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Tumor-stroma interactions differentially alter drug
sensitivity based on the origin of stromal cells
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Abstract

Due to tumor heterogeneity, most believe that effective treat-
ments should be tailored to the features of an individual tumor or
tumor subclass. It is still unclear, however, what information
should be considered for optimal disease stratification, and most
prior work focuses on tumor genomics. Here, we focus on the
tumor microenvironment. Using a large-scale coculture assay opti-
mized to measure drug-induced cell death, we identify tumor–
stroma interactions that modulate drug sensitivity. Our data show
that the chemo-insensitivity typically associated with aggressive
subtypes of breast cancer is not observed if these cells are grown
in 2D or 3D monoculture, but is manifested when these cells are
cocultured with stromal cells, such as fibroblasts. Furthermore, we
find that fibroblasts influence drug responses in two distinct and
divergent manners, associated with the tissue from which the
fibroblasts were harvested. These divergent phenotypes occur
regardless of the drug tested and result from modulation of apop-
totic priming within tumor cells. Our study highlights unexpected
diversity in tumor–stroma interactions, and we reveal new princi-
ples that dictate how fibroblasts alter tumor drug responses.

Keywords drug sensitivity; precision medicine; triple-negative breast cancer;

tumor microenvironment; tumor–stroma interaction

Subject Categories Cancer; Genome-Scale & Integrative Biology

DOI 10.15252/msb.20188322 | Received 16 March 2018 | Revised 15 July 2018 |

Accepted 19 July 2018

Mol Syst Biol. (2018) 14: e8322

Introduction

A central challenge in medicine is selecting which drug or drug

combination will be the most beneficial for a given patient. In

cancer therapy, this decision has typically been based on the

anatomical origin of the disease, in combination with drug screening

to empirically identify the most efficacious compounds. In most

cases, drug response rates vary considerably, and the causes of this

response variability remain unclear. Thus, for ongoing efforts to

improve precision/personalized medicine it is critical to identify

features that contribute to the observed drug response variability.

Several studies now exist that have explored the relationship

between tumor genetics or tumor gene expression and drug

response (Lamb et al, 2006; Cohen et al, 2011; Barretina et al, 2012;

Cancer Genome Atlas Network, 2012; Cancer Genome Atlas

Network et al, 2012; Shah et al, 2012; Li et al, 2017). Many insights

have been gained from these and other studies, but even collec-

tively, these studies fail to create a clear understanding of the vari-

able levels of sensitivity to commonly used chemotherapeutics

(Innocenti et al, 2011; Jiang et al, 2016). An important considera-

tion is that substantial non-genetic heterogeneity exists within

tumors, and these influences are generally missed in studies that

focus exclusively on tumor genomics. For instance, several classes

of normal cells typically reside within tumors. It is increasingly

recognized that many tumor phenotypes, including tumor initiation,

epithelial-to-mesenchymal transition (EMT), metastatic potential,

and drug sensitivity, are influenced by interactions between cancer

cells and the normal cells residing within or near tumors (Kalluri &

Zeisberg, 2006; Pallasch et al, 2014). Prior studies have typically

highlighted the variable and unpredictable nature of tumor–stroma

interactions, in which the drug sensitivity of cancer cells appears to

depend on the particular combination of tumor cell, stromal cell,

and drug used (Mcmillin et al, 2010). Thus, for efforts to improve

precision medicine, a critical unmet need is to learn “rules” dictating

how stromal cells influence the drug sensitivity of cancer cells.

Here, we develop a mixed coculture assay optimized to specifi-

cally quantify cell death, rather than cell proliferation, and we use

this assay to characterize functional interactions between tumor

cells, stromal cells, and anticancer chemotherapeutic agents. We

report that stromal fibroblasts influence tumor drug response in two

distinct and divergent manners: Some interactions result in drug

resistance, while others cause drug sensitization. Importantly, these

divergent influences were associated with the anatomical tissue

from which the fibroblasts were harvested. Surprisingly, our data

show that these distinct fibroblast-dependent phenotypes are

conserved regardless of the identity or molecular target of the drug.

