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Abstract
In humans and animal models, Cesarean section (C- section) has been associated 
with alterations in the taxonomic structure of the gut microbiome. These changes 
in microbiota populations are hypothesized to impact immune, metabolic, and 
behavioral/neurologic systems and others. It is not clear if birth mode inherently 
changes the microbiome, or if C- section effects are context- specific and involve 
interactions with environmental and other factors. To address this and control for 
potential confounders, cecal microbiota from ~3 week old mice born by C- section 
(n = 16) versus natural birth (n = 23) were compared under matched conditions 
for housing, cross- fostering, diet, sex, and genetic strain. A total of 601 unique 
species were detected across all samples. Alpha diversity richness (i.e., how 
many species within sample; Chao1) and evenness/dominance (i.e., Shannon, 
Simpson, Inverse Simpson) metrics revealed no significant differences by birth 
mode. Beta diversity (i.e., differences between samples), as estimated with Bray- 
Curtis dissimilarities and Aitchison distances (using log[x  + 1]- transformed 
counts), was also not significantly different (Permutational Multivariate ANOVA 
[PERMANOVA]). Only the abundance of Lachnoclostridium [Clostridium] scin-
dens was found to differ using a combination of statistical methods (ALDEx2, 
DESeq2), being significantly higher in C- section mice. This microbe has been im-
plicated in secondary bile acid production and regulation of glucocorticoid me-
tabolism to androgens. From our results and the extant literature we conclude 
that C- section does not inherently lead to large- scale shifts in gut microbiota 
populations, but birth mode could modulate select bacteria in a context- specific 
manner: For example, involving factors associated with pre- , peri- , and postpar-
tum environments, diet or host genetics.
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1  |  INTRODUCTION

In the last ~20 years the rate of Cesarean section (C- section) 
delivery has rapidly increased across the globe, and in the 
U.S. has increased by 60% since 1996 (American College of 
Obstetricians and Gynecologists, Society for Maternal- Fetal 
Medicine et al., 2014; Miseljic & Ibrahimovic, 2020). Recent 
data show that 31.7% of all births in the US (in 2019), over 
40% in some Latin American countries, ~37% across Asia 
(Lumbiganon et al.,  2010), and 18.6% on average glob-
ally were by C- section (Betran, Ye, et al.,  2016; Martin 
et al., 2021). When medically necessary, a C- section can ef-
fectively prevent many instances of maternal or infant mor-
tality. Experts convened by the World Health Organization 
to review the available literature have highlighted the med-
ical importance of C- section, but with the observation that 
“at [the] population level, C- section rates higher than 10% 
are not associated with reductions in maternal and new-
born mortality rates” ((Betran, Torloni, et al., 2016); also see 
(Betran et al.,  2015)). While a C- section is relatively safe, 
it is still major surgery and is associated with higher intra-  
and postpartum maternal odds for morbidities (e.g., at least 
one of: ICU admission, blood transfusion, hysterectomy, 
ileac artery ligation) and perinatal risks (e.g., NICU admis-
sions), which could in theory have implications on future 
pregnancies as well as long- term effects for the mother and 
offspring (Lumbiganon et al., 2010; Souza et al., 2010). The 
World Health Organization recently reassessed available 
evidence and concluded that C- section delivery should 
ideally be undertaken only when medically necessary, ac-
knowledging that the relationship between C- section and 
long- term pediatric outcomes is unclear (World Health 
Organization, 2015).

