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Abstract: Currently, Angiostrongylus cantonensis infections are predominantly treated with albendazole.
However, the use of albendazole can provoke certain neurological symptoms as a result of
the immune response triggered by the dead worms. Therefore, treatment usually involves
co-administration of corticosteroids to limit the inflammatory reaction. Corticosteroids play
a useful role in suppressing inflammation in the brain; however, long-term usage or high dosage
may make it problematic.Schisandrin B, an active ingredient from Schisandra chinensis, has been
shown to have anti-inflammatory effects on the brain. This study aimed to investigate the effects
and potential of schisandrin B in combination with albendazole to treat Angiostrongylus-induced
meningoencephalitis. Here, we show that albendazole-schisandrin B co-treatment suppressed
neuroinflammation in Angiostrongylus-infected mice and increased the survival of the mice.
Accordingly, albendazole-schisandrin B co-treatment significantly inhibited inflammasome activation,
pyroptosis, and apoptosis. The sensorimotor functions of the mice were also repaired after
albendazole-schisandrin B treatment. Immune response was shown to shift from Th2 to Th1,
which reduces inflammation and enhances immunity against A. cantonensis. Collectively, our study
showed that albendazole-schisandrin B co-therapy may be used as an encouraging treatment for
Angiostrongylus-induced meningoencephalitis.

Keywords: Angiostrongylus; meningoencephalitis; anthelmintic drug; albendazole; Schisandrin B;
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1. Introduction

Angiostrongylus cantonensis is a parasitic nematode that is neurotropic and migrates to neural tissue
after infection resulting in eosinophilic meningitis, encephalitis, and ocular angiostrongyliasis [1,2].
Because the course of eosinophilic meningitides in patients infected with A. cantonensis averages 1–4
weeks, the decision to start treatment should begin early [3]. Currently, A. cantonensis infections
are treated predominantly with albendazole (Alb), which is an anthelmintic that acts by binding to
β-tubulin of the parasite, inhibiting its glucose absorption and utilization. [4].Although sole treatment
with Alb can effectively kill the worm, it cannot resolve the neuroinflammation induced by the worm
carcasses [5]. Therefore, Alb treatment does not always achieve complete recovery of the brain. For
this reason, treatment usually involves co-administration of corticosteroids to limit the inflammatory
reaction [6–8]. Inclusion of corticosteroids, such as dexamethasone, has been used for a long time in
the clinic and has played a useful role in suppressing inflammation in the brain.However, long-term
usage or high dosage may be problematic by causing several adverse effects, such as immunodepression,
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adrenal suppression, and gastroesophageal reflux [3,9]. In order to increase the survival rate and quality
of treatment, it may be helpful to replace the use of steroids with other anti-neuroinflammatory agents.

Schisandrin B (Sch B) is a bioactive ingredient isolated from the plant, Schisandra chinensis (also
known as the five-flavor berry or Wu Wei Zi). Several lines of evidence have shown that Sch B has
anti-oxidative, anti-inflammatory, and anti-tumor activities [10–12]. Recent studies have shown that
Sch B can be used as a treatment for bacterial or lipopolysaccharide-induced neuroinflammation [13–15].
Moreover, many studies have been conducted on the protective effects of Sch B on central nervous system
(CNS) diseases [14–18]. However, the effect of Sch B on Angiostrongylus-induced meningoencephalitis
is not clear.

More than two immune responses have been known to regulate inflammation in the host response
to infection, including inflammasome activation and cytokine production. Inflammasome activation
plays a role in inflammation by releasing inflammatory cytokines, such as interleukin (IL)-1βand
IL-18 [19]. A recent study has shown that A. cantonensis infection induces activation of NACHT,
LRR, and PYD domains-containing protein 1B (NLRP1B) and NLR family CARD domain-containing
protein 4 (NLRC4) inflammasomes in a mouse model [20]. In addition, A. cantonensis infection induces
pyroptosis via ASC-independent gasdermin D (GSDMD)cleavage [20].In contrast, A. cantonensis
infection upregulates Th2 cytokines (IL-4 and IL-10) and downregulates Th1 (IL-2 and IFN-γ) in both
human and mouse models [21,22]. Both inflammation and cytokines are involved in the process of
inflammation. Therefore, we aimed to examine the effect of Sch B on inflammasome activation and
cytokine production. In this study, infected mice were treated with Sch B and Alb to investigate
the effects on Angiostrongylus-induced meningoencephalitis.

