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Abstract 

Background  Lung cancer remains a leading cause of cancer-related mortality, primarily because of the lack of effec-
tive diagnostic and therapeutic biomarkers. To address the issue of fragmented biomarker data across numerous 
publications, we have developed the Lung Cancer Biomarker Database (LCBD, http://​lcbd.​bioma​rkerdb.​com).

Methods  We comprehensively reviewed biomarker-related studies up to June 30, 2023, and extracted relevant 
biomarker information. The identified biomarkers were systematically annotated, including genes, proteins, GO terms, 
KEGG pathways, biomarker types, molecular types, developmental stages, discovery methods, sources, populations, 
and sample sizes. The LCBD online platform was developed to integrate lung cancer biomarker data, and provide 
search, browsing, and data download functions for researchers. To validate the data in the LCBD, we conducted three 
case studies comparing models with and without LCBD data.

Results  After deduplication and summarization, we collected 1,447 unique biomarkers that were systematically 
annotated. We then developed the LCBD specifically for use in lung cancer diagnosis. The validity of the biomarkers 
in the LCBD was confirmed using prognostic models, diagnostic models, and immune infiltration models.

Conclusion  The LCBD provides a centralized platform for lung cancer biomarkers, facilitating early screening and per-
sonalized treatment. This database is poised to become a valuable resource for lung cancer research and therapeutic 
strategies.
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Introduction
Lung cancer remains a major global health chal-
lenge because of its high incidence and mortality rates 
[1]. According to a report by Rebecca L. Siegel [2], it 
is anticipated that by 2024, there will be 234,580 new 
cases of lung cancer in the United States, accounting 
for 11.72% of all new cancer cases. Lung cancer is the 
leading cause of cancer-related death among individu-
als aged 50  years and above, resulting in more deaths 
than breast, prostate, and colorectal cancers combined 
[3]. Often, lung cancer does not manifest with specific 
symptoms in its early stages, as a result, most patients 
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are diagnosed at advanced stages or with distant metas-
tases [4], missing the critical period for effective treat-
ment. Although there has been a decrease in the lung 
cancer death rate in the United States in recent years, 
the five-year survival rate remains below 25% [3], likely 
due to these late diagnoses. Early detection and treat-
ment of lung cancer could significantly increase the 
five-year survival rate to approximately 60% [5].

The current battery of lung cancer diagnostics 
encompasses a range of techniques such as chest 
X-ray, computed tomography (CT), positron emission 
tomography (PET), biopsy, and biomarker detection. 
Although commonly used, chest X-rays have limited 
efficacy in identifying small or deeply situated lung 
tumours; CT scans offer greater sensitivity at the cost 
of increased radiation exposure [6]. Although adept at 
detecting minute tumours, PET scans have the disad-
vantages of even greater radiation doses and signifi-
cant expense [7]. Biopsies remain the gold standard 
for confirming a cancer diagnosis, but their invasive 
nature renders them impractical for use in early detec-
tion and widespread screening [8]. Biomarker detection 
offers a quicker, less invasive alternative, but the cur-
rent clinical biomarkers, such as CEA and NSE have 
low sensitivity and specificity and are affected by vari-
ous confounding factors [9]. These deficiencies have 
spurred research into biomarkers with increased sensi-
tivity and specificity.

In recent years, with the development of precision 
medicine, scholars have focused on lung cancer biomark-
ers, hoping to identify the risk factors for lung cancer, 
predict effect of the treatment, and improve the diagnosis 
and treatment outcomes through these biomarkers. Cur-
rently, a range of lung cancer biomarkers are utilized in 
clinical practice and research, some of which, including 
epidermal growth factor receptor (EGFR), human epider-
mal growth factor receptor 2 (HER2), and KRAS (KRAS 
proto-oncogene, GTPase), have significant importance 
and value [10]. EGFR is a gene that is overexpressed or 
mutated in lung cancer cells and is closely associated 
with the development, progression, and drug resistance 
of the disease. Similarly, the mutation of HER2 in lung 
cancer cells is correlated with tumour aggressiveness and 
prognosis. In addition, KRAS is involved in lung cancer 
cell proliferation and metastasis. These genes can serve 
as valuable biomarkers for guiding targeted drug therapy 
selection for patients with lung cancer on the basis of dif-
ferent genotypes and function as predictive biomarkers 
to assess treatment response and prognosis for patients. 
These studies highlight the importance of comprehensive 
biomarker analysis in facilitating diverse and personal-
ized approaches to cancer diagnosis and treatment while 
advancing progress in these areas.

The academic community has extensively documented 
an array of lung cancer biomarkers, detailing their diverse 
types and functions across numerous publications. Lung 
cancer research currently struggles with biomarker data 
dispersed across diverse sources lacking a centralized 
repository. This hinders their efficient discovery and 
application. Therefore, the creation of a meticulously 
curated and comprehensive database for lung cancer 
biomarkers, that offers streamlined access to refined bio-
medical information, is both urgent and essential.

Although there are several resources containing lung 
cancer biomarkers, such as the Lung Cancer Metabo-
lome Database (LCMD) [11], the Lung Cancer Circular 
RNA Biomarker Database (LCcircDB) [12], The Marker 
[13], MethMarkerDB [14], and MarkerDB [15], these 
resources fall short in terms of the diversity and quan-
tity of biomarkers. Specifically, LCcircDB is limited to 
circRNA biomarkers, overlooking vital information on 
genes, proteins, and metabolites. The LCMD, which 
draws from only 65 mass spectrometry-based lung can-
cer metabolomics papers, offers a limited selection of 
metabolite biomarkers that is insufficient for reliable 
lung cancer diagnostics and prognosis. MethMarkerDB 
includes only 379 metabolites and fails to differenti-
ate between lung cancer subtypes. Both the LCMD and 
LCcircDB are based on pre-2013 literature and lack the 
recent updates necessary to reflect the latest findings in 
lung cancer biomarker research. The MarkerDB’s cover-
age of lung cancer biomarkers are inadequate, listing only 
96 types. Despite having a significant number of bio-
markers, TheMarker relies heavily on the results of dif-
ferential expression analysis from a few transcriptomic 
datasets (GSE55859, GSE126044, TCGA-LUAD, and 
TCGA-LUSC) and uses only the criteria of upregulation 
and downregulation, which is an imprecise method for 
defining biomarkers. Additionally, these databases offer 
limited biomedical annotations, often lacking detailed 
analyses and extensive annotation of biomarker func-
tions, pathways, and genetic locations.