Developmental impacts of C- section on the offspring 
remain to be elaborated, but could involve multiple phys-
iological systems including immune, metabolic, and be-
havioral/neurologic. Regarding the latter, while some 
studies have shown no significant difference in intelli-
gence quotient (Khadem & Khadivzadeh,  2010), others 
have found associations between C- section and an in-
creased risk for autism spectrum disorder and/or atten-
tion deficit/hyperactivity disorder (Amiri et al.,  2012; 
Curran, Dalman, et al., 2015; Curran, O'Neill, et al., 2015; 
Talge et al., 2016). We have demonstrated that 2- week old 
infants born by C- section had lower brain white matter 
integrity and less functional connectivity across different 
brain regions compared to infants born by natural delivery 
(Deoni et al., 2019). The effects on white matter remained 
through at least 3 year of age; thus, while this effect may 
be transient, these results highlight that birth mode may 
influence neurodevelopmental outcomes in offspring. 
Other data point to potential links between birth mode 
and body composition: One study reported two- fold 

higher risk for adolescent obesity in children born by  
C- section in the United Kingdom (Blustein et al., 2013). As 
recently reviewed by Faúndes et al. (2021), most but not 
all studies have demonstrated modestly higher odds for 
childhood or young adult obesity in C- section offspring. A 
large systemic review and meta- analysis found that chil-
dren delivered by C- section had higher risk for developing 
respiratory tract infections, obesity, and manifestations of 
asthma significantly compared to children delivered vag-
inally, but there were inconclusive results regarding the 
risk of developing diabetes mellitus type 1 or neurological 
disorders (Slabuszewska- Jozwiak et al., 2020). The under-
lying mechanisms that could lead to differential physio-
logical outcomes in C- section compared to natural birth 
offspring are still unknown. We have hypothesized that 
innate differences in gut microbiota are involved in brain 
differences (Deoni et al., 2019), and it has also been spec-
ulated that the gut microbiome contributes to C- section- 
associated risks for obesity (Faundes et al.,  2021) and 
asthma (Stokholm et al., 2020).

The hypothesis that birth mode- specific gut micro-
biota populations exist is logical based on the fact that  
C- section deliveries interrupt the exposure of the new-
born to the maternal vaginal microbiota. Natural birth 
involves neonatal exposure to the vaginal microbiota, 
which, in theory, leads to distinct maternally- derived 
microbiota patterns in babies, some of which could be 
long- lasting. In contrast, C- section offspring patterns 
would derive initially from “environmental sources” only. 
Indeed, using fecal cultures to characterize temporal 
patterns of bacteria in infants aged up to 180 days, colo-
nization appeared delayed in children born by C- section 
with pre- delivery antibiotic prophylaxis for their moth-
ers (Gronlund et al., 1999). Penders et al. (2006) reported 
that in 1 mos old C- section infants, there was lower fecal 
prevalence of Bifidobacteria and Bacteroides as measured 
by polymerase chain reaction, findings similar to Huurre 
et al. (2008) who used fluorescence in situ hybridization 
methods. In babies aged 2 and 4 days, a significantly differ-
ent fecal microbiome profile was reported comparing vag-
inal to C- section birth: The latter had lower Bacteroides, 
Bifidobacteria, and E. coli and higher relative abundances 
of Staphylococcus spp., Clostridium spp. and Enterbacter 
spp. (Liu et al., 2015). Some studies have found that differ-
ences in the gut become insignificant after 6 weeks (Chu 
et al., 2017), but other results support the notion that dif-
ferences in birth mode affects select gut microbiota for a 
longer time frame. For instance, Bacteriodetes phyla were 
lower at least through 12 mos of age in children born to 
C- section in one study (Jakobsson et al., 2014). At 1 year 
postpartum, children born by C- section retained the re-
duced Bacteroides also seen at 1 week and 1 mos, but the 
lower Bifidobacteria of infancy had normalized (Stokholm 
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et al.,  2020). Using fecal samples from 7 year olds with 
vaginal or C- section births, Salminen et al.  (2004) used 
a fluorescence in situ hybridization method with probes 
specific to Bifidobacteria spp., Lactobacilli/Enterococci 
spp., Bacteriodes, and Clostridia; the latter class was sig-
nificantly lower in children born by C- section. Phylum- 
level differences in feces were observed as early as 7 days 
postpartum for C- section infants (e.g., lower relative abun-
dances of Actinobacteria and Bacteroidetes and higher 
relative Firmicutes), which was still observed in samples 
at 31 days (Selma- Royo et al., 2020).