2. Methods

2.1. Parasites and Animals

The parasite life cycle was maintained as previously described [20]. Third-stage larvae (L3) of A.
cantonensis was isolated by the Baermann apparatus from the giant African snail, Achatina fulica in
Taipei. L3 were used to infect Sprague-Dawley (SD) rats, which were used as the final host, to maintain
the parasite life cycle. First-stage larvae (L1) were isolated from the feces of infected rats. Fresh-water
snails, Biomphalaria glabrata, were used as intermediate host and were infected with the acquired L1
for 21 days. On day 21 post-infection, the snails were killed and their tissues were digested with
0.6% pepsin (pH 2). L3 were isolated from the snails using the Baermann apparatus. The isolated L3
were used to infectBagg Albino (BALB/c) mice for the experiment or infect SD rats to maintain the life
cycle of the parasite. Mice were used for the experiment because both the mice and human act as
non-permissive host for A. cantonensis and induce similar pathological changes. Permissive rat can
survive A. cantonensis infection and cause less severe CNS damage [23,24]. SD rats and BALB/c mice
used in this study were purchased from the National Laboratory Animal Center, Taipei. All protocols
involving animals were approved by the Institutional Animal Care and Use Committees (IACUC) of
Tzu Chi University (No.107086).

2.2. Animal Treatment

Mice were equally and randomly divided into five groups—one control, one infection, and three
treatment groups, in which each group contained at least 10 mice. Mice in the infection and treatment
groups were infected with 25 L3 by oral gavage, and the control group was treated with normal saline.
For the Alb treatment group, mice were treated with 20 mg/kg/day Alb (A4673, Sigma Aldrich, St. Louis,
MO, USA) for 7 consecutive days from week 2 post-infection (days 15–21). For the Sch B treatment
group, mice were treated with 20 mg/kg/day Sch B (61281-37-6, Chengdu Alfa Biotechnology, Chengdu,
China) for 7 consecutive days from week 3 post-infection (days 22–28) [25]. For the co-treatment group,
mice were treated with 20 mg/kg/day Alb and 20 mg/kg/day Sch B for 7 consecutive days from week 2
and week 3 post-infection, respectively. All treatments were administered orally, and all groups were
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subjected to functional tests at week 4 post-infection. One day later (day 29), the mice were sacrificed.
The experimental design scheme is shown in Figure 1. Upon mouse dissection, brain specimens were
obtained for further studies.
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2.3. RNA Isolation, cDNA Synthesis, and Real-Time Quantitative PCR (qPCR)

Total RNA was isolated from brain tissues using TRIzolreagent (Thermo Scientific, Rockford,
IL, USA),according to the manufacturer’s instructions. RNA (5 µg) was used for cDNA synthesis in
a 20 µL reaction mixture using the RevertAid First Strand cDNA Synthesis Kit (Fermentas International
Inc., Burlington, ON, Canada). Reverse transcription PCR (RT-PCR) was performed at 50 ◦C for 1 h,
followed byextension for 15 min at 70 ◦C. The synthesized cDNA was stored at −20 ◦C for qPCR
experiments. qPCR was performed with the LabStar SYBR qPCR Kit(Bioline, London, UK) using
the Roche LightCycler 480 System. The primers used in this study are shown in Table 1. Relative gene
expression was calculated using the ∆∆Ct method and gene expression levels were normalized to
the internal control β-actin.

Table 1. Primer pairs of candidate genes used in real time quantitative PCR.

Gene Name Primer Pairs Melting Tm
(◦C)