Therefore, the creation of an updated and detailed lung 
cancer biomarker database integrating a broad spec-
trum of biomarker types and functionalities alongside 
extensive biomedical data is imperative. The purpose of 
the envisioned LCBD is to enhance our understanding 
and application of these biomarkers and to bolster the 
development of innovative therapeutic and diagnostic 
approaches.

Materials and methods
The development of the LCBD involved three princi-
pal stages: the collection of data (including biomarkers 
and biomarker panels), the annotation of these bio-
markers, and the development of the database’s website. 
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Additionally, to substantiate the validity and assess the 
robustness of the data, three case studies were performed 
to build prognostic prediction models, diagnostic mod-
els, and immune infiltration models using the completed 
LCBD, as shown in Fig. 1.

Identification and curation of lung cancer‑related 
biomarkers from literature published prior to June 2023
To systematically gather data on lung cancer biomark-
ers, comprehensive literature searches were conducted 
using specific keywords. For PubMed, the keywords 
("lung cancer" OR "lung carcinoma" OR "pulmonary 
carcinoma") AND "biomarker" were searched in titles 
or abstracts. Google Scholar searches were performed 
with combinations such as "lung cancer + biomarker," 
"lung carcinoma + biomarker," and "pulmonary carci-
noma + biomarker," and all searches were limited to stud-
ies published before June 30, 2023. The following details 
were extracted from the identified articles: biomarker 
denomination, genes associated with the biomarker, role 
of the biomarker (including but not limited to diagnosis, 
prediction, prognosis, and pharmacodynamics), molecu-
lar classification (e.g., miRNA, gene, protein, lncRNA, 
circRNA and metabolite), validity, methods of validation, 
conditions of application, source material (such as tis-
sue, blood, plasma or serum), stage of research (whether 
investigational, approved, or clinical), cancer subtype 
(including non-small cell lung cancer, adenocarcinoma, 

squamous cell lung cancer and large cell lung cancer, 
etc.), demographic data, sample sizes, and the association 
of pharmacodynamic biomarkers with specific therapeu-
tic agents when available. Additionally, we have systemat-
ically recorded the clinical trial IDs. For each biomarker, 
our selection criteria were as follows: a biomarker was 
included in the LCBD only if the study authors explic-
itly designated a specific molecule and provided conclu-
sive evidence of its association with lung cancer in their 
research findings. Furthermore, biomarkers that were 
experimentally validated through multiple independ-
ent studies and demonstrated clinical utility in disease 
diagnosis, prognosis evaluation, or therapeutic response 
prediction with cross-referenced documentation of sup-
porting evidence from diverse studies were prioritized 
for inclusion.

Comprehensive annotation of biomarkers
To facilitate a better understanding and practical appli-
cation of lung cancer biomarker information, we metic-
ulously annotated and analysed the biomarkers within 
the LCBD from various perspectives, including analys-
ing biomarkers from multiple dimensions and employ-
ing various methodologies tailored to their molecular 
characteristics. (1) Gene biomarkers were annotated for 
function and pathway associations utilizing the Gene 
Ontology (GO) and Kyoto Encyclopedia of Genes and 
Genomes (KEGG) databases, respectively. (2) For protein 

Fig. 1  Flowchart illustrating the development process of the LCBD
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biomarkers, we extracted detailed annotations, includ-
ing protein names, functions, interaction networks, 
and other critical information, from the UniProt data-
base [16]. (3) Annotations for microRNAs, lncRNAs, 
and circRNAs were sourced from specialized reposito-
ries—mirBase [17], LNCipedia [18] and Circbank [19], 
respectively—which provide molecular nomenclature 
and sequence data. For intermolecular interactions, we 
explored databases such as LncCeRBase [20], Mirtarbase 
[21], and NPInter [22] and compiled evidence of interac-
tions between microRNAs and genes, between microR-
NAs and lncRNAs, and between lncRNAs and proteins. 
Predictive biomarkers were specifically annotated with 
drug-related information, including drug names, tar-
gets, and clinical indications—from resources such as 
the DrugBank [23] and the Therapeutic Target Database 
(TTD) [24]. Moreover, we included annotations for bio-
marker types, development stages, biomarker discovery 
methods, sample sources, populations, sample sizes, and 
other pertinent details regarding biomarkers.

Development of the LCBD
The architecture of the LCBD was designed with a 
browser/server (B/S) structure, with clear separation 
between its frontend and backend, utilizing contempo-
rary technologies for an efficient and robust user expe-
rience. For the frontend, we selected React from among 
the popular trio of Angular, Vue, and React, as a frame-
work to create a responsive design that adapts seamlessly 
to various screen sizes and resolutions, thus facilitating 
access on a wide range of devices from mobile phones to 
desktop computers. On the backend, LCBD employed 
the LNMP stack [25], a robust framework of Linux, 
Nginx, MySQL, and PHP, augmented by Redis caching 
and ElasticSearch, to streamline the biomarker and panel 
search process. The search functionality was optimized 
using ElasticSearch [26], leveraging techniques such as 
word segmentation and inverted indexing to enhance 
accuracy. These methods enabled precise and efficient 
retrieval, even when processing large-scale datasets and 
complex queries.

To ensure high system availability, scalability, and fault 
tolerance, Kubernetes [27] was chosen as the deployment 
platform. Kubernetes provides comprehensive container 
orchestration features, including automated scaling, load 
balancing, self-healing, and rolling updates. These capa-
bilities allowed the LCBD to maintain continuous avail-
ability, dynamically allocate resources in response to 
demand, and recover seamlessly from system failures. 
The selection of Kubernetes over other container orches-
tration platforms, such as Docker Swarm or Apache 
Mesos, was based on its advanced feature set, robust 

ecosystem, and widespread industry adoption, ensuring a 
reliable and future-proof deployment environment.

