AML could be in the setting of either consolidation or maintenance where, in
the presence of an at least partially restored immune system, they could promote MRD neg-
ativity. In this respect, they could be used either as single agents or in combinations. A very
interesting therapeutic application, albeit of limited use, of checkpoint inhibitors in AML,
could be in the post allo-HSCT setting, where, in the presence of AML relapse/progression,
these agents might be useful in augmenting the immune reactivity of the graft, boosting the
GVL effect, at the expense of also enhancing GVHD. To summarize, even though immune
checkpoint blockade did not meet the high expectations they were credited with in AML,
they are still a welcome addition to the limited therapeutic options in this group of diseases.
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