β-actin Forward 5′-CAATAGTGATGACCTGGCCGT-3′

Reverse 5′-AGAGGGAAATCGTGCGTGAC-3′ 60

NLRP1B Forward 5′-AGGCAAGCACATTTGACTTCAAGGT-3′

Reverse 5′-GCTCAGTAGCTGCATCTTGCATTTC-3′ 60

NLRC4 Forward 5′-GCGGAGGTGGGAGATATG-3′

Reverse 5′-CGTAGAAGGTTTGGAACAGC-3′ 60

Caspase-1 Forward 5′-GGACTCTCAGCAGCTCCTCAGGCA-3′

Reverse 5′-GCAAAGCTTGACATTCCCTTCTGAGCC-3′ 60

IL-1β Forward 5′-GACCTTCCAGGATGAGGACA-3′

Reverse 52032-AGGCCACAGGTATTTTGTCG-3′ 60

IL-18 Forward 5′-ACAGTGAAGTAAGAGGACTGGCTG-3′

Reverse 5′-CAGGTGCATCCATTTCCTCAAAGG-3′ 60

GSDMD Forward 5′-CCAGTGCCTCCATGATGAATGTGT-3′

Reverse 5′-TCACCACAAACAGGTCATCCC-3′ 60

2.4. Protein Extractionand Western Blot Analysis

The brain tissues of the mice were washed with PBS and 200 µL RIPA buffer (Thermo Scientific).
The cell lysates were incubated for 30 min at 4 ◦C and centrifuged at 8100× g for 10 min at 4 ◦C.
Extracted proteins were separated on 10% or 12% SDS-PAGE gels and the gels were transferred to
a PVDF membrane (EMD Millipore, Burlington, MA, USA). Membranes were blocked with 5% nonfat
milk prior to overnight incubation at 4 ◦C with agitation with the following primary antibodies:
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α-tubulin (GTX628802, GeneTex, Irvine, CA, USA), NLRP1B (SC-390133, Santa Cruz Biotechnology,
Dallas, TX, USA), NLRC4 (06-1125, EMD Millipore), caspase-1 (22915-1-AP, Proteintech, Rosemont, IL,
USA), IL-18 (10663-1-AP, Proteintech, Rosemont, IL, USA), IL-1β (16806-1-AP, Proteintech, Rosemont,
IL, USA),Caspase-3 (GTX110543,GeneTex, Irvine, CA, USA), Caspase-8 (GTX110723, GeneTex, Irvine,
CA, USA), Caspase-9 (GTX112888, GeneTex, Irvine, CA, USA), and BCL-2 (GTX100064, GeneTex,
Irvine, CA, USA). The membranes were incubated with the HRP-conjugatedmouse anti-IgG (EMD
Millipore) or HRP-conjugated rabbit anti-IgG (EMD Millipore) secondary antibodies for 1 h, following
which the membranes were developed using ECL detection reagent (EMD Millipore). Relative protein
levels were quantified using Image J (Version 1.46, National Institute of Health, Bethesda, MD, USA),
and protein densitometry was expressed relative to that of α-tubulin.

2.5. Hematoxylin and Eosin Staining

Mouse brains were harvest and immediately fixed with 10% formalin for 48 h. After fixation,
tissues were dehydrated in a series of graduated changes of alcohols: 70% (2 × 30 min), 95% (2 ×
30 min), 100% (2 × 30 min). The procedures were followed by immersion in xylene (2 × 30 min)
and paraffin bath (30 min). Tissues were then put in an embedding cassette with melted paraffin.
The cassette was transferred to an ice tray for 30 min to allow complete hardening of the paraffin.
The paraffin-embedded tissues were then sectioned into 5–10 µm thin slices using a microtome and
mounted onto slides. The slides were dry overnight at room temperature. Before proceeding with
the staining protocol, the slides were deparaffinized and washed with Sub-X (Leica Biosystems,
Richmond, IL, USA) and 100%, 95%, 75%, and 50% ethanol. The rehydrated sections were stained as
follows: hematoxylin solution (Merck, Darmstadt, Germany) (3 min), tap water (1 min), 70% ethanol
with 1% HCl (5 s), tap water (1 min), eosin solution (3 min), 95% ethanol (3 × 5 min), 100% ethanol (2 ×
5 min), and Sub-X (3 × 15 min).

2.6. Preparation of Mouse Brain Cells

Mouse brains were enzymatically dissociated using 0.25% trypsin-EDTA (GeneDireX, Taoyuan,
Taiwan) diluted in Dulbecco’s Modified Eagle Medium (DMEM) (Gibco, Waltham, MA, USA) and
incubated at 37 ◦C for 10 min. Gentle pipetting was perform to break up tissues clumps. The process
was repeated until the tissues were completely lysed. The cells were filtered through a 40-µm strainer
and centrifuged for 5 min at 1000× g. The precipitate was resuspended in DMEM [20].

2.7. Annexin V-FITC/Propidium Iodide (PI) Double Staining by Flow Cytometry

Apoptotic cell death was measured using the Alexa Fluor Annexin V/Dead Cell Apoptosis kit
(Molecular Probes Inc., Eugene, OR, USA) following the manufacturer’s protocol. The brain cells were
washed and resuspended in ice-cold binding buffer, and stained with 5 µL Annexin V-FITC and PI in
the dark for 15 min. Thereafter, 400 µL binding buffer was added to the mixture, and the cells were
analyzed using a Gallios™ 10-channel flow cytometer (Beckman Coulter, Brea, CA, USA). A minimum
of 1 × 104 events in the “cell” area of the FSC versus SSC dot plots were collected per sample.

2.8. Collection of Cerebrospinal Fluid (CSF)-Like Fluid

The cranial cavity and cerebral ventricles of the mouse brain were rinsed with 1 mL PBS.
The washing solution was collected and centrifuged at 600× g for 10 min. The supernatant was
collected and centrifuged at 10,000× g for 30 min. The supernatant acted as the CSF, so called ‘CSF-like
fluid’ [26], which was stored at −20 °C until use.
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2.9. Measurement of Lactate Dehydrogenase (LDH)

LDH levels were used as a parameter of cell pyroptosis. Whole blood was obtained by cardiac
puncture and was centrifuged at 600× g for 10 min to obtain the serum. Serum was then analyzed for
LDH using a Hitachi 7080 Chemistry Analyzer (Hitachi Ltd., Tokyo, Japan).