Datasets for case studies
To ascertain the validity of the LCBD, we conducted 
three case studies focusing on its predictive capabilities. 
Data for the database prediction models were sourced 
from Xena (https://​xenab​rowser.​net/​datap​ages/) [28], 
from which we downloaded RNA-seq datasets for lung 
adenocarcinoma from the TCGA database. Both the 
diagnostic model and the immune cell infiltration predic-
tion model utilized clinical and gene expression data on 
lung adenocarcinoma (LUAD) from the TCGA (https://​
cance​rgeno​me.​nih.​gov, accessed on August 1, 2022). The 
final datasets comprised 1,214 independent samples, 
each with a complete set of clinical information and gene 
expression profiles. In addition, proteomic data from the 
CPTAC database, which includes 106 independent sam-
ples, were obtained for further refinement of the lung 
cancer diagnostic model.

Identification of differentially expressed genes (DEGs) 
and differentially expressed proteins (DEPs)
To mitigate variations arising from sample preparation, 
storage, or sequencing processes, we normalized the 
expression profile data using the "edgeR" package within 
R software, version 4.0.3. The "limma" package was then 
employed to identify DEGs and DEPs by comparing nor-
mal lung samples against LUAD samples. The selection 
criteria for DEGs were a false discovery rate (FDR) of less 
than 0.05 and an absolute log2 fold change greater than 2. 
We utilized the "p.adjust" function to calculate the FDR 
for each gene, thereby establishing significant q values, 
with an FDR q value of less than 0.05 deemed statistically 
significant. To visualize differential gene expression, we 
generated volcano plots and heatmaps using the "ggplot2" 
and "pheatmap" packages, respectively.

Analysis of case studies
On the basis of studies conducted by Zhou Jing [29], Suli 
Liu [30], and Lingge Yang [31], we developed three dis-
tinct predictive models tailored to assess the prognosis, 
diagnosis, and classification of immune cell infiltration 
types in lung cancer patients. Through these three case 
studies, we not only explore the practical applications of 
LCBD’s lung cancer biomarkers but also compare them 
with other publicly accessible lung cancer databases, pro-
viding an in-depth analysis of LCBD’s advantages. Model 
performance was evaluated using the K-fold cross-valida-
tion method with K = 5.

https://xenabrowser.net/datapages/
https://cancergenome.nih.gov
https://cancergenome.nih.gov
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Development of a prognostic model for lung cancer
To identify survival-related DEGs, we performed univari-
ate Cox proportional hazards analyses, at a the signifi-
cance level of P < 0.01 [29]. Risk scores for each sample 
were calculated within the prognostic model according 
to the expression levels of these DEGs and their cor-
responding coefficients, as defined by the following 
formula:

where coef1 to N denotes the survival-related coefficients 
for the DEGs, and expressionA to N represents the expres-
sion levels of the DEGs. The patients from the TCGA 
lung cancer dataset were stratified into high-risk and 
low-risk groups according to the median risk score. Dif-
ferences in survival between these groups were analyzed, 
via Kaplan-Meier survival analysis with the "survival" and 
"survminer" packages in R.

Furthermore, we investigated the relationships between 
clinicopathological features and risk scores via univariate 
Cox regression analysis, via the Survival package in R. 
The accuracy of the survival outcome predictions based 
on clinicopathological factors and risk scores was evalu-
ated by constructing time-dependent receiver operating 
characteristic (ROC) curves using the “survivalROC” R 
package.

Development of a diagnostic model for lung cancer
The Kullback‒Leibler (KL) divergence [32], is a nonsym-
metric value that quantifies the divergence between two 
probability distributions for a variable i, as defined by the 
following formula:

where P denotes the actual data distribution, and Q 
represents a theoretical or estimated approximation of P.

Gene expression data distributions are readily ascer-
tainable from a small dataset. The disparity between any 
two gene expression distributions can be quantified using 
the KL divergence. Similar distributions suggest a lack of 
association between the genes. The use of the KL diver-
gence has been shown to be effective in identifying essen-
tial DEGs for diagnosis [33].

We devised a diagnostic model using a deep neu-
ral network endowed with two hidden layers (128 
and 64 neurons), selecting focal loss as the loss func-
tion. Model performance was assessed using the K-fold 

RiskScore = coef1×expressionA+coef2×expressionB+· · ·+coefN×expressionN

DkL = −
n

i=1
P(i) ∗ ln (

Q(i)

P(i)
)

cross-validation method with a K of 5. The dataset was 
split into 80% training and 20% test sets. Within the 
training set, we implemented fivefold cross-validation, 
randomly dividing it into five subsets to iteratively assess 
model performance. Additionally, the batch size was set 
to 32, meaning that 32 samples are processed per model 
update, a choice informed by computational efficiency 
and common practice in similar studies. Additionally, 
we employed the Adam optimizer, with its learning rate 

set to 0.0005, to balance stability and convergence speed 
during training. To assess the model’s predictive accu-
racy, we generated an ROC curve on the test sets. Fur-
thermore, performance metrics such as accuracy, recall, 
and precision were employed to evaluate the efficacy of 
the models with and without gene selection. These met-
rics were computed from the confusion matrix.

Development of an immune infiltration model
Using the "GSVA" software package (v1.42.0) [34] and 
single-sample gene set enrichment analysis (ssGSEA) 
data, we calculated immune scores for 28 distinct 
immune cell types, grouped by their functions in antitu-
mour immunity, protumour activities, and immunosup-
pression, among others. Following normalization of the 
immune cell enrichment score matrix, we conducted 
NMF classification to determine the extent of immune 
infiltration in patients. The sequence was 2:6, the method 
was Brunet, and the nrun value was 30.

Next, we applied k-nearest neighbour (KNN)(n_neigh-
bors = 50) [35] and random forest(n_estimators = 100) 
[36] classifications to predict immune cell infiltration 
types. The dataset was divided into 70% training and 30% 
test sets. Within the training set, we performed fivefold 
cross-validation to train and optimize KNN and ran-
dom forest classifiers. The final model’s performance was 
assessed on the test set using the area under the ROC 
curve (AUC).

Inclusion of comparative databases in the case studies
To date, publicly available lung cancer biomarker data-
bases include LCMD [11], LCcircDB [12], TheMarker 
[13], MethMarkerDB [14, 15]. Because LCMD provides 
only metabolomics data and does not include transcrip-
tomics-based biomarkers, it was excluded from our 
comparative analyses and the subsequent case studies. 
In addition, LCcircDB was excluded due to its current 
inaccessibility.