Despite accumulating evidence that birth mode im-
pacts the gut microbiota and functional outcomes in 
humans, interpretations may be uncertain due to the in-
volvement of numerous confounding factors (i.e., home 
environment, host genetics, infant nutrition, weaning 
foods and timing, etc.). Thus, the field awaits a definitive 
answer to the question, “Does birth mode, by definition, 
inherently lead to a difference in the gut microbiome?” 
Considering the potential significance of this to public 
health and clinical practice, it is imperative to answer this 
question through studies designed to examine the effects 
of birth mode while minimizing confounders. To this end, 
we conducted a controlled mouse model experiment to 
observe whether C- section affects the cecal microbiota 
when compared to offspring derived from vaginal birth. 
We reasoned that if birth mode inherently leads to signifi-
cant differences in cecal microbiota, this would be detect-
able in young animals tested at the ~3 weeks postpartum, 
peri- weaning stage.

2  |  METHODS

2.1 | Animals and C- section model

Studies were approved by the UAMS Animal Use 
Committee (Protocol #3740). Timed pregnant CD- 1 IGS 
mice (strain code 022) were supplied by Charles River. 
First- time pregnant mothers 8– 10 weeks of age were 
timed bred to arrive on embryonic day 4 and day 7 (EMD4, 
EMD7). The dams were single- housed in cages with TEK- 
Fresh laboratory animal bedding (Envigo- Teklad 7099) 
and a single nestlet (NES 3600, Ancare), and fed ad libi-
tum rodent chow (Envigo- Teklad 8640) and water. The 
vivarium light cycle was 12 h:12 h, and the housing tem-
perature 22°C. EMD7 dams served as foster dams and 
had offspring at gestation day 19. EMD4 dams served as 
the source for naturally- born and C- section offspring. On 
gestation day 19, a subset of EMD4 dams (n = 3) were an-
esthetized for C- section with isoflurane (oxygen flow 1.0 
LPM and mix of 2.5%– 3.5%). For this protocol, the dam 
was laid on its back, the abdomen shaved and cleaned 

with alcohol and betadine. An incision was made the full 
length of the abdomen to gain access to the peritoneal cav-
ity. The uterine horn was pulled out and laid on a warmed 
saline- moistened gauze pack. The horn was cut along the 
whole length with scissors, along the side opposite of the 
placenta. Pups were pulled away from their connections 
with the uterus so the complete fetus with amniotic sac 
and placenta were removed. The pups were removed from 
their amniotic sacs and gently wiped clean and dried with 
warmed gauze. Pups were then placed on a heated pad 
(Lectro- Kennel Model 1000, K & H Manufacturing) until 
dry, warm, pink and beginning to move. Pups were then 
transferred to a CD- 1 foster dam after her entire litter had 
just been removed. C- section offspring were weighed two 
consecutive postnatal days (PND1, PND2) to confirm posi-
tive weight gain. The offspring from natural delivery dams 
(n = 4) offspring were cross- fostered approximately 1 day 
after parturition (placed with recipient dam at ~10:00 the 
day after parturition) and weighed on PND2. C- section 
dams cross- fostered 14 males/18 females to three EMD7 
dams, with a total of four deaths during PND1. Natural- 
birth dams cross- fostered 25 males/19 females to four 
EMD7 dams, with no deaths. Typical cross- fostered litters 
were 11 or 12 pups, except one cross- fostered C- section 
litter had 10 (due to a single pup PND1 death) and one 
cross- fostered natural born litter had 17.

2.2 | Tissue and biospecimen collections

Cross- fostered offspring tissues were collected on 
PND21/22. Each mouse was weighed and then eutha-
nized under CO2. Whole cecum tissues were collected and 
placed in liquid nitrogen until storage at −80°C. These 
procedures were initiated at ~09:00 and ended at ~14:30 
on each collection day, with treatment groups mixed 
throughout the day in terms of collection time.