2.10. Hindlimb Clasping Test

Mice were suspended by their tail for 10 s. Suspended mice were observed, and a score was
assigned based on the following criteria. A score of 0 was given if the mice showed normal escape
extension and both hindlimbs were splayed outward away from the abdomen. A score of 1 was given
if the hindlimb was retracted toward the abdomen but not touching the abdomen. A score of 2 was
given if the hindlimb was retracted and touched the abdomen while the hindlimb was not clasped. A
score of 3 was given if the mice showed immobility and both hindlimbs were clasped and touched
the abdomen [27,28].

2.11. Beam Walk Test

A beam, 70 cm long and 1 cm in diameter, was placed horizontally 50 cm above the platform.
The mice were trained for 2 days before the test. Mice were habituated in the goal box for 5 min and
placed at a distance of 20 cm from the goal box on the beam. The mouse was trained to walk on
the beam and reach the goal box without difficulty. On the day of the test, the mice were placed at
the start point of the beam (70 cm from the goal box). The time for the mouse to cross the beam and
reach the goal box was recorded with a 120 s cutoff time. The number of times the mice slipped during
the walk was also recorded [27]. Each mouse was tested for three trials, and the average was calculated.

2.12. Vertical Pole Test

A 50 cm plastic pole was placed vertically in a large mouse cage with bedding. Mice were placed
at the top of the pole and the time for it to turn around and climb down was recorded with a 120 s
cutoff time. If the mice fell from the pole, time was recorded as 120 s [27]. Each mouse was tested for
three trials, and the average was calculated.

2.13. Hot Plate Test

Mice were placed on a hot plate at a temperature of 55 ◦C, and the time for the first paw reaction
(jumping or paw licking) was recorded. A cutoff time of 15 s was considered to avoid damage to
the paws. The test was repeated at 15 min intervals. Each mouse was tested for three trials, and
the average was calculated.

2.14. Cytokine ELISA

Concentrations of IL-4, IL-10, IL-2, and IFN-γ in the sera and CSF were measured using a standard
sandwich ELISA kit (Thermo Fisher Scientific, Waltham, MA, USA), according to the manufacturer’s
instructions. Briefly, 96-well ELISA plates were coated overnight at 4 ◦C with 100 µL capture antibody.
The next day, the capture antibody was discarded, wells were washed, and 200 µL ELISA/ELISASPOT
diluent was added. After 1 h incubation, the wells were washed, 100 µL samples, and standards were
added and incubated for 2 h. Then, plates were washed and 100 µL detection antibody was added
and incubated for 1 h. The wells were then washed, and 100 µL Avidin-HRP enzyme was added and
incubated for 30 min. After washing, 100 µL 3,3’,5,5’-Tetramethylbenzidine (TMB) substrate was added
and incubated for 15 min. Sulfuric acid (10%) was applied to stop the reaction, and the optical density
was determined at 450 nm. The sensitivity of the kit for IL-4, IL-10, IL-2, and IFN-γ was 4 pg/mL,
30 pg/mL, 2 pg/mL, and 15 pg/mL, respectively.
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2.15. Statistical Analysis

All experimental data were analyzed using GraphPad Prism 6.01 (GraphPad Software, San Diego,
CA, USA). Data are represented as the mean ± S.D. One-way analysis of variance (ANOVA) was
used, followed by a Tukey’s post-hoc test to determine differences between groups. A p-value < 0.05
indicates a significant difference.

3. Results

3.1. Albendazole-Sch B Co-Therapy Ameliorates Brain Damage in A. Cantonensis-Infected Mice

To investigate the protective effect of Sch B on the brain of Angiostrongylus-infected mice,
hematoxylin and eosin staining was performed. When mice were infected with Angiostrongylus for
4 weeks, a thickened meninx was observed, which was expanded by large amounts of infiltrated
inflammatory cells. Trapped worms were also observed in the meninges and cortex. When mice were
treated with Alb alone, a still thickened but reduced severity of meningitis was observed. However,
when mice were treated with Sch B alone, it failed to diminish the inflammatory responses. In addition,
trapped worms could still be found in the cortex area. When mice were co-treated with Alb and Sch B,
meninges showed much improvement with less inflammatory cells compared to those treated with
Alb alone (Figure 2A). As inflammation was reduced in the brain after co-treatment with Alb and Sch
B, we also observed an increased survival of these mice (Figure 2B).
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Figure 2. Alb-Sch B co-treatment ameliorates brain damage and increases the survival rate in A.
cantonensis-infected mice. (A) Representative images showing hematoxylin and eosin (HE) staining
of brain sections of normal (uninfected and untreated) mice, infected mice, infected mice with Alb
treatment, infected mice with Sch B treatment, and infected mice with Alb-Sch B co-treatment. Images
are shown at 40× (Scale bar, 500 µm) and 100× (Scale bar, 200 µm) magnification. The blue arrows show
the trapped larvae. Black arrows show infiltration of inflammatory cells. (B) Mice from each group
were monitored daily for survival until the day of sacrifice (day 29). Statistical analysis was performed
using Kaplan–Meier estimate with the Mantel-Cox log-rank test, p < 0.05.