These broad-spectrum changes to drug sensitivity result from modu-

lation of mitochondrial apoptotic “priming”, which changes the
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threshold for initiation of apoptosis in cancer cells. Taken together,

our study highlights previously unappreciated principles, which

dictate how stromal fibroblasts alter a tumor cell’s drug response.

Results

Cell-intrinsic sensitivity to commonly used chemotherapy is
similar for basal-like and mesenchymal-like TNBC cells

To explore cell non-autonomous regulation of drug sensitivity, we

began by focusing on a tumor subclass that displays notable

response heterogeneity, without clear mechanisms that underlie

these differences. “Triple-negative” breast cancers (TNBCs) are the

most chemosensitive subtype of breast cancer, but also the subtype

with the shortest disease-free survival and lowest overall survival

rates (Carey et al, 2007; Anders & Carey, 2008). This paradox is

thought to result from heterogeneity within the TNBC subclass

(Lehmann et al, 2011). Additionally, although TNBC can be further

stratified into several definable groups which differ in chemosensi-

tivity (Lehmann et al, 2011), it remains unclear which features are

responsible for creating the variable drug sensitivity that is observed

clinically.

To highlight this variability in the drug response, we selected a

panel of ten TNBC cells from either the “basal-like” or “mesenchy-

mal-like” expression classes (Perou et al, 2000; Heiser et al, 2009;

Lehmann et al, 2011). Basal-like (BL) cells—sometimes referred to

as “basal A”, “basal-like 1”, and “basal-like 2”—are defined by

expression of basal or myoepithelial genes. These cells are highly

proliferative, tend to have elevated expression of DNA damage

response genes, and generally respond at higher rates to cytotoxic

chemotherapies in vivo (Lehmann et al, 2011). Mesenchymal-like

(ML) TNBCs—which includes “mesenchymal”, “mesenchymal

stemlike”, and also “claudin-low” expression classes—are enriched

for expression of genes related to EMT, and genes associated with

stemness. These cells are more “aggressive” clinically, more de-

differentiated, more metastatic, and more chemoresistant in vivo

(Prat et al, 2010; Lehmann et al, 2011). Thus, we initially reasoned

that identifying mechanisms which account for the variability in

DNA damage sensitivity between the BL and ML subclasses may aid

in patient stratification or help to identify new strategies for improv-

ing responses to these agents.

To identify features that contribute to differential DNA

damage sensitivity between BL and ML cells, we began by pro-

filing the response of TNBC cells to doxorubicin (also called

Adriamycin), a topoisomerase II inhibitor that is commonly used

in the treatment of TNBC. We suspected that if the observed

clinical patterns of aggressiveness were due to intrinsic dif-

ferences in drug sensitivity associated with these gene expression

states, different levels of sensitivity to doxorubicin should be

observed in vitro. Indeed, the least sensitive cells were HCC-

1395, a TNBC of the ML expression state; the most sensitive

cells were MDA-MB-468, a TNBC in the chemosensitive BL cate-

gory (Fig 1A). In contrast, however, the rest of the cell lines

tested were similarly sensitive to doxorubicin, regardless of their

gene expression state. To see whether this was unique to

doxorubicin, we also profiled responses to other topoisomerase

inhibitors in this panel of cells. Overall, these data reveal

relatively similar levels of drug sensitivity across these 10 cell

lines (Appendix Fig S1A). To more rigorously determine whether

the patterns of sensitivity to these drugs could be used to distin-

guish BL versus ML cells, we performed hierarchical clustering

using either the EC50 or the maximum effect observed for each

drug. This analysis also failed to correctly separate BL and ML

cells based on their observed drug sensitivity profile (Fig 1B and

Appendix Fig S1B).

The results from our in vitro analysis suggest that these BL and

ML cells have similar sensitivity to commonly used chemotherapeu-

tics. This, of course, is not in line with the expected observation that

ML tumors respond at lower rates than BL tumors in vivo (Ahn

et al, 2016). One explanation could be bias within our samples, as

our dataset was comprised of a relatively small number of TNBCs.