Thus, for our case studies, we systematically compared 
LCBD, TheMarker, MethMarkerDB, and MarkerDB. 
It should be noted that most of the data in TheMarker 
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are derived from differentially expressed genes identi-
fied through transcriptome datasets (e.g., GSE55859, 
TCGA-LUAD), and there is ongoing debate regarding the 
definition of lung cancer biomarkers using this approach. 
Therefore, we selected only those biomarkers from The-
Marker that were supported by clinical or experimental 
evidence to construct our model. Furthermore, from Meth-
MarkerDB and MarkerDB, we chose lung cancer–related 
biomarkers for building our case study models (prognostic, 
predictive, and immune infiltration models).

Results and discussion
Quantification of biomarkers
An extensive literature review was conducted to generate 
a comprehensive dataset comprising 3,175 biomarkers for 
this study. This dataset encompasses biomarkers with a 
diverse range of applications, including 176 biomarkers for 
detection, 1,409 for diagnosis, 600 for prognosis, and 591 
for prediction (Table 1). In terms of molecular categoriza-
tion, the dataset included 601 microRNAs, 979 proteins, 88 
circular RNAs (circRNAs), and 742 genes (Table 2). Among 
these biomarkers, 743 have been approved, 236 are in the 
clinical stage, and 924 are in the research stage (Table 3).

Exploring the interface and features of the LCBD
The LCBD provides users with two distinct search func-
tionalities: "quick search" and "advanced search". The "quick 
search" option, which is accessible directly from the home-
page, enables users to efficiently locate specific biomark-
ers of interest (Fig. 2a). In contrast, the "advanced search" 
feature allows for more refined queries (Fig. 2b). The LCBD 
facilitates biomarker searches on the basis of a comprehen-
sive array of criteria, including but not limited to designa-
tion, type, molecular characteristics, associated medical 
conditions, application methods, source, developmental 
stage, disease subtypes, demographic details of the popula-
tion, and size of the study sample. Following the execution 
of either search mode, the database generates an organ-
ized table. This table lists the identified biomarkers and is 
designed for efficient browsing and sorting. Embedded 
within this table are hyperlinks, each leading to detailed 
information pertinent to the respective search terms.

Selecting a biomarker name (for example, HER2) 
directs the user to a detailed page about the biomarker, 
divided into five distinct sections: (I) Basic informa-
tion about the biomarker, including biomarker ID, 
name, gene ID, and corresponding UniProt database 

ID (Fig.  3a); (II) detailed information from a range of 
literature sources, such as molecular types, statuses, 
identification methods, origins, developmental stages 
as biomarkers, and applicable lung cancer subtypes 
(Fig.  3b); (III) biomarker-related drugs and their tar-
gets, including a table sourced from the DrugBank [23] 
and TTD databases [24] (Fig. 3c); (IV) information on 
biomarkers classified by molecular type, such as genes, 
proteins, lncRNAs, miRNAs, and circRNAs, com-
piled from sources such as miRBase, LNCipedia, and 
Circbank (Fig. 3d); and (V) annotation information for 
biomarkers, including GO terms and KEGG pathways 
(Fig. 3e).

The "Panel Search" module allows users to search for 
biomarker panels according to their name and type, 
producing a list that is both browsable and sortable 
and contains comprehensive information related to the 
search keyword (Fig.  4a). Clicking on "Panel ID" redi-
rects users to a page with detailed information about 
the selected lung cancer biomarker, organized into 
three sections (Fig. 4b): (I) Basic information about the 
panel, (II) detailed information about the biomarkers 
included in the panel, and (III) a reference section.

Additionally, users can explore the LCBD in depth via 
the “Browse” function. Within the LCBD, biomarkers 
can be filtered using five criteria—biomarker ID, bio-
marker name, biomarker type, drug name, and disease 
subtype (Fig.  5a). Clicking a highlighted biomarker ID 
directs users to a page containing detailed information 
about the selected biomarker (Fig. 3). Similarly, on the 
“Panel Browse” page, biomarkers can be filtered accord-
ing to three criteria—biomarker Panel ID, biomarker 
Panel name, and biomarker Panel type (Fig. 5b). Click-
ing a highlighted biomarker ID on this page likewise 
directs users to a page with detailed information about 
the selected biomarker (Fig. 4).

Users can upload their biomarker data to the LCBD 
(Supplementary Fig.  1) via a dedicated submis-
sion interface, where they may enter information on 

Table 1  Quantification of different types of biomarkers

Type Detective Diagnostic Prognostic Predictive Others

Number 176 1409 600 591 399

Table 2  Quantification of biomarkers of different molecular 
types

Type MicroRNA Protein CircRNA DNA Gene

Number 601 979 88 158 742

Table 3  Quantification of biomarkers in different research stages

Stage Approved Clinical Research

Number 743 236 924
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published or clinically validated lung cancer biomarkers 
according to their research needs. To ensure data accu-
racy and reliability, all submissions undergo a rigorous 
review and validation process; only upon approval are 
the corresponding data formally updated in the data-
base and made publicly available.

Comparison with existing biomarker databases
Comprehensive databases featuring extensively anno-
tated lung cancer biomarkers are fundamental to advanc-
ing lung cancer research. However, databases such as 
LCMD [11], LCcircDB [12], TheMarker [13], MethMark-
erDB [14], and MarkerDB [15] currently lack adequate 
biomarker data and annotations, which impedes critical 

research in the diagnosis and treatment of lung cancer 
(Table 4).

Specialized databases such as LCMD and LCcircDB, 
which focus on particular types of lung cancer biomark-
ers (metabolites and circRNA), consistently ignore other 
necessary data. The limited data volume within these 
databases is insufficient to meet the scholarly demand for 
extensive biomarker datasets. Moreover, these databases 
fail to prioritize the collection of essential information 
concerning biomarker-related drugs, targets and bio-
marker panels, and their annotations lack the necessary 
variety and detail.