2.3 | Microbiome sequence analysis

Previously collected cecum tissues remained on dry 
ice until individual samples were thawed just enough 
to remove from storage tubes. Each sample was then 
placed on a sterilized glass plate and a sterile dispos-
able scalpel was used to create an incision. A sterile 
disposable spatula was used to transfer cecal contents 
into a sterile 1.5 ml polypropylene tube on dry ice. DNA 
was extracted from approximately 150– 200 mg of cecal 
contents using the QIAamp Fast Stool minikit protocol 
(Qiagen) following the manufacturer's instructions. For 
each sample, total DNA concentration, purity, and qual-
ity were measured using the AATI Fragment Analyzer 
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(Agilent). Extracted DNA was stored at −80°C until li-
brary preparation. DNA libraries were prepared using 
the Nextera DNA Library Prep kit (Illumina) followed 
by shotgun sequencing performed on an Illumina 
NextSeq 500 platfrom with a 2 × 150- bp, paired- end run. 
Raw sequence data files were demultiplexed and con-
verted into FASTQ files using Casava v.1.8.2 (Illumina). 
MEGAN Ultimate Edition software (v6.18) was used 
to analyze the reads by performing taxonomic binning 
and assigning reads to respective nodes in the National 
Center for Biotechnology Information (NCBI) taxon-
omy (Huson et al.,  2016). Ultrafast alignment of reads 
against NCBI- nr (non- redundant) was achieved by the 
program DIAMOND v0.9.9.110 (Buchfink et al., 2015). 
Furthermore, Meganizer (an integral component of 
MEGAN software) was used in performing taxonomic 
analysis.

2.4 | Microbial taxonomy analysis  
and statistics

Alpha- diversity measures were calculated using the 
estimated richness (McMurdie & Holmes,  2013) func-
tion from the phyloseq package (v 1.36.0) and included 
the metrics: Observed total species, Chao1, Simpson, 
and Inverse Simpson. The differences of each met-
ric between the two birth modes were assessed with a 
Mann– Whitney U test. Beta- diversity was assessed with 
Bray- Curtis Dissimilarities and Aitchison distances 
(i.e., Euclidian distances between centered log- ratio 
transformed counts) using log (x  +  1)- transformed 
counts, visualized with Principal Co- ordinate Analysis 
(PCoA). Birth mode differences in beta- diversity was 
determined with Permutational Multivariate Analysis 
of Variance (PERMANOVA). Analyses of bacterial spe-
cies differences were performed using the ALDEx2 
v1.24 (Fernandes et al.,  2014), DESeq2 v1.32 (Love 
et al.,  2014; McMurdie & Holmes,  2014), and metage-
nomeSeq v1.34 (Paulson et al.,  2013) pipelines, while 
identifying overlapping significant taxa. We used multi-
ple methods due to the known incongruences between 
statistical approaches for differential abundance analy-
sis of microbial sequencing data (Weiss et al.,  2017). 
p- values obtained from sequencing data analyses were 
corrected for multiple comparisons using the Benjamini- 
Hochberg method and considered significant at false 
discovery rate (FDR) < 0.05. All statistical analyses of 
microbial sequencing data were conducted in the R 
Statistical Language (v 4.1.0). Sequencing files are pub-
licly available on the National Center for Biotechnology 
Information Sequence Read Archive repository with the 
accession number PRJNA841368.

3  |  RESULTS

3.1 | Body mass

At PND2, average body weight was slightly (~12%) but sig-
nificantly higher in natural- born compared to C- section 
cross- fostered pups (1.8  ± 0.03 and 1.6  ± 0.03 g, respec-
tively; p < 0.0001). In a subset of mice (used in separate 
studies) measured at PND 7/8, this relative difference re-
mained in natural- born versus C- section pups (5.6 ± 0.12 g 
[n = 21] vs. 4.9 ± 0.14 g [n = 16], respectively; p < 0.01). 
However, by PND 21/22, in the sub- group of mice used 
for metagenome analyses herein, body weights no longer 
differed (15.5 ± 0.35 g [n = 21] vs. 15.7 ± 0.24 g [n = 16], 
respectively; p = 0.68).