To address this, we also analyzed data publically available through

the LINCS consortium, which include drug sensitivities for a larger

panel of 24 BL or ML cell lines (11 BL and 13 ML) and a larger panel

of common anticancer drugs (Fallahi-Sichani et al, 2013). These

data also show that BL and ML cells have similar levels of sensitiv-

ity to topoisomerase inhibitors, specifically, or to all anticancer

drugs, generally (Fig 1C and Appendix Fig S1D). Thus, taken

together, these data highlight that the subtype-dependent differences

in drug sensitivity, which may be expected given responses

observed in patients, are generally not observed when these cells

are grown in standard in vitro cell culture conditions.

Another potential explanation for the discrepancy between our

data and the relative drug sensitivities that were expected could be

that our cells were grown in 2D, rather than using 3D culturing

conditions. It has generally been found that many cell behaviors dif-

fer when cells are grown in 2D versus 3D, and that 3D culture is in

many ways a more accurate representation of the in vivo environ-

ment (Yamada & Cukierman, 2007; Fang & Eglen, 2017). To test

whether growth in 3D recapitulates the expected distinction

between BL and ML cells, we retested sensitivity to 10 topoiso-

merase inhibitors for TNBC cells grown as 3D colonies in a Matrigel

growth environment. Growth of these TNBC cells in 3D colonies

strongly altered drug sensitivity (Fig 1D). In some cases, a modest

trend was observable in which ML cells appear less sensitive to

drugs (e.g., camptothecin), but these trends were not statistically

significant. The dominant trend was an overall desensitization to

these drugs, without further refining the distinction between BL and

ML cells (P > 0.05 for all drugs in 2D and 3D culture; Fig 1D and

Appendix Fig S1C). This finding is consistent with prior studies,

which demonstrated that growth in 3D induces a general resistance

to drug-induced apoptosis (Weaver et al, 2002). Thus, taken

together, our data highlight that these BL and ML TNBC cells are

similarly sensitive to commonly used chemotherapeutics, at least

when cultured in standard 2D or 3D monoculture conditions. This

finding raises the possibility BL and ML subtype-specific responses

to treatment are not cell-intrinsic properties, but rather a product of

subtype-specific interactions between tumor cells and microenviron-

mental features.

Coculture screen optimized to monitor cell death reveals
widespread stromal influence on TNBC drug sensitivity

Based on the results of our in vitro drug screen of TNBC cells grown

in monoculture, we aimed to test the hypothesis that differences
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between the chemosensitivity of BL and ML cells are induced, in

part, by cell non-autonomous influences. Several studies have

suggested that interactions between tumor cells and components of

the tumor microenvironment—including extracellular matrix,

growth factors, and other stromal cell types—can alter sensitivity to

chemotherapy (Weaver et al, 2002; Straussman et al, 2012; Nguyen

et al, 2014). We focused on interactions between cancer cells and

stromal fibroblasts, which are often the predominant stromal type

found within the tumor microenvironment (Buchsbaum & Oh,

2016).

To identify tumor–stroma interactions that alter drug response,

we initially used an in vitro coculture system that was successfully

used to evaluate tumor–stroma–drug interactions (Straussman et al,

2012). In this experimental platform, cancer cells are genetically

modified to express GFP, to facilitate rapid, quantitative, high-

throughput, and cancer cell-specific measurement of drug response

dynamics. To pilot this study, we evaluated fibroblast influence on

the response of BT-20 cells to targeted and cytotoxic chemothera-

pies. Our microscopy-based analysis revealed that sensitivity to both

targeted and cytotoxic therapies was inhibited by coculture with

HADF, a primary non-immortalized human fibroblast harvested

from the adrenal gland (Appendix Fig S2A and B). Interestingly,

analysis of these same cocultures using a fluorescence plate reader

successfully captured only the fibroblast-dependent inhibition of

erlotinib-induced growth arrest, but failed to capture the fibroblast-

dependent inhibition of cytotoxic therapy (Appendix Fig S2C).

