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Abstract 

Neuromuscular blocking agents (NMBAs) inhibit patient-initiated active breath and the risk of high tidal volumes and 
consequent high transpulmonary pressure swings, and minimize patient/ ventilator asynchrony in acute respiratory 
distress syndrome (ARDS). Minimization of volutrauma and ventilator-induced lung injury (VILI) results in a lower 
incidence of barotrauma, improved oxygenation and a decrease in circulating proinflammatory markers. Recent 
randomized clinical trials did not reveal harmful muscular effects during a short course of NMBAs. The use of NMBAs 
should be considered during the early phase of severe ARDS for patients to facilitate lung protective ventilation or 
prone positioning only after optimising mechanical ventilation and sedation. The use of NMBAs should be integrated 
in a global strategy including the reduction of tidal volume, the rational use of PEEP, prone positioning and the use of 
a ventilatory mode allowing spontaneous ventilation as soon as possible. Partial neuromuscular blockade should be 
evaluated in future trials.
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Introduction

Mechanical ventilation (MV) is the basis of the treatment 
of patients presenting with acute respiratory distress syn-
drome (ARDS). The respective roles of mechanical ven-
tilation with preserved spontaneous breathing (SB) and 
completely controlled mechanical ventilation using neu-
romuscular blocking agents (NMBAs) need to be clari-
fied at the very early phase of ARDS. However, these two 
seemingly opposing strategies should be complemen-
tary, and defining the appropriate timing using these two 
strategies successively is warranted.

The current SARS-CoV-2 pandemic is associated 
with NMBA shortage in different countries, suggesting 
their widespread use [1]. Even before the publication of 
specific studies regarding the use of NMBAs in ARDS 
patients, their use was not trivial. In a sub-study of the 

ALVEOLI trial comparing a high PEEP strategy to a low 
PEEP strategy, continuous NMBAs were used at baseline 
in 30% and 25.4% of the lower and higher PEEP groups, 
respectively, and in 45% and 33% of patients with lower 
and higher PEEP between day 0 and day 28 [2]. Factors 
that were found to be associated with NMBA use are 
mainly related to disease severity, as assessed by a high 
APACHE III score, a large alveolar–arterial oxygen gra-
dient, and a high plateau pressure [2]. Moreover, the 
use of prone positioning [3], permissive hypercapnia 
to ensure protective ventilation, extra-corporeal mem-
brane oxygenation (ECMO) [4] or high-frequency oscil-
latory ventilation may require the use of NMBAs [5]. 
The purpose of this narrative review is to present an 
updated discussion on the role of muscle paralysis dur-
ing mechanical ventilation in ARDS patients, based both 
on pathophysiological concepts and data obtained from 
clinical studies.
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Pharmacology of NMBAs
Physiologically, acetylcholine (ACh) is released from the 
presynaptic motor nerve terminus, diffuses across the 
synaptic cleft, and binds to ligand-gated nicotinic ace-
tylcholine receptors (AChRs) on the postsynaptic motor 
endplate. The binding of ACh increases the membrane 
permeability, which decreases the transmembrane poten-
tial. When the threshold potential is reached, the action 
potential is propagated, resulting in skeletal muscle cell 
contraction. The action of ACh is rapidly terminated by 
the enzyme acetylcholinesterase. NMBAs cause skeletal 
muscle relaxation by blocking the acetylcholine receptor 
neuromuscular junction [6]. These agents are classified 
by their mechanism of action and chemical structure. 
Depolarising NMBAs bind and activate AChRs, whereas 
non-depolarising NMBAs bind and competitively antag-
onize AChRs. Succinylcholine is the only depolaris-
ing agent but is not used as continuous infusion. The 
group of non-depolarising NMBAs is further subdivided 
according to their structure into benzylisoquinolinium—
e.g., atracurium, cisatracurium and mivacurium, and 
amino steroidal compounds—e.g., rocuronium, vecuro-
nium and pancuronium. Steroid compounds appear to 
further favor the occurrence of myopathies because of 
their structural analogy [7]. Moreover, they are metabo-
lized into active metabolites; the elimination of these 
metabolites can be disturbed in renal or liver failure, and 
there is a risk of accumulation, especially if administered 
for several days. On the contrary, benzylisoquinolines are 
metabolized to inactive compounds by plasma esterases, 
depending upon the plasma temperature and pH. There 
is no risk of a prolonged muscular block after ending 
the infusion of these agents even in critically ill patients 
with renal or liver failure [8]. The choice of the adequate 
non-depolarising NMBA depends on both the indication 
and patient’s comorbidities (e.g., renal and liver failure). 
Pancuronium was the first amino steroidal compound 
introduced clinically. It stimulates muscarinic receptors, 
especially cardiac receptors with an atropine-like effect 
(vagal blockade with tachycardia). Atracurium and cisa-
tracurium are preferred agents for continuous infusions 
due to the fact that their metabolism is unrelated to renal 
or hepatic function. They are both intermediate-acting 
NMBAs. Atracurium is metabolized through nonspe-
cific plasma esterase-mediated hydrolysis as well as by 
the Hofmann elimination reaction, which is independ-
ent of hepatic and renal function, making this agent an 
attractive option in the intensive care unit in patients 
with renal and/or hepatic dysfunction. Cisatracurium 
is an isomer of atracurium, with a fourfold increased 
potency and without the associated histamine release. 
It is metabolized through organ-independent mecha-
nisms via the Hofmann elimination reaction, making this 

benzylisoquinolinium drug one of the most commonly 
utilized NMBAs in critically ill patients who require neu-
romuscular blockade [9, 10] Main differences between 
benzylisoquinoliniums and other NMBAs are reported in 
Table 1.