Recent biomarker databases such as TheMarker, Meth-
MarkerDB, and MarkerDB, although broader in scope 

Fig. 2  Search module. a Quick search. This feature enables users to conduct searches by biomarker name, facilitating the exploration of research 
within the LCBD. b Advanced search. This sophisticated search tool allows users to navigate through LCBD research utilizing a set of ten filters
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Fig. 3  Biomarker details page. a Basic information, including biomarker ID, name, and gene ID. b Biomarker data from diverse literature sources. c 
Associated drugs and target details. d Information categorized by molecular type: genes, proteins, lncRNAs, miRNAs, and circRNAs. e Gene Ontology 
and KEGG pathway annotations
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than the LCBD, do not match our database in capturing 
the extensive range and quality of lung cancer biomark-
ers. MarkerDB, for example, catalogues only certain lung 
cancer subtypes, such as somatic adenocarcinoma of the 
lung and small cell lung cancer, omitting other crucial 
NSCLC subtypes, such as squamous cell cancer and large 
cell cancer, and contains only 96 biomarkers sourced 
from 136 publications. MethMarkerDB includes only 
379 biomarkers from 218 publications without detailed 
subtype annotations. Although TheMarker includes a 
significant number of biomarkers, these biomarkers are 
derived primarily from differential expression analyses of 
a limited number of transcriptome datasets (GSE55859, 
GSE126044, TCGA-LUAD, and TCGA-LUSC), and the 
validity of this method in defining lung cancer biomark-
ers has been debated. Moreover, TheMarker emphasizes 
mRNAs and lncRNAs; neglects miRNA and protein data, 
including only 9 miRNAs and 46 proteins; and gener-
ally labels biomarkers under the broad category of "Lung 

Cancer" without assigning them to specific lung cancer 
subtypes.

To further demonstrate the superiority of LCBD data, 
we conducted a statistical analysis of LCBD alongside 
other accessible databases, focusing on each database’s 
data inclusion capacity, coverage, and statistical signifi-
cance. Specifically, based on five high-quality lung can-
cer biomarker studies published between February 2024 
and August 2024 in authoritative journals, we systemati-
cally integrated 69 lung cancer biomarker datasets vali-
dated through multi-center clinical trials (Supplementary 
Table  1). We then constructed a contingency table for 
database inclusion status (included/not included) across 
five major biomarker databases (LCBD, MarkerDB, The-
Marker, MethMarkerDB, and LCMD) and performed 
a chi-square test of independence. The results showed 
χ2(4) = 127.51 (p = 1.33 × 10–26, adjusted using the Benja-
mini–Hochberg method; Cramer’s V = 0.610), confirming 
statistically significant heterogeneity in biomarker inclu-
sion among the databases (α = 0.01).

Fig. 4  Biomarker panel search and detail overview. a Panel search module: Users can search for study panels using filters for name and type. b 
Panel details page (here chose TAC1, HOXA17, and SOX17 as an example)
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Further analysis revealed that LCBD achieved a cov-
erage rate of 78.26%, which is markedly higher than the 
mean coverage of the other databases (16.23% ± 13.72%) 
(t = −9.03, p < 0.01, Cohen’s d = 4.52). Moreover, the 
adjusted odds ratio (OR = 18.32, 95% CI: 9.51–35.28) 
indicates a strong association between LCBD and the 
69 biomarkers, and the F1 score reached 0.64 (Table 5). 
Under a controlled false discovery rate (FDR < 5%), these 
findings establish LCBD as a preferred database that 
combines high coverage (breadth) with high precision 

(quality), serving as a benchmark data platform for trans-
lational research on lung cancer biomarkers.

Conversely, the LCBD contains an impressive collec-
tion of 1447 lung cancer biomarkers, covering a wide 
spectrum of biomarker types (prognosis, detection, diag-
nosis, monitoring, treatment, therapy, and prediction) 
and molecular categories (DNA, gene, mRNA, protein, 
miRNA, lncRNA, circRNA, and chemical), thus provid-
ing lung cancer researchers with a comprehensive reposi-
tory of biomarker data. Moreover, the LCBD provides 

Fig. 5  Browse module. a Users can filter biomarkers in the LCBD using five criteria: Biomarker ID, Biomarker Name, Biomarker Type, Drug Name, 
and Disease Subtype. b Users can filter biomarker panels in the LCBD using three criteria: Biomarker Panel ID, Biomarker Panel Name, and Biomarker 
Panel Type
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supplementary information on biomarker-associated 
drugs and targets, enriching the biomarker dataset.

Case studies
Prognostic model for lung cancer
The effectiveness of the LCBD was corroborated by three 
distinct case studies, each utilizing different approaches 
to model construction. The first case study focused on 
the development of a prognostic model. Through the 
analysis of normal lung samples and lung adenocarci-
noma samples, 745 DEGs were identified (Supplemen-
tary Fig. 2). A prognostic model for lung cancer patients 
was constructed through the use of a Cox regression 
model [37] to conduct separate Cox univariate analyses 
on both the control group (non-LCBD group, consisting 
of 745 DEGs) and the experimental group (LCBD group, 
consisting of 745 DEGs as well as the union of genes from 
the LCBD, totalling 1608 genes). Subsequently, lung can-
cer prognosis risk scores were calculated, and the top 10 
genes significantly associated with prognosis (P < 0.05) 
were selected for further risk score computation (Supple-
mentary Table 2 and Supplementary Table 3).

By utilizing the derived risk score, the optimal cut-off 
values for categorizing lung cancer patients into high-
risk and low-risk groups (experimental group: 2.6; con-
trol group: 1.9) were determined. A prognostic model for 
lung cancer patients was constructed using these stratifi-
cation and survival time data (Supplementary Fig. 3). The 
model’s effectiveness was evaluated using a time-depend-
ent ROC curve. Kaplan–Meier survival analysis revealed 
a greater likelihood of poor prognosis in the high-risk 
group. Consequently, the experimental group model 
demonstrated superior performance (1-year AUC: 0.692, 
2-year AUC: 0.699, 4-year AUC: 0.653, 8-year AUC: 
0.591) compared with the control group model (1-year 
AUC: 0.678, 2-year AUC: 0.697, 4-year AUC: 0.633, 
8-year AUC: 0.602) as depicted in Fig. 6.