Notably, in addition to missing the fibroblast influence in the

context of chemotherapy, plate reader-based analysis also failed to

capture the potent death that we observe following camptothecin

exposure, with all measurements in the time course recording

higher values than the initial pre-drug measurement (Appendix Fig

S2C). The insensitivity of this screening approach was likely due to
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Figure 1. TNBC cell sensitivity to topoisomerase inhibition is not well predicted by basal-like versus mesenchymal-like gene expression status.

A Relative sensitivity to doxorubicin. Panel of 10 TNBC cell lines from the basal-like (BL, blue) or mesenchymal-like (ML, red) gene expression subclasses were exposed
to varying doses of doxorubicin. Cell viability quantified using CellTiter-Glo, 72 hours after drug exposure. Data are from biological triplicates.

B Cell viability measured as in (A) for 10 common Topo I or II inhibitors. Data are z-scored EC50 per drug. Dendrograms from hierarchical clustering shown for drugs and
for cells (BL cells highlighted with blue bar; ML cells highlighted with red bar).

C Sensitivity to topoisomerase inhibitors (top) or all drugs (bottom) in publicly available LINCS data. Data are representative of 24 TNBC cell lines (11 BL and 13 ML) and
67 total drugs (six Topo Inhibitors). In the boxplots, the red horizontal line represents the median; blue box show the 25th – 75th percentile range; whiskers show the
full range of the data.

D Drug sensitivity of TNBC cells grown in 2D or as 3D spheroids in soft Matrigel. Cell viability assessed using CellTiter-Glo, as in panel (A). For each drug shown,
sensitivity is not significantly different between BL and ML cells, whether grown in 2D or 3D (P > 0.05 for all).
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the stability of GFP fluorescence, even after cell death

(Appendix Fig S2D and E). These data indicate that measurements

of GFP fluorescence using a fluorescence plate reader were not

sufficiently sensitive for quantifying the degree of cell death in a

population of cells.

Based on these results, we modified our coculture screen to opti-

mize measurement of drug-induced cell death. We used JC-1, a dye

that accumulates within mitochondria and is often used as a surro-

gate measure of apoptotic cell death (Fig 2A and B; Montero et al,

2015). At low concentrations, JC-1 exists as a monomer and yields

green fluorescence; however, when accumulated at high concentra-

tions within mitochondria, this dye forms aggregates, which yield

red fluorescence. Thus, the red fluorescence of JC-1 reports cellular

mitochondrial integrity, which is lost when cells activate apoptosis.

To assess the suitability of JC-1 to quantify changes in the degree of

cell death in coculture, we again piloted this assay on BT-20 cells

treated with camptothecin in the presence or absence of HADF.

Images of these cells taken prior to drug exposure confirm punctate

red fluorescence in BT-20, but not HADF, confirming that the dye is

not exchanged between cells in coculture (Fig 2B). 96 h after expo-

sure to camptothecin, the majority of BT-20 cells had significantly

reduced JC-1 red fluorescence, suggesting that mitochondrial integ-

rity has been compromised (Fig 2C). Importantly, JC-1 red fluores-

cence measured using a fluorescence plate reader was sufficiently

sensitive for observing both the potent cell death of BT-20 cells in

monoculture and the protective effect of HADF cells in coculture

(Fig 2D).

To evaluate the role of stromal fibroblasts in DNA damage sensi-

tivity, we selected six TNBC cell lines (three BL and three ML) that

have relatively similar levels of sensitivity to DNA damage. These

JC-1-labeled TNBC cells were grown in monoculture or in coculture

with each of a panel of 16 primary human fibroblasts. Each culture

was exposed to a four-point dose range of 42 anticancer drugs,

which included at least one drug per class for all current FDA-

approved breast cancer drugs (Tables EV1 and EV2). JC-1 red fluo-

rescence was quantified at 8-h intervals for 72 h. In total, we
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Figure 2. Coculture screen to identify tumor–stroma interactions reveals divergent interactions between fibroblasts and TNBC cells.

A Schematic of screen design. TNBC cell lines were labeled with JC-1, grown in monoculture or in coculture with primary fibroblast cells, and treated with one of 42
anticancer drugs. JC-1 fluorescence was monitored using a fluorescence plate reader at 8-hour intervals for 72 h.