Selecting a specific NMBA in the critically ill patient 
depends on the indication, patient’s comorbidities (liver 
or renal failure), interactions with other drugs, physi-
ological changes and risk factors that may affect the phar-
macokinetics of NMBAs, such as age-related changes, 
hypothermia, sepsis, and metabolic or electrolyte distur-
bances. Tachyphylaxis has also been documented with 
NMBAs use, and clinical guidelines recommend that 
patients who develop tachyphylaxis to one NMBA should 
try another drug (rather from another class) if neuromus-
cular blockade is still required [11].

Plausible beneficial effects of NMBAs in ARDS 
patients
Several pathophysiological hypotheses have been pro-
posed to explain why NMBAs used during the acute 
phase of moderate-to-severe ARDS might improve the 
outcomes. Figure 1 summarizes the key mechanisms. The 
main effects probably involve the following:

Reduction of patient‑to‑ventilator asynchronies and better 
adaptation to protective ventilation
Better control of the tidal volume by limiting inspira-
tory efforts and inhibition of active expiration help to 
decrease baro, volu and atelectrauma [12]. Thus, NMBAs 
limit the occurrence of high and large swings of transpul-
monary pressure related to strong inspiratory efforts, as 
well as expiratory collapse by inhibiting active expiration. 
Strong expiratory efforts can generate negative transpul-
monary pressure (when pleural pressure is higher than 
PEEP) and lead to alveolar collapse [13]. By the way, 
NMBAs could limit derecruitment and allow the main-
tenance of PEEP [13, 14]. These events are associated 
with a decrease in lung blood flow and alveolar–capil-
lary permeability. NMBAs also prevent breath stacking, 
a patient–ventilator interaction in which consecutive 
machine inspiratory cycles occur in close succession with 

Take‑home message 

The use of NMBAs should be considered during the early phase of 
severe ARDS for patients who despite deep sedation cannot be ven-
tilated according to lung protective ventilation criteria or patients in 
prone position only after adjusting mechanical ventilation settings 
and sedation. The use of NMBAs should be integrated into a global 
strategy involving low tidal volume, a judicious use of PEEP, prone 
positioning and the use of a ventilatory mode allowing spontane-
ous ventilation as soon as possible.
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incomplete exhalation between them, typically due to 
inspiratory muscle effort early during the machine expir-
atory phase. Breath stacking can result in regular expo-
sure to potentially injurious and occult high Vt despite 
ventilator settings consistent with a lung-protective 
strategy. By eliminating breath-stacking dyssynchrony, 
NMBAs ensure provision of the intended low-Vt strategy 
[15]. Inspiratory efforts can be clinically undetectable or 
associated with undiagnosed reverse triggering (a breath 
delivered by the ventilator triggering a contraction of the 
diaphragm responsible for a spontaneous breath [16]), 
which can be frequent even under deep sedation in non-
paralysed patients [17]. Finally, an elevated rate of asyn-
chronies has been shown to be associated with higher 
ICU and hospital mortality [18].

Lastly, paralysing ventilatory muscles to allow con-
trolled ventilation could facilitate the tolerance of per-
missive hypercapnia.

Decrease in oxygen consumption
NMBAs have been shown to decrease oxygen con-
sumption, mainly by eliminating muscular activity and 
improving systemic oxygenation, particularly in muscles 
implicated in respiratory function [19]. Through this 

mechanism, NMBAs likely reduce respiratory demand 
and cardiac output, followed by an increase in the mixed 
venous partial pressure of oxygen and the partial pres-
sure of arterial oxygen. Reducing the work of breathing 
during mechanical ventilation by neuromuscular paraly-
sis may lower the whole-body oxygen consumption in a 
significant manner (a 25% reduction has been reported 
[20]) and redistribute the blood flow to the splanchnic 
and other non-vital vascular beds [20]. Sparing oxygen 
consumption, NMBAs could reduce respiratory demand, 
contributing to reduce VILI from high minute ventila-
tion and excessive patient effort, whereas decreasing car-
diac output may decrease VILI from pulmonary vascular 
strain [21].

Increased thoraco‑pulmonary compliance and functional 
residual capacity
This might be associated with a decrease in the intra-pul-
monary shunt due to PEEP maintenance and lower ate-
lectasis in dependant regions of the lungs [22]. NMBAs 
improve the mechanical viscoelastic properties of the 
chest wall. An improved ventilation–perfusion ratio may 
also be related to a more uniform distribution of lung 
perfusion due to the application of lower pulmonary 

Table 1 Pharmacology of commonly used neuromuscular blocking agents

ED95 effective dose 95%: the amount of NMBA required to reduce twitch height by 95%. NF not feasible

Agent ED95/  
Intubating dose (mg/kg)

Onset time (min) Infusion 
dose  
(μg/kg/min)

Duration of action Elimination

Succinylcholine 0.5–0.6/1–1.2 0.5–1 s NF 10–12 min Metabolized by plasma 
cholinesterase. No active 
metabolite

Rocuronium 0.3/0.6
(1.2 for rapid sequence induc-

tion)

1.5–3
(1 for rapide induction dose)

5–12 20–70 min Eliminated by the liver (90%) 
and kidneys (10%). No active 
metabolite

Pancuronium 0.07/0.1 3–5 0.8–1.7 20–40 min Eliminated by the liver (15%) 
and kidneys (85%). Active 
metabolite = 3-OH-pancuro-
nium, accumulating in case of 
renal failure

Vecuronium 0.05/0.08–0.1 3–5 0.8–1.7 20–40 min Eliminated by the liver (60%) 
and kidneys (40%). Active 
metabolite = 3-desacetyl-
Vecuronium, accumulating in 
case of renal failure

Cisatracurium 0.05–0.07/0.15 4–7 1–3 35–50 min Hofmann elimination. No active 
metabolite

Atracurium 0.25/0.5 3–5 10–20 30–45 min Metabolized by plasma esterase 
and Hofmann elimination. 
Metabolite = laudanosine, 
possible neurologic toxicity at 
high continuous doses)

Mivacurium 0.08/0.25 2–3 5–6 12–20 min Metabolized by plasma 
cholinesterase. No active 
metabolite
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pressure, favouring the perfusion of ventilated areas and 
decreasing the intra-pulmonary shunt [23].