To further validate the advantages of the LCBD in con-
structing prognostic models for lung cancer biomark-
ers, we conducted a systematic comparison with other 
databases. Since the LCcircDB database, developed by 
Dr. Xia in 2018, remains inaccessible, and the LCMD 
database contains only lung cancer metabolite biomark-
ers incompatible with the transcriptomic nature of the 
TCGA-LUAD bulk RNA-seq dataset, we could not 
compare these with databases such as MethMarkerDB, 
MarkerDB, and TheMarker, which encompass all types 
of lung cancer biomarkers. Specifically, we built a prog-
nostic model by integrating the differentially expressed 
genes identified from the TCGA-LUAD dataset with bio-
markers from the LCBD. Kaplan–Meier survival analysis 
was then performed to compare our model with those 
derived from the MethMarkerDB, MarkerDB, and The-
Marker databases, thereby comprehensively assessing the 

Table 4  Comparison of LCBD with other lung cancer biomarker databases

SCC squamous cell carcinoma, ADC adenocarcinoma, SCLC small cell lung cancer, LUSC lung squamous cell carcinoma, LCC large cell carcinoma, NSCLC non-small cell 
lung cancer, SQLC squamous cell lung cancer, LC lung cancer
a Multiple molecular types, including DNA, gene, mRNA, protein, miRNA, lncRNA, circRNA, and chemical
b Multiple molecular types, including DNA, mRNA, protein, miRNA, lncRNA, and chemical

LCBD LCMD LCcircDB TheMarker MethMarkerDB MarkerDB

No. of Biomarkers 1447 2013 1029 2439 379 96

Major Molecular type Non-single classa Metabolome CircRNA Non-single classb DNA
methylation

Non-single classa

Major cancer sub-
types

SCC; ADC; SCLC; 
LUSC; LCC; NSCLC; 
SQLC; LC

NSCLC; SCLC; LC ADC; NSCLC; LC LUSC; LUAD LC ADC; SCLC; LC

Major Biomarker 
Type

Prognosis; Detection; 
Diagnosis; Monitor-
ing; Treatment; 
Therapy; Prediction

Diagnosis; Therapy not yet Pharamacodynamic; 
Safety; Monitoring; 
Predictive; Surrogate; 
Endpoint

Diagnosis; Prognosis Diagnosis; Prognosis; 
Prediction; Exposure

Panel included included not yet not yet not yet included

Drug & target included not yet not yet included not yet not yet

Annotation included included included included included included

Sample Sizes included included not yet not yet not yet not yet

Table 5  Statistical Comparison of LCBD with Other Databases

Database Odds Ratio F1 Score Coverage Rate (%)

LCBD 18.32 0.642857 78.26087

LCMD 0.352314 0.119048 14.49275

TheMarker 0.149601 0.059524 7.246377

MethMarkerDB 1.535627 0.297619 36.23188

MarkerDB 0.149601 0.059524 7.246377
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superior predictive performance and clinical applicabil-
ity of LCBD. The experimental results indicate that, with 
respect to the AUC scores for 1-year, 2-year, 4-year, and 
8-year survival, the LCBD-based model outperformed 
the models constructed using the other databases. Spe-
cifically, the LCBD-based model achieved AUCs of 0.75, 
0.737, 0.747, and 0.737, respectively, which were signifi-
cantly higher than those of the MethMarkerDB-based 
model (0.743, 0.732, 0.723, and 0.719) and the Mark-
erDB-based model (0.743, 0.73, 0.723, and 0.724), while 

the TheMarker-based model yielded comparatively lower 
AUCs of 0.668, 0.664, 0.637, and 0.637 (Fig. 7). Further-
more, to rigorously substantiate the statistical supe-
riority of the LCBD database in prognostic modeling, 
we computed the AUC for prognostic models derived 
from LCBD and three comparator databases (Mark-
erDB, MethMarkerDB, and TheMarker) via fivefold 
cross-validation. Leveraging this cross-validation data, 
we performed t-tests to assess intergroup differences in 
AUC between LCBD and the comparator databases. The 

Fig. 6  Time-dependent ROC curves comparing prognostic models derived from the LCBD with those from other databases. a ROC curve for 1-year 
survival, b ROC curve for 2-year survival, c ROC curve for 4-year survival, and (d) ROC curve for 8-year survival. The ROC curve of the experimental 
group is shown in orange, and the ROC curve of the control group is shown in red
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findings revealed that, in the majority of comparisons, 
LCBD exhibited significantly higher AUC values than 
the other databases (p < 0.05), thereby confirming its 
enhanced performance in prognostic modeling (see Sup-
plementary Table 4 for details).

In summary, biomarkers from the LCBD can signifi-
cantly contribute to the refinement and accuracy of prog-
nostic prediction models in lung cancer research.

Diagnostic model for lung cancer
In the second case study, we utilized biomarkers from 
the LCBD to develop a diagnostic model for lung cancer 
patients. Clinical information and gene expression pro-
files for LUAD patients were sourced from The Cancer 

Genome Atlas (TCGA-LUAD), and a control group was 
established to reduce the influence of irrelevant vari-
ables. The experimental group included DEGs from both 
the LCBD and the original LUAD dataset (a total of 1380 
genes), and the control group consisted of only the origi-
nal LUAD DEGs (519 genes). For the proteomics diag-
nostic model, we defined the DEPs found in both the 
LCBD and the original LUAD dataset as the experimental 
group (6,385 proteins), and DEPs identified exclusively 
in the original LUAD dataset (6,225 proteins) were des-
ignated as the control group. We identified lung cancer-
related genes/proteins from both datasets by calculating 
the KL divergence and selected the 10 genes/proteins 
with the greatest KL divergence f scores as inputs for the 

Fig. 7  Time-dependent ROC curves comparing prognostic models derived from the LCBD with those from other databases. a ROC curve for 1-year 
survival; b ROC curve for 2-year survival; c ROC curve for 4-year survival; d ROC curve for 8-year survival. The red, blue, green, and purple curves 
represent the LCBD, MethMarkerDB, MarkerDB, and TheMarker groups, respectively
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diagnostic model. A deep neural network with two hid-
den layers was then constructed to build the diagnostic 
model.

The results in the TCGA dataset revealed that the 
model achieved an accuracy of 94.65% and an area 
under the curve (AUC) value of 0.9179 in the experi-
mental group. These metrics greatly exceeded the 

diagnostic performance of the model in the control 
group, which had an accuracy of 92.59% and an AUC of 
0.8141 (Fig.  8a). Moreover, the results for the CPTAC 
dataset reveal that the model achieved an accuracy of 
83.72% and an AUC (area under the curve) value of 
0.9481 in the control group. In comparison, the model 
exhibited improved diagnostic performance in the 

Fig. 8  ROC curves for the LUAD diagnostic model. a ROC curve of the LUAD diagnostic model derived from the TCGA dataset; b ROC curve 
of the LUAD diagnostic model derived from the CPTAC dataset. The horizontal axis represents the false-positive rate, and the vertical axis represents 
the true positive rate, with the area under the ROC curve (AUC) representing model performance. The ROC curve of the experimental group 
containing biomarkers from the LCBD is shown in blue, and the ROC curve of the control group without biomarkers from the LCBD is shown 
in orange
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experimental group, with an accuracy of 90.70% and an 
AUC of 0.9751 (Fig.  8b). When validated with multi-
omics data, biomarkers from the LCBD can be used 
to construct a more accurate lung cancer diagnostic 
model.