3.2. Albendazole-Sch B Co-Therapy Inhibits Inflammasome Activation and Pyroptosis in A.
Cantonensis-Infected Mice

Inflammasome activation plays a major role in producing inflammatory cytokines, such as IL-1βand
IL-18, and induces host defenses against pathogens [19]. To examine the mechanism of Alb-Sch B
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co-treatment on resolving Angiostrongylus-induced meningoencephalitis, we assessed the mRNA and
protein expression levels of the inflammasome components. A previous study has shown that A.
cantonensis induces NLRC4 and NLRP1B activation and pyroptosis in the mouse brain [20]. Consistent
with this study, our data revealed increased expression levels of inflammasome activators (NLRC4
and NLRP1B) and inflammasome effectors (Caspase-1, IL-1β, and IL-18) in A. cantonensis-infected
mice. In contrast, Alb and Sch B decreased the levels of inflammasomes (Figure 3A–C). Interestingly,
Sch B treatment alone also reduced inflammasome activation in the infected mice, despite having
little to no observable effect on the histological sections and mice survival (Figure 2A,B). Similarly,
Alb-Sch B co-treatment further reduced the level of inflammasomes compared to treatment with Alb
or Sch B alone. Pyroptosis can be induced by caspase-1-mediated cleavage of GSDMD [29]. Once
GSDMD is cleaved, it forms pores on the cell membrane and releases intracellular content [29]. As
expression of GSDMD in the brain increased with A. cantonensis infection and reduced after treatment
(Figure 3A–C), we measured the level of LDH in the CSF as an indicator of pyroptosis presence [30].
Similarly, LDH levels in the CSF increased significantly during infection and decreased after treatment
with Alb and Sch B (Figure 3D). Collectively, these data demonstrate that Alb-Sch B treatment can
inhibit inflammasome activation and pyroptosis.
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NLRC4, NLRP1B, Caspase-1, IL-18, IL-1β, and gasdermin D (GSDMD),were measured by qPCR. Data
are presented as the mean ± SD (n = 5). (B) Representative western blot images reflecting protein levels
ofinflammasome components. (C) Bar graphs showing protein expression levels relative to that of
α-tubulin. Results are presented as the mean ± SD (n = 3). (D) Lactate dehydrogenase (LDH)levels
measured in the cerebrospinal fluid (CSF), shown as the mean ± SD (n = 5). * p-value < 0.05, ** p-value
< 0.01, *** p-value < 0.001, and **** p-value < 0.0001.
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3.3. Albendazole-Sch B Co-Therapy Alleviates Apoptosis in A. Cantonensis-Infected Mice

Apoptosis is mainly achieved by caspase activation. We therefore investigated the main apoptotic
caspases involved, including caspase-3, caspase-8, and caspase-9, and the antiapoptotic protein BCL-2.
Compared with the control group, the protein expression of apoptotic caspase apparently increased
during A. cantonensis infection, whereas treatment with Alb-Sch B reversed these effects (Figure 4A,B).
In accordance with the expected change in apoptotic caspase, we observed a similar trend in BCL-2
(Figure 4A,B). We suggest that the increase in BCL-2 is the compensation mechanism for the increase
in apoptotic caspases. To complement the western blot experiments, the mouse brain cells were
stained with Annexin V and PI (Figure 4C). It can be seen clearly that the brain cells experience severe
apoptosis during infection, whereas treatment with Alb-Sch B resolves the damage (Figure 4D,E). In
addition, terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) staining
showed increased TUNEL-positive cells in A. cantonensis-infected mice. Treatment with Alb-Sch B
reduced the number of TUNEL-positive cells (Figure 4F,G). Together, these data suggest that Alb-Sch B
co-treatment can alleviate apoptosis in A. cantonensis-infected mice.Biomolecules 2020, 10, 1001 9 of 17 
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Figure 4. Alb-Sch B co-therapy inhibits apoptosis in A. cantonensis-infected mice. (A) Representative
western blot images reflecting protein levels of Caspase-3, Caspase-8, Caspase-9, and BCL-2. (B)
Bar graphs showing protein expression levels relative to that of α-tubulin. Results are presented as
the mean ± SD (n = 3). (C) Representative plots from one set of Annexin V-FITC and PI double staining,
measured by flow cytometry. Viable cells are shown in the bottom left quadrant (double negative);
early apoptotic cells are shown in the bottom right quadrant (Annexin V positive and PI negative); late
apoptotic cells are shown in the upper right quadrant (double positive). (D) Percentages of viable cells,
shown as the mean ± SD (n = 5). (E) Percentages of apoptotic cells (including both early apoptotic
and late apoptotic cells) are shown as the mean ± SD (n = 5). (F) Representative microphotographs of
TUNEL staining. Scale bar, 200µm. (G)Percentages of TUNEL-positivecells, quantitated by counting
ratio of TUNEL/DAPI in 5 random microscopic fields, shown as mean±SD (n = 3). * p-value < 0.05,
** p-value < 0.01, *** p-value < 0.001, and **** p-value < 0.0001.