Better regional distribution of the tidal volume
NMBAs could avoid or limit the overdistension of high 
compliance territories and promoting the recruitment of 
areas with smaller compliance.

Anti‑inflammatory effects
The lower production of proinflammatory cytokines in 
the lung and the blood reported in patients receiving 
cisatracurium [24] has suggested an “anti-inflammatory” 
role for NMBAs. Two mechanisms could be involved: 
first, a reduced inflammation through the reduction 
of ventilator-induced lung injury (VILI). The second 
hypothesis is a direct “anti-inflammatory” effect of cisa-
tracurium (see “Biological effects” section).

Biological effects of NMBAs
NMBAs have multiple, potentially positive, biologi-
cal effects in humans [25]. In patients with moderate-
to-severe ARDS, NMBAs administration has been 
associated with lower local and systemic release of 
inflammation, epithelial dysfunction, and endothelial 
injury biomarkers, such as IL-8, surfactant protein-D, 
and von Willebrand factor [24, 26].

The biological plausibility of a direct anti-inflammatory 
effect of cisatracurium is based on the broad expression 
of its receptor, alpha-1-nicotine receptor (nAChRα1), on 
epithelial cells, endothelial cells, leukocytes and fibro-
blasts [27–30] (Table  S1, supplementary material 1). 
In the lungs, nAChRα1 signals as an alternative recep-
tor for urokinase on neutrophils, leading to the release 
of inflammatory cytokines such as IL-1α, TNF-α, and 
macrophage inflammatory protein-2 [27]. An in  vitro 
and in vivo animal study has been conducted to test the 
hypothesis that NMBAs are protective against biotrauma 
by their anti-inflammatory effects mediated by blocking 
the activity of nAChRα1 on epithelial cells, endothelial 
cells, and leukocytes [31]. Cisatracurium had intrinsic 
anti-inflammatory properties and its lung protection was 
primarily independent of the effects of synchrony. Sur-
rogates of lung injury, such as the wet to dry ratio and 
protein concentration in bronchoalveolar lavage fluid 
(BALF), were lower in rats treated with NMBA than 
in controls, in which perfect synchrony was achieved 
with anaesthesia alone. The anti-inflammatory effects 
of cisatracurium, as defined by the lower release of 
inflammatory cytokines by several cell types (epithelial, 
endothelial, and CD14 + cells) after challenge with LPS, 
BALF or plasma from ARDS patients, was mediated by 
nAChRα1 blockade. cisatracurium lacked its protective 

Fig. 1 Plausible beneficial effects of neuromuscular blocking agents (NMBAs) in ARDS patients



2361

effects when nAChRα1 was stably knocked down in cell 
clones.

Nevertheless, the putative direct anti-inflammatory 
effect of cisatracurium needs to be counterbalanced by 
muscular atrophy and weakness associated with pro-
longed use of heavy sedation and NMBAs and addressed 
for its clinical implications.

Risks of spontaneous breathing in ARDS
The maintenance of physiological respiratory muscle 
activity in ventilated patients has recognized benefits 
compared to controlled ventilation including improved 
alveolar recruitment, increased cardiac output, increased 
blood flow to vital organs, prevention of peripheral mus-
cles withering and reduced risk of diaphragm disuse atro-
phy [32]. However, accumulating evidence has alerted 
physicians, either directly or indirectly, to the risks of 
spontaneous breathing in various clinical settings—
e.g., non-intubated patients with acute respiratory fail-
ure [33], patients with ARDS [26, 34–38], patients with 
severe sepsis [39], patients with ARDS under ECMO [40], 
and paediatric patients with ARDS [41, 42]. Spontaneous 
breathing efforts may worsen lung injury, especially when 
the spontaneous effort is vigorous and/or lung injury is 
severe, termed patient self-inflicted lung injury (P-SILI) 
[43, 44]. Several potential mechanisms to explain the 
harm of spontaneous breathing efforts are summarized as 
follows: (1) global and local overdistension, (2) increased 
lung perfusion, (3) patient–ventilator asynchrony, and (4) 
derecruitment with expiratory muscle activity (Fig. 2).

First, a vigorous spontaneous effort will increase global 
transpulmonary pressure by decreasing pleural pres-
sure and thus increasing tidal volume (i.e., global over-
distension). Notably, vigorous spontaneous efforts will 
also carry the potential risk to increase local lung stress 
and strain (i.e., local overdistension) of dependent lung 
regions by drawing gas from other lung regions (called 
the Pendelluft phenomenon [45]) or directly from the 
trachea, despite a limiting tidal volume. The cause may be 
that, in the ‘solid-like’ atelectatic lung, negative inspira-
tory pleural pressure following diaphragmatic con-
traction is not transmitted but rather localized in the 
dependent lung regions where negative inspiratory pleu-
ral pressure is first generated [45]. Recent experimental 
data have confirmed that the bulk of effort-dependent 
lung injury occurs in the dependent lung regions, the 
same region where vigorous effort causes greater inspira-
tory stress and stretch [46]. Second, a spontaneous effort 
will increase lung perfusion and potentially cause lung 
oedema in ARDS. Vigorous spontaneous efforts will 
increase transmural pressure across pulmonary vessels, 
i.e., a net distending pressure of intrathoracic vessels, 
by decreasing pleural pressure. This mechanism may 