To further demonstrate the advantages of our con-
structed LCBD, we developed a diagnostic prediction 
model based on KL divergence and compared its per-
formance with that of other databases, including Mark-
erDB, TheMarker, and MethMarkerDB. The results 
indicate that the diagnostic accuracy of the TheMarker 
database was 95.06% with an AUC of 0.93; the MarkerDB 
database achieved an accuracy of 93.00% with an AUC 
of 0.97; and the MethMarkerDB database attained an 
accuracy of 93.83% with an AUC of 0.94. In contrast, the 
LCBD exhibited improved diagnostic performance, with 
an accuracy of 98.77% and an AUC of 0.99 (as shown in 
Fig.  9). Furthermore, to validate the statistical superior-
ity of the LCBD database in diagnostic modeling, we 
computed the area under the AUC for diagnostic mod-
els derived from LCBD and other databases (MarkerDB, 

MethMarkerDB, and TheMarker) via fivefold cross-vali-
dation, followed by t-tests to evaluate intergroup differ-
ences in AUC. The results indicated that, in the majority 
of comparisons, the AUC for LCBD was significantly 
higher than that of the comparator databases (p < 0.05), 
confirming its pronounced performance advantage in 
diagnostic modeling (see Supplementary Table  5 for 
details).

Immune infiltration model for lung cancer
Using the gene signatures of 28 immune cell types 
reported by Jia Q [37], the enrichment scores for these 
immune cells in both the training and control sets were 
calculated with the "GSVA" package (v1.42.0) [34] and 
the single-sample gene set enrichment analysis (ssGSEA) 
method. The matrix of immune cell enrichment scores 
was subsequently normalized and categorized using the 
"Non-negative Matrix Factorization" (NMF) software 
package. The NMF analysis was conducted with the rank 
varying from 2 to 6 and the number of runs (nrun) set 
to 30. After cogene typing indices across different rank 

Fig. 9  ROC curves for lung cancer biomarker datasets from multiple databases. The horizontal axis represents the false positive rate, and the vertical 
axis represents the true positive rate, with the area under the ROC curve (AUC) reflecting model performance. The blue, orange, green, and red 
curves represent the ROC curves for biomarkers from the MarkerDB, TheMarker, MethMarkerDB, and LCBDs, respectively
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values were evaluated (Fig. 10a), a rank of 3 was selected, 
leading to the classification of patients into three clusters: 
immune desert (Cluster 1), immune exclusion (Cluster 
2), and immune inflammatory (Cluster 3). A heatmap 
depicting the sample types was also generated (Fig. 10b). 
However, a subsequent correlation analysis between 
immuno-enrichment scores and NMF typing (Fig.  10c) 
revealed that Clusters 2 and 3 presented greater correla-
tions that were concentrated at the upper end of the cor-
relation curve. Considering the smaller sample size of 
Cluster 2 and its similarity in characteristics to Cluster 3, 
these two groups were amalgamated into a new subtype, 
termed the high immune infiltration type (C2), whereas 
the original Cluster 1 was designated as the low immune 
infiltration type (C1).

We used KNN [35] and random forest [36] classifiers 
to compare the prediction performance of immune infil-
tration typing between the control group and the experi-
mental group. The ROC curve analysis based on the 
KNN results revealed that the model had an AUC of 0.86 
in the experimental group, which was better than that in 
the control group (AUC, 0.8) (Fig. 11). The models based 
on the random forest classifier yielded similar results 
(experimental group: AUC, 0.94; control group: AUC, 
0.92) (Fig.  11). These results indicate that the immune 
infiltration model incorporating biomarkers from the 
LCBD has superior predictive performance compared 
with the control model, confirming the reliability and 
effectiveness of the biomarker data in the LCBD. Further-
more, biomarkers in the LCBD have significant predictive 
value for determining the immune infiltration status of 
lung cancer patients.

To further validate the advantages of our constructed 
LCBD in predicting immune infiltration subtypes, we 

evaluated this task using both KNN and Random Forest 
models, and compared the results with those obtained 
from corresponding models based on the MarkerDB, 
TheMarker, and MethMarkerDB databases. ROC curve 
analysis of the Random Forest model (Fig.  12) revealed 
that the AUC for LCBD reached 0.9383, which is signifi-
cantly higher than those for the other databases (Mark-
erDB: 0.9178; MethMarkerDB: 0.9183; TheMarker: 
0.9369). Similarly, the KNN model produced comparable 
results (LCBD: 0.8831; MarkerDB: 0.8858; MethMark-
erDB: 0.8710; TheMarker: 0.8024), further demonstrating 
that LCBD exhibits superior accuracy and robustness in 
predicting immune infiltration subtypes. Furthermore, to 
rigorously validate the statistical superiority of the LCBD 
database in immune infiltration modeling, we computed 
the AUC for immune infiltration models derived from 
LCBD and comparator databases (MarkerDB, Meth-
MarkerDB, and TheMarker) using fivefold cross-valida-
tion. Based on the cross-validation data, we conducted 
t-tests to assess intergroup differences in AUC. The find-
ings revealed that the AUC for LCBD was significantly 
higher than that of the comparator databases (p < 0.05), 
thereby confirming its pronounced performance advan-
tage in constructing immune infiltration models (see 
Supplementary Table 6 for details).