B, C Representative images of BT-20 cells (BL subtype) cocultured with HADF fibroblasts. BT-20 cells labeled with JC-1 dye; HADF labeled with a blue cell dye (CellTrace).
Images taken before drug addition (B) or 96 h after exposure to 0.5 lM camptothecin (C).

D Kinetic trace of JC-1 red fluorescence following exposure to camptothecin as in (B and C). Data are relative JC-1 red fluorescence, normalized to the well’s average
prior to drug addition. Data represent mean � standard deviation for five biological replicates.

E Total coculture screen data. Each blue dot represents a unique TNBC–fibroblast–drug measurement. 312,120 total measurements of drug response. Orange and
purple dots highlight conditions validated in panels (F–I). Orange are HCC-1143 (BL) cells cocultured with HCPF and treated with palbociclib. Purple dots are
Hs578T (ML) cocultured with WS1 and exposed to etoposide. For colored dots, increasing size represents longer drug exposure times.

F–I Validation of coculture screening data. (F) Flow cytometry analysis of cell death using Live/Dead Blue stain. FarRed CellTrace was used to label and distinguish
fibroblasts. (G) Quantification of percent TNBC cell death in experiment described in panel (F). (H and I) Flow cytometry and quantitative analysis, as in panels (F
and G) for Hs578T +/� WS1 and treated with etoposide. Error bars represent standard deviation of biological replicates. P-value calculated using t-test. Data are
from three biological replicates and error bars. ***P-value < 0.05.
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collected more than 300,000 measurements of drug sensitivity

(Fig 2E, Appendix Fig S3A–C, and Table EV3). We found a strong

overall correlation among biological replicates, indicating that the

stromal influences observed were not due to measurement noise

(Appendix Fig S3D). To identify TNBC–fibroblast interactions that

significantly altered sensitivity, we used a statistical fold-change

cutoff of 3× the standard deviation observed among replicates. This

analysis identified 5,039 significantly changed drug responses

(Appendix Fig S3E). As may be expected, this list of “hits” was

significantly depleted for responses at early times (i.e., 8 h), low

doses (0.1 lM), and responses to anti-estrogen drugs (Tables EV3

and EV4). Non-response to anti-estrogen compounds is expected as

TNBCs do not express estrogen or progesterone receptors.

The majority of TNBC cell–fibroblast interactions did not alter

drug sensitivity (Appendix Fig S3A–C). Nonetheless, our screen

revealed many striking phenotypes of strongly altered drug

responses, and overall, our data cover nearly the entire landscape of

possible positive and negative interactions (Fig 2E). To determine

the reliability of these measurements, we selected a subset of these

interactions to validate by flow cytometry. For example, our screen

identified that palbociclib killed more than 80% of HCC-1143 cells,

a basal-like TNBC, if applied to these cells in monoculture.

However, this drug was rendered ineffective when HCC-1143 cells

were cocultured with the fibroblast cell, HCPF, resulting in only a

20–40% decrease in cell viability (orange dots, Fig 2E). A flow

cytometry-based analysis of cell death recapitulated this drug desen-

sitization phenotype (Fig 2F and G). Additionally, our coculture

screen identified instances in which the efficacy of etoposide is

significantly improved in coculture conditions. For example, etopo-

side was ineffective in killing mesenchymal-like Hs578T cells in

monoculture, but killed more than 50% of these cells grown in

coculture with skin fibroblast cells, WS1 (purple dots, Fig 2E). This

phenotype was interesting because prior studies have found that

etoposide is minimally active in monoculture, which was surprising

given the clinical utility of this compound (Lee et al, 2012). Flow

cytometry-based analysis of cell death confirmed that etoposide-

induced cell death in Hs578T is significantly enhanced by coculture

with WS1 fibroblasts (Fig 2H and I). Thus, our coculture drug

screen identified a spectrum of TNBC–fibroblast interactions that

modulate the drug response of TNBC cells in both positive and

negative directions (Appendix Figs S4–S6).