explain why spontaneous effort causes lung oedema dur-
ing volume-controlled mode [35], or during upper airway 
obstruction [47]. Third, high respiratory effort is known 
to be associated with breath stacking [48]. Breath stack-
ing—i.e., the occurrence of two consecutive inspirations 
separated by a short expiratory time–is potentially inju-
rious because the delivered tidal volume increases [16]. 
Fourth, during vigorous spontaneous breathing efforts, 
there is a shift of the diaphragm to the cephalad direc-
tion (to expire promptly) and a decrease in expiratory 
transpulmonary pressure despite the use of PEEP, causing 
derecruitment of dependent lung regions [13, 34]. Finally, 
strong respiratory efforts during MV could be deleteri-
ous not only for the lungs but also for the diaphragm. The 
concept of diaphragm-protective ventilation has recently 
been proposed as a complementary strategy besides lung 
protective ventilation [43].

Neuromuscular blockers and safety concerns
ICU‑acquired weakness
Muscles weakness, long-term sequelae of critical ill-
ness, affects roughly two-thirds of ICU survivors [49]. 
This neurological complication is often associated 
with prolonged mechanical ventilation [50], and pro-
longed ICU and hospital lengths of stay [51]. Criti-
cal illness-associated neuromyopathy is likely caused 
by multiple factors, including systemic inflammation, 
metabolic disorders, and interventions [49]. Notably, 
historically, ICU-acquired neuromuscular weakness 
was first described in patients receiving a high dose of 
corticosteroids and neuromuscular blockade for severe 
asthma [52]. Neuromuscular blockade is used to para-
lyse the patient with the expectation that, when the 
drug is withdrawn, the patient resumes rapid normal 
neuromuscular function. Curare and non-depolarising 
NMBAs may cause prolonged muscular weakness [53]. 
The risk of persistent paralysis is higher in patients 
with hepatic or renal dysfunction because most non-
depolarising NMBAs are cleared from the plasma by 
the kidneys and liver. Increased plasma clearance of 
NMBA also parallels the duration of drug infusion and 
concomitant use of aminoglycosides or corticosteroids. 
The chemical structure of many NMBAs incorporates 
a steroid moiety, which may increase the risk of ICU-
associated weakness. A notable exception is cisatracu-
rium, which is cleared by Hofmann elimination and has 
a different chemical structure. Indeed, no increase in 
ICU-associated weakness from cisatracurium was dem-
onstrated in two large RCTs [37, 54].

Prolonged neuromuscular blockade may deregulate 
acetylcholine metabolism and/or the function of Ach 
receptors with the upregulation of receptor subtypes 
that are less sensitive to acetylcholine. In rats, a relatively 
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short experimental period was not associated with sig-
nificant differences in the expression of known mediators 
of muscle atrophy, as demonstrated by similar diaphragm 
mRNA changes in expression of the muscle-specific 
ubiquitin ligases MuRF1 and Atrogin-1 [31]. However, 
the potential upregulation of nAChRα1 in muscle and 
other cell types associated with the continuous infusion 
of cisatracurium warrants further investigation in the 
future.

Additionally, prolonged blockade of the neuromuscu-
lar junction may cause muscle atrophy, particularly in the 
presence of corticosteroids, ischaemia, acidosis or elec-
trolyte disturbances [55]. Myopathy is a common com-
plication of the exposure to corticosteroids, particularly 
fluorinated derivatives—e.g., dexamethasone. Notably, 
corticosteroid toxicity is potentiated by non-depolarising 
neuromuscular drugs such as pancuronium because they 
bind to a common corticosteroid receptor. ICU-acquired 
weakness is more likely to occur in patients receiving 

Fig. 2 Schema to explain the harm of vigorous spontaneous effort in ARDS. When vigorous spontaneous effort is preserved during mechanical 
ventilation, transpulmonary pressure (Paw—Ppl = PL) reaches injuriously high, thereby increasing tidal volume and causing global overdistension. 
In addition, negative Ppl distends pulmonary capillary vessels and increases perfusion; the transmural pressure across pulmonary capillary vessels 
is increased (Pcap—Ppl =  + 30), promoting interstitial edema formation (right magnified panel). In the presence of injury, permeability is increased 
and, therefore, alveolar edema formation is accelerated (Right magnified panel). In ARDS, atelectasis is often present in dorsal (dependent) lung 
regions (dotted black area in lung). Since the presence of atelectatic ‘solid-like’ lung tissue may block the pressure transmission of negative ∆Ppl 
following diaphragmatic contraction, more negative ∆Ppl is localized in dorsal lung regions (negative ∆Ppl − 20cmH2O vs. − 10cmH2O in dorsal vs. 
ventral lung regions). In this way, greater local (dorsal) lung stress causes local overdistension by drawing gas from other lung regions—e.g., ventral 
lung (blue line; this is called pendelluft phenomenon [45]) or directly from a ventilator. Thus, the bulk of effort-dependent lung injury occurs in 
dorsal lung regions, where vigorous spontaneous effort causes greater inspiratory lung stress and stretch (three red lines in lower panel). In addition, 
vigorous spontaneous effort causes patient–ventilator asynchrony and derecruitment with active exhalation. Abbreviations: ARDS acute respiratory 
distress syndrome; Pcap capillary pressure; Ppl pleural pressure
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NMBA and corticosteroids concomitantly. It is also more 
likely to occur with a high dose of fluorinated corticos-
teroids and prolonged administration of a non-depolaris-
ing, long-acting NMBA. Nowadays, physicians are more 
likely to use short courses of short-acting NMBAs and a 
low dose of corticosteroids, which may be less likely to 
result in significant muscles weakness. In a recent meta-
analysis of three trials of neuromuscular blockade for 
ARDS (n = 431 patients), 73/223 and 62/208 (RR, 1.08; 
CI 0.83–1.41) patients had muscle weakness in the neu-
romuscular blockade and placebo groups, respectively 
[56]. Likewise, a systematic review and meta-analysis of 
16 observational studies suggested that the administra-
tion of NMBAs might not be associated with increased 
risk of critical illness-associated neuromyopathy [57]. 
In practice, the duration of immobilization, severity of 
organ dysfunction, and metabolic and electrolytes disor-
ders, as well as the concomitant use of other drugs alter-
ing neuromuscular function, may be more important to 
trigger ICU-acquired myopathy (or weakness) than neu-
romuscular blockade per se. Finally, a trial of cisatracu-
rium for ARDS found no evidence of an increased risk of 
acute quadriplegic myopathy, although a high proportion 
of patients also received corticosteroids [37].