3.2 | Cecal content microbiota 
populations in natural born versus  
C- section pups

There were 39 samples with 16 total mice born via  
C- section and 23 from natural vaginal birth. Of those mice, 
19 were female and 20 were male. A total of 601 unique 
species were observed across all samples. All results for 
statistical analyses are provided in Table  S1 deposited 
as DOI: https://doi.org/10.15482/ USDA.ADC/1524407 
(USDA Ag Data Commons: https://doi.org/10.15482/ 
USDA.ADC/1524407).

Alpha diversity metrics of richness and evenness are 
presented in Figure  1. No statistical differences were 
found in any alpha diversity measurement between mice 
born via C- section and those born from natural vagi-
nal birth. Visualization of beta diversity (Bray- Curtis 
Dissimiliarities) using Principal Co- ordinate Analysis 
(PCoA) and Non- metric Dimensional Scaling (NMDS) 
are presented on Figure  2. Significant overlap of sam-
ples was visually apparent on Components 1 and 2 axes, 
suggesting little variation associated with birth mode. 
This was corroborated with a lack of statistical signif-
icance in PERMANOVA analyses for both Bray- Curtis 
Dissimilarities (p  =  0.094) and Aitchinson distances 
(p = 0.089).

To determine differentially expressed species, we used 
a conservative approach that required that any given taxon 
be significant in at least 2 of the 3 applied statistical tests. 
In both ALDEx2 and DESeq2 statistical pipelines, the 
Class Clostridia microbe Lachnoclostridium [Clostridium] 
scindens was significantly higher in C- section mice versus 
natural birth mice (Figure 3a). In the DESeq2 and metag-
enomeSeq statistical pipelines, the Class Fusobacterii 
bacterium Leptotrichia trevisanii was found to be sig-
nificantly different by birth mode: Not present in cecal 

https://doi.org/10.15482/USDA.ADC/1524407
https://doi.org/10.15482/USDA.ADC/1524407
https://doi.org/10.15482/USDA.ADC/1524407
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contents of C- Section mice in contrast to natural- born 
mice where presence was detected about half of the ani-
mals (Figure 3b). The latter phenomenon was seen across 
foster litters and was not different by sex. Together with 
the diversity measures, the results overall indicate that 
there was not a major difference in cecal microbiota pop-
ulations attributable to birth mode in this mouse model.

4  |  DISCUSSION

Several studies in humans and animal models suggest 
that birth mode impacts the composition of the gut mi-
crobiome, but not all results are consistent in this regard. 
Furthermore, an unresolved issue is whether C- section 
inherently leads to a shift in the offspring's gut microbe 
population, or if birth mode effects come about through 
a more complex association with environmental or other 
factors that change during development. To address 

these questions, we took advantage of an experimental  
C- section mouse model where aspects such as hous-
ing, postnatal diet, and strain are fully controlled (and 
matched to natural birth animals). Environmental con-
founders were further minimized by examining the mi-
crobiome at an early age, just prior to weaning. The results 
indicated that few differences in microbiota populations 
were apparent at PND 21/22, highlighting that birth mode 
alone may not fully explain reported effects of C- section 
on offspring gut microbiome. It is acknowledged that this 
perspective stems from a single age analysis, and we can-
not discount the possibility that birth mode impacts mi-
crobiome more profoundly at different life stages.