Primary fibroblasts grown in coculture with TNBC cells display an
activated phenotype and modulate drug sensitivity similar to
cancer-associated fibroblasts (CAFs)

Our coculture drug screen was comprised mainly of normal primary

fibroblasts. Cancer-associated fibroblasts (CAFs, also called “acti-

vated” fibroblasts, myoepithelial cells, or myofibroblasts) are

thought to be largely distinct from primary fibroblasts in their ability

to promote aspects of tumorigenesis and tumor progression (Kalluri

& Zeisberg, 2006; Shiga et al, 2015). Thus, to address the relevance

of our findings we also aimed to compare the behaviors of primary

fibroblasts and CAFs, and in particular, the ability of these different

cell types to modulate drug responses of TNBCs in coculture. We

first asked whether our primary fibroblasts adopt an activated

phenotype in culture. Prior studies have found that the unnatural

environmental stiffness of in vitro culture can cause primary

fibroblasts to spontaneously adopt the activated phenotype (Huang

et al, 2012). Using immunofluorescence microscopy, we determined

a�smooth muscle actin (SMA) expression in fibroblasts, a marker

of the activated fibroblast expression state that is commonly

observed in CAFs. Robust but variable SMA positivity was observed

for all primary fibroblasts tested (Appendix Fig S7A). To more

precisely quantify percentages of SMA+ fibroblasts, and to deter-

mine whether coculture modulated SMA positivity, we measured

the percent of SMA+ cells using flow cytometry (Appendix Fig S7B).

The percentage of SMA+ fibroblasts was relatively high, even when

fibroblasts were grown in monoculture (median 63%; range 10–

85%), and was consistently increased when fibroblasts were

cocultured with TNBC cells (Appendix Fig S7C). Thus, primary

fibroblasts grown in coculture with TNBC cells generally adopt the

activated expression state that is commonly observed for CAFs.

To compare the degree to which primary or CAF cells modulate

drug sensitivity of TNBC cells, we repeated a small portion of our

coculture drug screen using one primary mammary fibroblast

(HMF) and two breast cancer-associated fibroblasts (Hs343T and

Hs578BST). Overall, the drug sensitization/desensitization profile

revealed a similar pattern of relative drug sensitivity when

compared to our initial coculture screen (Appendix Fig S7D). Addi-

tionally, primary and CAF cells modulated sensitivity to common

anticancer drugs in a significantly correlated manner (r = 0.46;

P < 0.0001). This suggests that, although primary fibroblasts and

CAFs likely differ in many substantial ways, these different cell

types were similar in the manner in which they alter drug sensitivity

of associated cancer cells. This finding is consistent with a previous

study by Polyak and colleagues, which found that patient-derived

primary or CAF cells from breast or brain specimens similarly

desensitized HER2-positive breast cancer cells to the HER2 inhibitor

lapatinib (Marusyk et al, 2016).

TNBC–fibroblast interactions are sufficient for inducing
differential drug sensitivity between basal-like and
mesenchymal-like TNBCs

Our profiling of TNBC cell lines grown in 2D or 3D monoculture

failed to identify robust differences in the drug sensitivities between

BL and ML cells (Fig 1). Since our coculture screen revealed strong

positive and negative changes in the drug responses of these cells

(Appendix Figs S4–S6), we asked whether these altered drug sensi-

tivity profiles improved the resolution between BL and ML cells. To

test this, we performed principal component analysis (PCA) on our

coculture screening data. We reasoned that PCA would be beneficial

due to the high dimensionality of our data (i.e., multiple drugs,

cells, coculture environments, doses, times). PCA uses the covaria-

tion structure of the data to reduce data dimensionality to a smaller

number of “principal components”, with each component being

comprised of related information (Janes & Yaffe, 2006).

Principal component analysis of our coculture data reduced these

complex observations to 10 principal components, with the first two

components capturing 53% of the overall variation in drug sensitiv-

ity (Appendix Fig S8A). The projection of our data onto PC1 and

PC2 revealed a clear separation of BL and ML cells (Fig 3A).