Nevertheless, in routine, ICU physicians should not 
combine fluorinated corticosteroids and non-depolar-
ising NMBAs. We suggest using at a dose hydrocorti-
sone not exceeding 300 mg per day, and the duration of 
neuromuscular blockade should be as short as possible 
(ideally less than 48  h). All other risk factors of critical 
illness-associated neuromyopathy should be avoided—
e.g., maintaining normal glucose, pH and electrolytes lev-
els and avoiding aminoglycosides. Patients should benefit 
from prompt passive and active mobilization, as well as a 
rehabilitation programme.

Ventilator‑associated pneumonia (VAP)
NMBAs have not been demonstrated to increase the risk 
of ventilator-associated pneumonia (VAP). An ancillary 
study of ACURASYS showed that NMBAs were not asso-
ciated with a higher occurrence of bacterial VAP [58].

Pressure and corneal ulcers
In a prospective descriptive study focusing on more than 
500 ICU long stays and evaluating pressure ulcers grade 
2–4 occurrence, mechanical ventilation was associated 
with pressure sore occurrence but not NMBAs. Sedatives 
associated with turning, floating heels where negatively 
associated with pressure ulcers [59]. A recent interna-
tional study did not identify the use of NMBAs as being 
associated with pressure ulcers [60]. Preventing the risk 
of corneal ulcers in deeply sedated patients receiving 
NMBAs need careful and daily ocular protection.

Monitoring of NMBAs administration
Despite the lack of robust evidence, monitoring neu-
romuscular blockade is recommended in ICU patients 
[11]. Monitoring the depth of neuromuscular block-
ade aims to ensure that objectives for muscle relaxation 
are reached in an anesthetized patient, that the lowest 
NMBAs dose is used (which could limit the develop-
ment of ICU-acquired weakness), and, less frequently, 
that deleterious residual neuromuscular blockade after 
extubation is avoided. Different studies have shown that 
monitoring the level of neuromuscular blockade is asso-
ciated with a reduction in the amount of NMBAs along 
with a decreased incidence of persistent neuromuscular 
weakness and that the management of blockade in ARDS 
patients by nurses is a secure procedure [61, 62]. The 
depth of neuromuscular blockade should be assessed by 
repeated clinical and qualitative evaluation in addition 
to monitoring for adequate sedation and analgesia. The 
clinical evaluation based on the observation of skeletal 
muscle movement, respiratory efforts or the detection 
of patient–ventilator asynchronies must be coupled with 
a qualitative method to assess neuromuscular blockade. 
Train of four (TOF) supramaximal electrical impulses at 
a 2-Hz frequency applied every 0.5  s to the ulnar nerve 
(less frequently the posterior tibial nerve) of a non-par-
alysed limb, or to the facial nerve, produces four visual-
ized muscle twitches. TOF remains the easiest and most 
reliable method available for ICU patients. Increasing 
the dose of NMBA is associated with a decrease in the 
force of twitches. The evaluation of the decline in the 
twitch response can be performed by comparing the 
strength (TOF ratio) of the fourth twitch to that of the 
first twitch. However, the measurement of the TOF can 
be impaired by hypothermia, peripheral oedema, or 
incorrect positioning of electrodes. Notably, quantitative 
neuromuscular monitoring (using mechanomyography 
or acceleromyography, for example) is not routinely used 
in ICU patients.

When monitoring treatment with NMBAs, clinicians 
must be aware of the low correlation of blockade meas-
ured clinically and peripherally compared with that of 
the diaphragm [63]. Along these lines, differences exist 
in the time course of response to NMBAs between cen-
tral muscles (diaphragm), which recover earlier, and 
peripheral muscles (abductor pollicis). Depending on the 
clinical situation, physicians can use the ulnar or facial 
site, to achieve a TOF goal of 0, 1 or 2 twitches (as rec-
ommended for all ICU patients by the Neuromuscular 
Blockade Task Force [62]), or a TOF ratio exceeding 0.9. 
Furthermore, monitoring TOF recovery in response to 
facial nerve stimulation (as advised by the French recom-
mendations in ICU patients [64]) before extubation could 
expose patients to aspiration [65], whereas facial or ulnar 
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sites appear adequate to assess the depth of the relaxation 
of the diaphragm, particularly in ARDS patients.