3.4. Albendazole-Sch B Co-Therapy Repairs Sensorimotor Function in A. Cantonensis-Infected Mice

As Alb-Sch B co-treatment reduced neuroinflammation and apoptosis in Angiostrongylus-infected
mice, we tested the sensorimotor function of the mice. The hindlimb clasping test is used as an indicator
of motor function. Uninfected mice showed a normal escape extension reflex and yielded lower
scores. However, upon infection, the mice showed a higher score, indicating motor dysfunction. Mice
treated solely with Alb or Sch B showed similar scores to those of the infection group. After Alb-Sch B
co-treatment, the clasping score improved (Figure 5A,B). The beam walk test was used to investigate
the motor coordination of the mouse. A longer time was used by the infected and single drug-treated
mice to cross the beam than the uninfected mice; moreover, a greater number of slips was observed in
these mice. Similarly, Alb-Sch B co-treated mice showed improvement in this test (Figure 5C,D). Results
of the vertical pole test show that infected and single drug-treated mice took longer to turn around
and climb down the pole than normal mice. In mice co-treated with Alb-Sch B, a better performance
was observed (Figure 5E). We also measured the body weight of each mouse, as motor function is
dependent of both the central nervous system and skeletal muscles [31]. The mice became emaciated
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and a decreased body weight was observed after mice were infected with A. cantonensis, which may
suggest a decrease in muscle strength. After Alb-Sch B co-treatment, although the mice only showed
a non-statistically significant increase in body weight (Figure 5F), they were generally heavier, with
smoother furs, and a healthier appearance. The hot plate test was used to assess the mice’s ability
to sense pain stimuli. As shown in the results, the mice were not able to respond to a pain stimulus
after A. cantonensis infection. Co-treatment with Alb-Sch Bcan slightly but not significantly improve
the response of the mice (Figure 5G). Collectively, these data indicate that Alb-Sch B treatment can
repair the sensorimotor function of mice with A. cantonensis infection.
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Figure 5. Alb-Sch B co-therapy repairs sensorimotor function in A. cantonensis-infected mice. (A)
Representative image of mice in the hindlimb clasping test. (B) Quantitative analysis of hindlimb
clasping scores. The infection group and mice treated solely with Alb or Sch B showed higher scores
than normal mice. Alb-Sch co-treated mice showed a lower score. (C,D) Results of the beam-walk
test. The infection group and mice treated solely with Alb or Sch B took longer to finish the test and
had a greater number of foot slips. Alb-Sch co-treated mice showed better performance on the test.
(E) Vertical pole test results. Infected mice and single drug-treated mice took longer to finish the test,
whereas Alb-Sch B co-treated mice used less time to finish the test. (F) Body weight of mice. (G)
Hot plate test results. A longer time was needed for the infected and single drug-treated mice to
sense pain stimuli. After Alb-Sch B treatment, mice use less time to respond to pain. All results are
presented as the mean ± SD (n = 5–10). * p-value < 0.05, ** p-value < 0.01, ***p-value < 0.001, and
**** p-value < 0.0001.

3.5. Alb-Sch B Co-Therapy Regulates Th1 and Th2 Immune Responses in A. Cantonensis-Infected Mice

In both Angiostrongylus-infected human and BALB/c mice, Th2 cytokines (IL-4 and IL-10) were
dominant, whereas Th1 cytokines (IL-2 and IFN-γ) remained at a low level [21,22]. To better understand
how Alb and Sch B modulate the host response to A. cantonensis infection, we examined both local and
systemic cytokine responses.