Clinical applications and challenges of LCBD biomarkers
The LCBD is a comprehensive platform designed to 
advance early detection and personalized treatment of 
lung cancer. By integrating biomarker data from multiple 
studies, including clinically validated retrospective and 
prospective research, LCBD enhances research efficiency, 
minimizes experimental redundancy, and reduces the 
costs associated with preliminary screening. In early lung 

Fig. 10  Changes in the cophenetic index with the number of clusters, a heatmap of NMF tumour sample classification at rank = 3, and correlation 
analysis of NMF classification results. a On the basis of the graph showing changes in the cophenetic index relative to cluster numbers, the samples 
are classified into three groups: immune desert (Cluster 1), immune exclusion (Cluster 2), and immune inflammatory (Cluster 3). b NMF classification 
was conducted using an enrichment score matrix of 28 immune cells in the samples, and the resulting heatmap is displayed. c Correlation analysis 
of the NMF classification results was conducted on the basis of the immune enrichment scores
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cancer detection, the LCBD systematically identifies bio-
marker combinations with the highest diagnostic value. 
Physicians can utilize LCBD data, liquid biopsy results, 
and risk prediction models to detect high-risk individu-
als at an earlier stage, thereby improving early diagnosis 
rates, increasing patient survival, and reducing the inci-
dence of late-stage lung cancer. For precision medicine, 
the LCBD provides a searchable platform that allows cli-
nicians to retrieve immunotherapy-predictive biomark-
ers. The LCBD also facilitates treatment selection on the 
basis of genetic mutations and molecular profiles, includ-
ing PD-L1 expression levels, tumour mutational burden 
(TMB), and microsatellite instability (MSI), optimizing 
immunotherapy and targeted therapy decisions.

However, translating biomarkers into clinical applica-
tions poses challenges, particularly in integrating these 
biomarkers into existing diagnostic workflows. Bio-
markers curated in the LCBD align with modern detec-
tion technologies, such as next-generation sequencing 
(NGS), liquid biopsy, and proteomics analyses, ensuring 
their feasibility in clinical settings. Collaboration among 
pathologists, bioinformaticians, and clinicians is essential 
to bridge the gap between theoretical potential value and 
real-world application. Furthermore, regulatory approval 

remains a major hurdle. Different applications—screen-
ing, diagnosis, prognosis assessment, and companion 
diagnostics (CDx)—require compliance with distinct 
standards. The LCBD employs a tiered classification sys-
tem, categorizing biomarkers into experimental valida-
tion, clinical trials, and regulatory approval and providing 
a clear regulatory status to aid in clinical decision-mak-
ing. Despite its contributions to accelerating lung cancer 
biomarker translation, the process remains a complex 
and ongoing challenge.

LCBD limitations and future plans
As a literature-derived database focused on lung cancer 
biomarkers, the LCBD primarily aggregates published 
research evidence. However, the inherent publication 
bias in scientific literature, with negative or statistically 
nonsignificant findings being underrepresented, risks 
inflating the perceived clinical utility of certain biomark-
ers during data curation.

The landscape of lung cancer biomarkers is rap-
idly evolving, driven by multiple factors: (1) com-
mercialization of novel detection platforms (e.g., 
multiomics-based assays), (2) regulatory approv-
als of diagnostic techniques (EMA/FDA-cleared), (3) 

Fig. 11  ROC curves for the control and experimental groups based on the KNN and random forest methods. The horizontal axis represents 
the false-positive rate, and the vertical axis represents the true-positive rate, with the area under the ROC curve (AUC) representing model 
performance. The ROC curves of the control group (without LCBD biomarkers) using the random forest model and the KNN model are shown 
in blue, and the ROC curves of the experimental group (with LCBD biomarkers) using the random forest model and the KNN model are shown 
in orange
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advancements in laboratory-developed tests (LDTs), and 
(4) continuous publication and patenting of biomarker 
discoveries. Importantly, the clinical applicability of bio-
markers requires dynamic re-evaluation as emerging 
evidence may change their diagnostic/prognostic valid-
ity. These dynamics necessitate systematic updates of the 
LCBD to maintain its translational relevance.

To address these challenges, we plan to implement 
scheduled updates every 2–3  years with the following 
enhancements: (1) integration of preprint repositories 
(e.g., bioRxiv, medRxiv) to capture biomarker candidates 
prior to journal-driven selection bias, thereby identify-
ing high-potential markers overlooked by traditional 
publication filters; (2) inclusion of negative studies and 
conflicting evidence reports (e.g., biomarkers validated 
in specific cohorts but invalidated in others) to counter-
balance publication bias; and (3) algorithm-driven selec-
tion criteria to prioritize biomarkers with cross-platform 
reproducibility and multicentre validation records, 
reducing reliance on single-study claims. Furthermore, 
we plan to introduce two new modules to the LCBD 

platform: a diagnostic model module and a prognostic 
model module. These modules will allow users to upload 
patient-related data and utilize the platform’s integrated 
diagnostic or prognostic models for analysis, thereby 
enabling diagnostic and prognostic predictions. We 
expect that periodic updates and iterations of LCBD will 
substantially improve its clinical utility, delivering more 
precise lung cancer biomarker services to researchers 
and clinicians.

Conclusions
In this study, we developed the Lung Cancer Biomarker 
Database (LCBD), a comprehensive and integrated 
repository tailored for lung cancer biomarkers. The 
establishment of the LCBD provides researchers and 
clinicians with convenient access to extensive data on a 
wide array of lung cancer biomarkers, including genes, 
proteins, miRNAs, lncRNAs, circRNAs, and metabo-
lites. This database not only facilitates the retrieval of 
specific lung cancer-related biomarkers but also enriches 
research into disease pathogenesis, playing a pivotal role 

Fig. 12  ROC curves for lung cancer biomarker datasets in multiple databases based on KNN and Random Forest. The blue, orange, green, 
and purple curves represent the ROC curves of the LCBD, MarkerDB, MethMarkerDB, and TheMarker databases, respectively, using the Random 
Forest model. The pink, brown, olive green, and gray curves represent the ROC curves of the LCBD, MarkerDB, MethMarkerDB, and TheMarker 
databases, respectively, using the KNN model
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in early diagnosis, disease classification, and prognosis 
evaluation.

The creation of the LCBD has significantly driven 
research and clinical applications in the lung cancer bio-
marker field, providing the global lung cancer research 
community with an integrated and efficient platform. 
This platform improves the allocation of existing research 
resources and underpins the innovation and develop-
ment of strategies for the prevention, diagnosis, and 
treatment of lung cancer. Consequently, we believe that 
the LCBD will become an essential component of future 
lung cancer research and treatment strategies, improving 
the management and outcomes of the disease.
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