Sedation monitoring in patients receiving NMBAs
Neither the ARDS et Curarisation Systematique (ACU-
RASYS) study nor the Reevaluation of Systemic Early 
Neuromuscular Blockade (ROSE) study used sedation 
surveillance monitors in the NMBA arms; all the patients 
received deep sedation, and neither trial allowed decreas-
ing the sedation after the initiation of NMBAs [37, 54]. 
Bispectral index (BIS) monitor is a noninvasive processed 
electroencephalogram that can identify accidental aware-
ness with recall (AWR) in patients undergoing general 
anaesthesia [66]. BIS values of 40–60 minimize the risk 
of AWR in operating rooms [66]. Despite minimal data 
to corroborate its use in the ICU [67], BIS monitoring 
is becoming more common in mechanically ventilated 
patients undergoing paralysis [68]. The current NMBA 
guidelines do not recommend the use of sedation-mon-
itoring devices to measure sedation [11]. There is a con-
cern for discordance in BIS readings in patients with 
critical illness-associated encephalopathy [69]. Electro-
magnetic fields from other devices and instruments in 
the ICU environment might also affect BIS readings [67, 
69]. The use of BIS monitors in clinical practice has been 
associated with increased rates of the down titration of 
sedatives, and the risk of under-sedating these patients 
needs to be always evaluated when using any monitoring 
devices to prevent long-term neuro-cognitive disorders, 
such as anxiety or post-traumatic stress disorder [66, 70]. 
BIS values should, moreover, be interpreted with caution 
as they have been shown to decline in fully awake volun-
teers under neuromuscular block [71, 72]. If BIS monitors 
are not employed for sedation monitoring, it is important 
to target deep sedation before NMBA initiation. Once 
deep sedation is achieved, a flat dose with no de-escala-
tion should be implemented for the sedation instructions 
[68]. Importantly, RCTs of NMBA infusions in ARDS are 
limited to 48 h, and adjunctive sedation monitors might 
be needed for prolonged NMBA use because of the risk 
of tachyphylaxis [37, 54].

Outcomes of ARDS patients receiving NMBAs
Seven randomized controlled trials (RCT) [13, 24, 37, 
54, 73–75] have studied NMBA infusions in patients 
with moderate-severe ARDS (Table  2). Conflicting 
results from the two largest randomized controlled 
trials (RCTs) [37, 54] evaluating the role of NMBAs in 
ARDS have further tempered the enthusiasm for their 
use as a front-line adjunctive therapy [76]. Impor-
tantly, significant differences were found in the tim-
ing of enrolment, ventilatory and non-ventilatory 
strategies and the initial severity among the patients 

enrolled in ACURASYS compared with those in ROSE; 
thus, the differences in the study design and method-
ology might explain the differences in the reported 
mortality [77, 78]. In the first multicentre RCT [73], a 
significant improvement in the  PaO2/FiO2 ratio and a 
strong tendency towards a lower mortality rate were 
observed in patients receiving NMBAs for 48  h. The 
same group of authors [24] confirmed the benefi-
cial effects of NMBAs on oxygenation and decreases 
in the plateau pressure,  FiO2 and PEEP. Again, a 
trend towards decreased mortality in patients receiv-
ing NMBAs was observed. This was the rationale for 
designing the ACURASYS study [37], which showed 
that a strategy including cisatracurium is associated 
with an improvement in the adjusted 90-day survival 
rate compared with placebo. The 28-day mortality 
was 23.7% with cisatracurium and 33.3% with the pla-
cebo (p = 0.05). The beneficial effects of cisatracurium 
on mortality were mainly observed in patients with 
a  PaO2/FiO2 ratio < 120  mmHg. The cisatracurium 
group had significantly more ventilator-free days than 
the placebo group during the first 28  days. NMBAs 
patients also presented less barotrauma. The PETAL 
(prevention and early treatment of acute lung injury) 
network aimed to re-evaluate the beneficial effects 
of NMBAs on mortality by designing the ROSE study 
[54] comparing the use of cisatracurium with man-
agement by light sedation very early in the course of 
moderate-to-severe ARDS. The primary endpoint was 
hospital mortality from any cause at day 90. The trial 
was stopped at the second interim analysis for futility. 
Neither in-hospital mortality nor ventilator-free days 
at day 90 were different between the groups. NMBAs 
neither improved oxygenation nor decreased the rate 
of pneumothorax but were more frequently associ-
ated with serious cardiovascular adverse events. Sig-
nificant methodological differences may explain these 
conflicting results between the ACURASYS and ROSE 
studies (Table  3) [37, 54]. First, the patients were 
included earlier in ROSE than in ACURASYS (the 
median times were 8  h and 16  h, respectively). This 
shorter delay in the ROSE study could have compro-
mised the adequate adjustment of both mechanical 
ventilation and sedation before inclusion. This finding 
likely explains why a significant proportion of eligible 
patients (N = 658) was excluded because of oxygena-
tion improvement from inclusion to randomization 
[37], although patients with a  PaO2/FiO2 < 150 at inclu-
sion could be included even if  PaO2/FiO2 reached but 
not exceeded 200 mmHg at the time of randomization 
(i.e., some patients had a  PaO2/FiO2 > 150). Moreo-
ver, more patients in ROSE (17.1%) than in ACURA-
SYS (4.3%) were excluded before enrollement because 
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already receiving NMBAs [79], suggesting that some of 
them might have benefited from neuromuscular block-
ade. Third, strategies in both studies concerning PEEP 
adjustment were really different: a high PEEP (ALVE-
OLI high PEEP strategy [80]) was applied in the ROSE 
study, while a moderate PEEP (ARMA strategy [81]) 
was used in the ACURASYS study [37, 54]. A recent 
study has suggested that high levels of PEEP and 
recruitment manoeuvres could worsen the outcomes 
[82]. These differences in PEEP strategy could explain 
at least in part the discrepancies between ACURASYS 
and ROSE studies. Sedation strategies were also differ-
ent during the first 2 days in the control group—light 
sedation in ROSE, heavy sedation in ACURASYS [37, 
54]. Importantly, in this latter study [37], no differ-
ence was found between the two groups (NMBAs and 
placebo) regarding the amount of sedatives received 
(no “oversedation” in the placebo group). These dif-
ferences in PEEP and sedation strategies may alter the 
level of VILI experience in both the control and inter-
vention arms in both studies, highlighting the complex 
interplay among patient effort, sedation, NMBAs, and 
ventilator management in ARDS [76]. Another main 
difference was the lower use of prone positioning in 
ROSE (16% vs. 29% in ACURASYS) and the quick tran-
sition towards ventilatory modes, allowing spontane-
ous breathing and a weaning protocol in ACURASYS; 
no such protocol was reported in ROSE [37, 54]. Over-
all, these distinct approaches might explain the large 
difference in mortality observed between ACURASYS 
and ROSE regarding NMBA groups (90-day mortalities 