IL-4, IL-10, IL-2, and IFN-γ levels were measured by qPCR and ELISA. Both brain mRNA levels
and cytokine concentrations of IL-4 and IL-10 were shown to be upregulated after infection with
A. cantonensis (Figure 6A,B), whereas those of IL-2 and IFN-γdecreased (Figure 6C,D). These data
corroborated previous data [21,22] and indicatethat A. cantonensis infection stimulates Th2 responses.
When mice were co-treated with Alb and Sch B, it can be observed that the IL-4 and IL-10 mRNA
levels were decreased (Figure 6A,B), indicating that co-treatment with Alb and Sch B ameliorated
the Th2 immune response caused by A. cantonensis. The cytokine concentrations with respect to IL-4
and IL-10 were also measured in the serum and CSF. Similarly, the concentrations of both IL-4 and
IL-10 increased during infection and decreased after co-treatment with Alb and Sch B (Figure 6E,F,I,J).
In contrast, mRNA levels and cytokine concentrations of IL-2 and IFN-γ decreased after infection,
but increased after treatment (Figure 6C,D,G,H,K,L). Together, these results suggest that Sch B, when
co-treated with Alb, can shift the Th2 immune response to the Th1 immune response.
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Figure 6. Alb-Sch B co-therapy regulates Th1 and Th2 immune responses in A. cantonensis-infected
mice. (A–D) Relative mRNA expression levels of IL-4, IL-10, IL-2, and IFN-γ. (E–H) Concentrations of
IL-4, IL-10, IL-2, and IFN-γ in the CSF, measured by ELISA. (I–L) Concentrations of IL-4, IL-10, IL-2,
and IFN-γ in the serum, measured by ELISA. IL-4 and IL-10 are Th 2 cytokines; IL-2 and IFN-γ are Th1
cytokines. All results are presented as the mean ± SD (n = 3–5). * p-value < 0.05, ** p-value < 0.01, ***
p-value < 0.001, and **** p-value < 0.0001.

4. Discussion

In the present study, we first demonstrated that neuroinflammation was significantly reduced
with Alb-Sch B co-treatment. In addition, reduced inflammation led to an increased survival rate.
The suppression of inflammasome components and pyroptosis may explain the mechanism of
the neuroprotective effects of Sch B. Our study results are similar to those of Guo et al. [13]. In
their study, they found that Sch B effectively suppresses inflammasome activation and pyroptosis
and therefore inhibits inflammation [13]. Recent studies also suggested that Sch B is effective in
reducing neuroinflammation in various neuro-disease models, such as cerebral ischemia in rats [18],
lipopolysaccharide-induced microglia [15], and 6-OHDA-induced Parkinson’s disease in mice [17].

In addition, decreased apoptosis was found after co-treatment with Alb and Sch B, whereas
the decrease was not significant when treated with Alb or Sch B alone. Previous studies have identified
the role of Sch B in inducing cell apoptosis through caspase activation and BCL-2 inhibition in different
cancer cells [32–34]. In the current study, we found that Sch B inhibits caspase activation. This was
seen when A. cantonensis-infected mice were treated with Sch B alone or in combination with Alb
(Figure 4A,B). This inhibition of apoptotic caspase is also seen in the treatment of neurological disorders,
such as Alzheimer’s disease [16,35] and amyloid β-induced neurotoxicity [36]. Therefore, we propose
that Sch B has a neuroprotective effect in an A. cantonensis-infected mouse model by downregulating
inflammation and apoptosis.

In addition to inflammasome activation and apoptotic caspase activation, hypoxia is also found
associated with neuroinflammation by activating microglia [37]. Multiple lines of evidences have
pointed to the bidirectional relationship between hypoxia and inflammation. Not only hypoxia induces
tissue inflammation, inflamed tissues can also cause hypoxia [38]. Hypoxia-inducible factor-1 (HIF-1)
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is a transcription factor that control hypoxia-activating genes, such as erythropoietin (EPO) [39], and
can be positively linked with pathogen infection [40]. Regulated in development and DNA damage
responses 1 (REDD1), a HIF-1-response gene, is strongly induced during hypoxia and is positively
related with inflammation [41–43]. Previous study indicated a role for REDD1 in controlling autophagy
and mitochondrial function [44], which may affect mice behaviors [45,46]. It is perhaps unsurprising
that A. cantonensis-induced brain cell inflammation also induce hypoxia. However, the role of hypoxia
in A. cantonensis infection remains unclear and further studies are needed to confirm our hypothesis.

To further clarify the neuroprotective effect of Alb-Sch B treatment, we performed different
sensorimotor tests on the mice. The data revealed that A. cantonensis infection impairs motor control of
the mice, which is largely owing to damage to the central nervous system. The sole use of Alb or Sch B
cannot improve the performance of the motor tests, indicating that it cannot effectively cure the host
with A. cantonensis infection. However, using Alb and Sch B together can yield improvement in motor
function, which also increases the survival rate of these mice. Although Alb can kill the worm, it
cannot ameliorate the immune response caused by the trapped dead worms [5], and eventually leads
to neuroinflammation and brain cell apoptosis. Sch B, in contrast, cannot kill the worm but can reduce
the severity of inflammation. Both these drugs, when used alone, cannot yield an improvement to
mice. However, when used together, a significantly better improvement in neuro-related functions
was observed.