The largely “null” result in the current study with re-
spect to C- section shifts in gut microbiota contrasts with 
several papers reporting birth mode microbiota differ-
ences in mouse models. For example, behavioral changes 
in C- section mice have been hypothesized to be linked to 
differences in specific gut microbiota. In one study, lower 

F I G U R E  1  Indices of α- diversity do not significantly differ in cecal microbiota populations derived from 3 week old male and female 
mice born naturally or via C- section. Sample sizes are n = 23 (natural birth, orange symbols) and n = 16 (C- section, blue symbols).
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relative abundance of fecal Bifidobacterium spp. in male 
C- section NIH Swiss mice (at 3 weeks) was detected, and 
there were also early- life social, cognitive and anxiety dif-
ferences (Morais et al., 2020). Some behavioral deficits of 

C- section (e.g., social novelty recognition, anxiety/mar-
ble burying) persisted into later life, but could be damp-
ened in part or completely mitigated by co- housing with 
vaginal birth animals, or through dietary maneuvers to 

F I G U R E  2  Indices of β- diversity do 
not differ in cecal microbiota populations 
derived from 3 week old male and female 
mice born naturally or via C- section. 
Sample sizes are n = 23 (natural birth, 
orange symbols) and n = 16 (C- section, 
blue symbols).

F I G U R E  3  Abundances of cecal bacterial species found to be significantly altered by birth mode in 3 week old male and female 
mice born naturally or via C- section. (a) Lachnoclostridium [clostridium] scindens: In both ALDEx2 (p = 0.01) and DESeq2 (p = 0.001) 
statistical pipelines, the microbe prevalence was significantly higher in C- section mice versus natural birth mice. (b) Leptotrichia 
trevisanii: Abundances differed by birth mode, due to a sub- set of natural birth animals positive for the microbe; DESeq2 (p < 0.001) 
and metagenomeSeq (p = 0.004) statistical pipelines were significant. The microbe was not present in cecal contents of C- Section mice 
in contrast to natural- born mice where presence was detected about half of the animals. Sample sizes are n = 23 (natural birth, orange 
symbols) and n = 16 (C- section, blue symbols).
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increase Bifidobacteria. In 8 week old C- section C57BL/6 
mice, there were reductions in exploratory behavior, 
higher anxiety- like behaviors, and deficits in sociability 
indices especially in females, (Zachariassen et al., 2021). 
The ANCOM test revealed a higher relative abundance 
of Prevotella spp. (C- section, 8.4%; vaginal delivery, 
0.9%) and a lower abundance of Candidatus arthromitus  
(C- section, 0.09%; vaginal delivery, 0.55%) in C- section 
mice. The investigators speculated that differences in the 
gut microbiome measured at age 5 weeks may have con-
tributed to behavioral phenotypes. Aspects that could 
make study- to- study comparisons challenging are the dif-
fering types of biospecimens (i.e., cecal vs. ileal vs. fecal), 
analysis methods (i.e., 16S vs. metagenomic), feeding reg-
imens, and ages that can be employed across experiments.

Other experiments have demonstrated differences in 
immune function due to C- section, which has been at-
tributed in part to differences in the gut microbiota activi-
ties. Hansen et al. (2014) reported that 10– 30 week old male 
and female mice delivered by C- section had lower relative 
amounts of Foxp3- positive regulatory T- cells, CD103- 
positive dendritic cells and reduced mRNA expression of 
the anti- inflammatory IL- 10 in lymph nodes and spleen. 
While no birth mode- associated differences were seen in 
adult microbiota, the C- section mice around weaning had 
significantly lower relative abundances of Rikenellaceae 
and Ruminococcus plus higher Bacteroides acidifaciens 
and Lachnospiraceae in feces when compared to vaginal 
birth mice (Hansen et al.,  2014). Zachariassen et al. re-
ported that 8 week old C57BL/6 C- section mice had lower 
regulatory T cells, higher invariant NKT (iNKT) cells, and 
displayed altered ileal mRNA expression of immune and 
inflammation markers compared to vaginal birth mice: 
For example, lower Foxp3, IL- 10, Ctla4, Cd11c, Egr2, Nos2, 
and higher iNKT markers IL- 4, IL- 15) (Zachariassen, 
Krych, et al., 2019). Several aspects were phenocopied in 
germ- free mice inoculated with feces preparations from 
C- Section mice. In an oxazolone- induced colitis model in 
8 week old C57BL/6 mice, C- section mice had more se-
vere reactions to the challenge: For example, greater body 
weight and colon tissue weight losses, higher colon TNF- α 
and colon immune cell infiltration, lower expression of 
the gut barrier- associated genes occludin and tight junc-
tion protein 1 (Zachariassen, Hansen, et al., 2019). In that 
study, several colitis- like symptoms (e.g., greater gut per-
meability, colon immune cell infiltration) were observed 
in germ- free mice following inoculation with a feces 
preparation from 9 week old colitis- free C- section donor 
mice, but this was not observed using inoculate derived 
from naturally- born mice.