Notably, this expected pattern was not visible in drug response data

collected on these TNBC cells grown in monoculture (Figs 1B and

3B). Thus, our screening data reveal that coculture of TNBCs with
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fibroblast cells modulates drug sensitivity in a manner that

enhances the distinction between BL and ML cells.

Because each principal component captures unrelated/orthogo-

nal variation in the data, we also sought to determine which compo-

nents were capturing variation associated with the BL/ML

dichotomy. For example, the BL/ML distinction could be captured

independently on all PCs. This would suggest that BL and ML cells

respond differently to all drugs, in all coculture environments. Alter-

natively, it is also possible that the BL/ML distinction is restricted to

one or a few PCs, suggesting that BL and ML cells respond in

distinct ways only in the context of a subset of drugs and/or envi-

ronmental conditions. Thus, to investigate this further, we quanti-

fied the degree of separation of BL/ML cells across all 10 PCs

(Fig 3C). A strong association was identified for PC2, which

captured approximately 13% of the data. Modest but significant

associations with BL/ML were also found for PC3, 5, and 6, which

each of which captured relatively small amounts of the dataset

(Appendix Fig S8B). Thus, we focused on finding features in our

data that were driving the association between PC2 and BL/ML

cells. To achieve this, we inspected the PCA vector loadings, which

report the degree to which each variable contributes to a given

component. We noticed strong positive loading coefficients on PC2

for conventional chemotherapeutics, such as etoposide and pacli-

taxel (Fig 3D). To determine whether these observations were statis-

tically robust, we quantified the statistical enrichment of each class

of drugs on PC2, finding the strongest enrichments for topoiso-

merase inhibitors and microtubule poisons, two drug classes that

are commonly used in the treatment of breast cancer (Fig 3E). We

selected a subset of drugs to re-evaluate that had strong positive

loading coefficients on PC2, suggesting that BL and ML cells would
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have clearly distinct responses to these drugs. Consistent with these

PCA generated insights, we found that BL cell sensitivity and ML

cell sensitivity to etoposide and paclitaxel were clearly distinct in

coculture, but not in monoculture, with BL cells generally being

more sensitive to these conventional chemotherapies (Fig 3F and

G). Taken together, these data demonstrate that coculture with

fibroblasts was sufficient to enhance distinctions between BL and

ML TNBC cells.

Divergent interactions between TNBCs and fibroblasts based on
the anatomical origin of fibroblast cells

Our coculture screen identified environmentally modulated drug

responses that differed between BL and ML subtypes of TNBC.

Notably, however, these distinctions were seen only for a small frac-

tion of the drug responses tested in our screen, and primarily only

in the context of drugs that are currently used in the treatment of

TNBC. This distinction suggests that most of the response variation

found in our screen is not associated with the BL/ML dichotomy

and that opportunities may be found in our dataset that sensitize

both BL and ML cells to conventional chemotherapeutics. Thus, we

reasoned that deeper insights into the other sources of drug

response variation in our data may reveal new strategies for potenti-

ating drug responses in TNBC. PC1, which captured approximately

40% of the overall variation in drug sensitivity, was revealing a

dominant pattern in our data that is unrelated to the BL/ML

dichotomy (Fig 3A). To gain a deeper understanding of the sources

of drug response variability in our data, we focused on identifying

features of our data that were associated with PC1. We observed a

noticeable clustering on PC1 for scores related to each fibroblast cell

type (Fig 4A and Appendix Fig S9). To determine whether this

pattern was revealing fibroblast cell-specific, or fibroblast tissue-

specific variation, we computed the correlation between fibroblasts

from the same tissue, versus between fibroblasts derived from dif-

ferent tissues. We found a significantly higher correlation between

fibroblasts that were derived from the same anatomical tissue

(Fig 4B and Appendix Fig S9). These data suggest that fibroblasts

harvested from the same tissue modulate the drug responses of

associated TNBC cells in similar ways.