of 31.6% and 42.5%, respectively); however, no differ-
ence was found between the two studies regarding the 
mortality of the control group [37, 54]. The conclusion 
that might be drawn from these two studies is that very 
early use of NMBAs, before optimizing MV and seda-
tion, using a strategy involving high PEEP levels does 
not modify the outcomes [37, 54]. Conversely, NMBAs 
(if sedation alone fails to improve respiratory status) 
integrated into an overall strategy including a reasoned 
use of PEEP, prone positioning and the rapid imple-
mentation of spontaneous breathing might improve 
the prognosis [37, 54]. Including the results of ROSE, 
three meta-analyses showed a reduction of early (21- 
to 28-day) mortality [83, 84] and late (90-day or ICU) 
mortality [83, 85] in patients receiving NMBAs. Early 
improvement of oxygenation was also retrieved in 
three of these meta-analyses [83, 84, 86]. A lower risk 
of barotrauma and no effect on the occurrence of ICU-
acquired weakness were constantly reported.

Partial neuromuscular blockade in patients 
with ARDS
In patients with ARDS, respiratory drive may be exces-
sive, mainly due to hypercapnic acidosis, hypoxemia, 
and inflammation, [87, 88]and lead to P-SILI [89]. Addi-
tionally, some preliminary data have suggested that 
prolonged strenuous diaphragm effort may result in 
load-induced diaphragm injury [90, 91]. The disadvan-
tages of full neuromuscular blockade also include the risk 
for the development of diaphragm disuse atrophy [92], 

Table 3 A comparison of ACURASYS and ROSE studies on specific methodological aspects

ARDS acute respiratory distress syndrome, H hour(s), MV mechanical ventilation, NA not available, NMBAs neuromuscular blocking agents, PEEP positive end-
expiratory pressure

ACURASYS [37] ROSE [54]

Time from ARDS to inclusion (hours, median, IQR) 16 (6–29) 7.6 (3.7–15.6)

Time from MV initiation to inclusion (hours, median, IQR) NMBAs 22 (9–41)
Placebo 21 (10–42)

NA

Excluded before enrollment because  
already receiving NMBAs (n)

42 655

NMBAs stop before the 48th hour No If  FiO2 ≤ 0.4 and PEEP ≤ 8  cmH2O after 12 h

NMBAs use after the 48th hour Weaning attempt at day 3 if  FiO2 ≤ 0.6 Left to the discretion of the treating clinician

Patients from the control group  
requiring NMBAs for injurious MV (%)

56 17–36

PEEP strategy  (cmH2O) Moderate PEEP (ARMA (6))
NMBAs 9.2 ± 3.2
Placebo 9.2 ± 3.5

High PEEP (ALVEOLI (5))
NMBAs 12. 6 ± 3.6
Control 12.5 ± 3.6

Prone positioning use (%) NMBAs 28
Placebo 29

NMBAs 16.8
Control 14.9

MV weaning protocolized Yes NA

90-day mortality (%) NMBAs 31.6
Placebo 41.4

NMBAs 42.5
Control 42.8
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peripheral skeletal muscle atrophy due to immobility and 
the need for a high dose of sedatives. Accordingly, instead 
of complete diaphragm paralysis, an alternative approach 
would be to titrate the diaphragm effort to maintain a 
physiological effort. From this perspective, low-dose 
NMBAs (“partial neuromuscular blockade”) is an inter-
esting compromise between total diaphragm paralysis 
and injurious high breathing effort. Interestingly, it has 

been demonstrated more than 40  years ago that low-
dose neuromuscular blockers (partial neuromuscular 
blockade) can be used to decrease respiratory muscle 
strength [93] while maintaining spontaneous breathing. 
The authors demonstrated that low-dose NMBA-induced 
respiratory muscle weakness but increased respiratory 
effort sensation. Therefore, partial neuromuscular block-
ade does not reduce respiratory drive, only respiratory 

Fig. 3 Place of neuromuscular blocking agents in the ventilatory strategy of ARDS patients
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muscle effort. In a proof-of-concept study recruiting 
patients with moderate ARDS and high respiratory drive, 
the feasibility of partial neuromuscular blockade was 
evaluated in patients on pressure support ventilation 
[94]. Careful titration with rocuronium decreased the 
tidal volume from 9.3 ± 0.6 ml/kg to 5.6 ± 0.2 ml/kg, ful-
filling the criteria for lung-protective ventilation. For rea-
sons incompletely understood, the reduction in minute 
ventilation due to a reduced tidal volume was not com-
pletely compensated by an increase in respiratory rate. 
Accordingly, patients developed mild respiratory aci-
dosis with partial neuromuscular blockade. After rocu-
ronium titration, the transdiaphragmatic pressure was 
decreased to ± 5.0  cmH2O, well within the physiological 
range for diaphragm activity during tidal breathing in 
healthy subjects. Although this strategy was applied for 
only 2 h in highly selected patients, it suggests that par-
tial neuromuscular blockade is a feasible and safe strategy 
to deliver lung- and diaphragm-protective ventilation in 
patients with a high respiratory effort. However, future 
clinical studies are warranted to confirm the safety and 
efficacy of prolonged partial neuromuscular relaxation in 
ventilated patients.