We hypothesized that the improvement in inflammation and neurological function may be due to
immunoregulation. We therefore tested the cytokine levels in the mice. Our results showed increased
Th2 (IL-4 and IL-10) responses after A. cantonensis infection, which is similar that reported by a previous
study [22]. IL-4 is an important cytokine that helps in higher brain functions, such as memory and
learning [47]; IL-1β, which we also found increased during infection, has been suggested to exert
a negative effect on cognitive behavior, characterized by sickness, depression, and stress [48,49]. We
therefore suggest that the increase in IL-4 may compensate for the increase in IL-1β, which affected
the neuro-related behavior of the mice. In addition to altering the neurological behavior, IL-4 can also
enhance immunity against A. cantonensis infection by activating B cells and inducing a class switch of
IgE, which helps in defending parasite infection [50,51]. Several studies have indicated that IL-4 can
influence the progression of neurological diseases, such as Alzheimer’s disease, multiple sclerosis, and
glioblastoma multiforme [52]. IL-4 was then found to decrease after Alb-Sch B co-treatment, which
is consistent with the improved neurological behavior and decreased IL-1β. IL-10, in contrast, is an
anti-inflammatory cytokine [53,54]. IL-10 exerts its effects by inhibiting MHC class II expression on
antigen-presenting cells, thereby blocking the production of proinflammatory cytokines [55]. IL-10 has
also been shown to be produced and act as an anti-inflammatory cytokine during parasitic infection with
Plasmodium spp. [56], Toxoplasma gondii [57], and Trypanosoma cruzi [58,59]. IL-10 deficiency was shown
to be involved in fibrosis caused by Schistosoma mansoni [60]. Therefore, we suggest that the increase in
IL-10 is to strike a balance between anti-inflammation and inflammation during A. cantonensis infection.
After co-treatment with Alb and Sch B, IL-10 levels were found to be decreased compared with those in
the infection group. This result corroborates the theory that Alb-Sch B co-treatment can better improve
neurological damage caused by A. cantonensis than a single drug treatment. Treatment with Sch B
alone unexpectedly resulted in higher levels of IL-10 (Figure 6B,F,J), which is inconsistent with other
reports that Sch B lowered the level of IL-10 [61]. However, combination therapy with Alb yields an
expected low level of IL-10. The mechanism underlying this increase in IL-10 needs further study.

The Th1 (IL-2 and IFN-γ) response was initially found to be low during infection with A. cantonensis
but increased after Alb-Sch B co-treatment. Infection with A. cantonensis has been confirmed to lower
IL-2 and IFN-γ production in both humans and mice [21,22], which corroborates our results. It is known
that IL-2 is necessary for the generation of Th1 and Th2 cells and to provide immune functions [62].
The absence of IL-2 has been confirmed to cause inflammationand autoimmune responses in multiple
organs [63–65]. Therefore, we propose that the increase in IL-2 levels after treatment is to enhance host
immunity against A. cantonensis. IFN-γ, although well known for its pro-inflammatory properties, has
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also been shown to have anti-inflammatory effects [66]. In addition, several studies have indicated
a neuroprotective role for IFN-γ [67–70]. Notably, the production of IFN-γ-induced inflammation can
also be blocked by IL-10 [55,71], which is consistent with the changes in neurobehavior, histology, and
IL-10 levels during A. cantonensis infection and treatment with Alb and Sch B.

Our current findings support the theory that the combined use of Alb and Sch B yielded better
results than Alb monotherapy. The improvement was attributed to reduced brain cell inflammation
and apoptosis. Increased survival was also correlated with better neurological performance. We
hypothesize that co-therapy with Alb-Sch B regulates immune function in mice by shifting Th2 response
to that of Th1 response, thereby inhibiting inflammation and exerting neuroprotection. However,
further investigation is needed to confirm the role of cytokines in the recovery of A. cantonensis infection.
Noticeably, our results found thatthe anti-inflammatory effect of Sch B was not significant when A.
cantonensis is still alive, possibly because the worm excretes some inflammatory mediators which Sch
B cannot effectively inhibit. Thus, Sch B exert anti-inflammatory effects only after A. cantonensis is
killed by Alb. Collectively, the current findings not only support the theory that Sch B may be used in
combination with Alb to treat A. cantonensis infection but also provide an understanding of how Sch B
modulates immune function and inflammation.
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