The specific mechanisms and molecular messages that 
impart C- section- associated phenotypes to offspring re-
main to be established and could in theory come about 

through changes in functional characteristics of gut mi-
crobes, even in the absence of major population shifts. 
Interestingly, our analysis revealed a differential abun-
dance in Lachnoclostridium [Clostridium] scindens (a.k.a. 
C. scindens) that was significantly increased in cecum 
from C- section offspring. This species is an archetypal 
bile acid modifying microbe that expresses the enzyme 
7α- hydroxylase that drives conversion of cholic acid to 
deoxycholic acid (DCA; a.k.a. 7- oxodeoxycholic acid) 
and 7β- hydroxylase that catalyzes conversion of DCA to 
7- epicholic acid (Ridlon et al.,  2006). This microbe also 
expresses a cortisol- regulated desABCD operon contain-
ing genes involved in glucocorticoid metabolism: That is, 
20α- hydroxysteroid dehydrogenase involved in conver-
sion of cortisol to androgens and steroid- 17,20- desmolase 
that forms pro- androgens (Devendran et al., 2018; Ridlon 
et al.,  2013). C. scindens has also been shown to secrete 
antibacterial factors (e.g., [Kang et al., 2019]). These and 
other potential bioactivities support the speculation that 
birth mode- associated differences in Lachnoclostridium 
[Clostridium] scindens can modify hormone and bile acid 
status, in turn altering host physiology in response to  
C- section delivery. We also detected a difference in abun-
dance patterns of Leptotrichia trevisanii (none detected in 
C- section mice). Bacteremia associated with this “oppor-
tunistic” microbe has been reported and seems to man-
ifest primarily in the immunocompromised condition  
(e.g., see: [Inal & Hazirolan, 2021; Schrimsher et al., 2013; 
Tee et al., 2001]). However, considering only half of the 
natural birth mice harbored this microbe, the functional 
ramification of the differential cecal abundance of L. trev-
isanii due to birth mode is not clear.

Strengths of the current experiment include a large 
sample size per treatment group, a well- matched set of 
housing and other conditions in C- section versus natural 
birth mice, and a comprehensive metagenomics- based 
evaluation of the cecal microbiome. The findings were ro-
bust with respect to the assessment of microbiota in CD- 1 
IGS mice in the peri- weaning period, but which aspects 
translate to human infants remain to be validated. Our ex-
periments only studied a single age in early development 
in one mouse strain, and thus were not designed to eval-
uate the potential impacts of genetics or various housing 
conditions, postweaning diet, and other environmental 
factors that might interact with birth mode to modify mi-
crobiota. It is also acknowledged that since the analyses 
focused on the lower gut cecal contents, bioregional shifts 
in the microbiome, if any, were not addressed. Finally, 
the approach focused on the measurement of taxonomic 
changes due to birth mode and not potential microbe 
functional differences such as xenometabolism or pro-
duction of signaling molecules. Despite these limitations, 
the results support the conclusion that C- section does not 
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inevitably lead to large- scale shifts in the microbiota pop-
ulation, suggesting that associations of C- section and the 
microbiome are context- specific and may involve addi-
tional players such as the prepartum/peripartum/postpar-
tum environment, diet or genetics.
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