Future prospects and conclusions
Pharmacologic strategies such as NMBAs should not be 
used routinely in all patients with moderate-severe ARDS 
but need to be customized for the appropriate patient 
at the right time to evaluate their benefit [77]. The ini-
tial management of ARDS must follow a lung-protective 
strategy with the optimization of PEEP and sedation for 
individual patients [95]. After this initial optimization 
of mechanical ventilation and sedation, clinicians must 
integrate the use of NMBAs in a step-up fashion based 
on objective physiologic criteria  (PaO2/FiO2) and the 
presence of either asynchrony or unsafe ventilation [95]. 
Gas exchange improvement should prompt physicians 
to stop NMBAs and encourage spontaneous breathing 
activity (Fig. 3).

More research is needed to adjust the use of NMBAs 
in ARDS patients. First, the benefits observed may not 
apply to all NMBAs, considering that cisatracurium 
besylate has been used in all RCTs. Second, the optimal 
duration of infusion needs to be evaluated according to 
the patients’ profiles and/or responses to the treatments. 
Twenty-four hours of paralysis may be sufficient in some 
cases with prompt improvement. By contrast, in some 

Table 4 Summary of the main clinical recommendations for NMBAs use in clinical practice

ARDS acute respiratory distress syndrome, BIS bis spectral index, MV mechanical ventilation, NMBAs neuromuscular blocking agents, PEEP positive end-expiratory 
pressure, RASS richmond agitation-sedation scale, Vt tidal volume
1 Cisatracurium besilate was used in the largest RCT evaluating the effects of NMBAs on mortality (see Table 3). Recent data suggest that ARDS patients receiving 
cisatracurium had a lower duration of MV and ICU length of stay as compared with those receiving vecuronium [9]. Non-steroidal compounds (benzylisoquinolinium) 
are less associated with ICU-acquired weakness
2 TOF: train of four
3 Use with caution, BIS values might be decreased by NMBAs use
4 No increase in ICU-associated weakness from cisatracurium was demonstrated in two large RCTs [37, 54]and in three recent meta-analysis [83, 84, 86]

Issue Recommendation

Preferred neuromuscular blocker Cisatracurium  besilate1

Dosing recommendation No monitoring of neuromuscular block: 37.5 mg/h (ACURASYS dosing)
Monitoring of the  TOF2: objective 0/4 response at the ulnar site or 2/4 at the facial site [61, 63]

Timing of administration Early (acute phase of ARDS onset) and only after sedation/ventilator settings adjustments

Sedation monitoring /goals RASS − 4 to − 5 before NMBAs
BIS 40–603

Associated measures Protective MV (Vt, PEEP, Plateau pressure)
Prone positioning

Duration of administration 48 h at the acute phase of ARDS
Discontinue if  PaO2/FiO2 > 150 mmHg
After 48 h, reconsider the use of NMBA at least every 12hrs

Ventilatory settings after NMBAs stop Decrease sedation
Promote ventilatory modes allowing spontaneous breathing
Ensure protective MV

ICU-acquired weakness prevention Limit concomitant high-dose corticosteroids use
Prefer non-steroidal compound (especially cisatracurium)4

Shorten NMBA administration
Avoid hyperglycemia, maintain normal pH and electrolytes

Safety concerns Ocular care
Prevention of pressure ulcers (turning, nursing care)
Detect awareness: BIS monitoring, clinical evaluation (tachycardia, hypertension during stimulations)
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patients with very severe ARDS (including those requir-
ing ECMO with persistent high respiratory drive and/or 
prone positioning), longer durations are often required. 
Because NMBAs were used in more than 85% of patients 
from the PROSEVA study [96], whether the use of 
NMBAs is required in all moderate-to-severe ARDS 
patients requiring prone positioning must be specified. 
Third, the place of NMBAs to improve respiratory sys-
tem mechanics in patients without moderate-to-severe 
hypoxemia but with large swings in transpulmonary 
pressure deserves to be further explored. Finally, clini-
cians can be relieved regarding the potential harmful 
effects of NMBAs. Indeed, the use of a short course of a 
recent NMBA was not associated with an increased inci-
dence of ICU-acquired neuromyopathy [37, 54] (Table 3).

Considering the current definition of ARDS, the use of 
NMBAs should be considered during the early phase of 
severe ARDS for patients who require deep sedation to 
facilitate lung-protective ventilation or prone position-
ing [97]. However, as stated in a recent guideline [97], 
NMBA infusion must be discussed only after optimizing 
mechanical ventilation and sedation (the ACURASYS 
strategy). The use of NMBAs should be integrated into an 
overall strategy including the reduction of the tidal vol-
ume, a reasoned use of PEEP according to its impact on 
gas exchange and the haemodynamic status, the use of 
prone positioning and preferential choice of a ventilatory 
mode allowing spontaneous ventilation as soon as possi-
ble [95] (Table 4). Partial neuromuscular blockade needs 
further clinical evaluation but is a promising strategy.
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