Fibroblasts from different tissues could be modulating one of

several aspects of TNBC drug response, including the response rate,

magnitude of response (e.g., Emax or EC50), or the directionality of

the influence (e.g., increased or decreased sensitivity). Because our

dataset included a surprising level of directional variability in

fibroblast influence, we began by asking whether the directional

variance in our screen could be attributed to distinct directionally

specific influences of fibroblast from different tissues (i.e., Is a

fibroblast from a given tissue intrinsically more likely to induce drug

sensitization/de-sensitization?). To test this, we calculated the ratio

of drug responses for each TNBC–drug combination, in coculture

versus monoculture. To facilitate visual inspection of the relative

influences induced by each fibroblast type, we organized the data

by dose and time, in order to highlight conserved fibroblast-depen-

dent influences (Fig 4C). Each data tile was then subsequently

grouped by stromal location and drug, and a map of this type was

created for each TNBC cell line. From this analysis, clear differences

between fibroblast lines were visible, with each fibroblast promot-

ing either drug sensitization or desensitization (Fig 4D). These

patterns were similar between BL and ML subtypes, although ML

TNBCs had more strongly polarized responses, in both positive and

negative directions (Fig 4E). Some drug-specific responses, such as

the desensitization of TNBCs to sunitinib, occurred regardless of

which fibroblast was used in coculture. Interestingly, however,

these drug-specific interactions were rare, and most fibroblast-

induced changes in drug sensitivity were observed in a similar

manner, across essentially all drugs, and in both BL and ML subtype

TNBCs. Thus, rather than finding unpredictable or idiosyncratic

interactions, specific to precise TNBC–fibroblast–drug combinations,

our analysis reveals a dominant and relatively straightforward

pattern: Fibroblasts modulate the drug response of TNBC cells in

distinct and divergent manners, which are largely dependent on the

anatomical origin from which the cells were harvested.

Fibroblast-dependent, and drug-independent, variation in drug
sensitivity occurs through modulation of the mitochondrial
apoptotic priming state of TNBC cells

An unexpected phenotype from our screen was the degree to which

a given fibroblast’s influence over TNBC drug sensitivity was consis-

tent regardless of which drug was applied (Fig 4D and E). Thus, we

next aimed to determine the mechanism by which fibroblasts could

interact with TNBC cells to produce these divergent—and largely

drug identity independent—changes in TNBC drug response. The

simplest mechanism that is consistent with this observation would

be that these fibroblasts cause a direct modulation of TNBC cell

growth or survival, independent of the drugs added (Fig 5A and

Appendix Fig S10, example i). To test this, we used GFP-tagged

TNBC cells to monitor TNBC-specific growth/survival phenotypes,

in the absence of any drug. We found that most fibroblast cells

either did not alter the growth rate of TNBC cells, or induced a

modest growth rate increase in TNBC cells grown in coculture

(Fig 5B). Furthermore, in the context of fibroblasts that consistently

sensitized drug response of all TNBC cell lines (e.g., WS1, C12385,

or HUF), coculture did not significantly decrease growth or survival,

suggesting that a growth fitness or survival defect does not account

for the broad-spectrum drug sensitization seen in coculture with

these cells. In rare instances, coculture conditions did result in a

significant TNBC cell growth rate decrease, such as seen with MDA-

MB-231 cells grown with H6013, a fibroblast derived from lung

tissue (Fig 5B). Notably, the M231-H6013 interaction induced

broad-spectrum drug desensitization (i.e., enhanced survival). Thus,

even in the rare instances in which fibroblast cells mediated fitness

defects, growth rate or survival modulation does not appear to

account for the observed pattern of influences on TNBC drug

response.

A second mechanism by which fibroblast cells could enhance

drug efficacy could be by modulating drug bioavailability (Fig 5A,

example ii). This could be achieved, for example, if fibroblast

cells altered the levels of expression of drug efflux pumps in

cancer cells, if fibroblasts sequestered drugs, or if fibroblasts

metabolized the drugs, creating a more/less potent or bioavailable

compound (Appendix Fig S10). This latter mechanism was

recently reported to explain a microbiome–drug interaction that

modulates toxicity of the chemotherapeutic 5-FU (Garcı́a-González

et al, 2017). To test the role of fibroblast modulation of drug

metabolism or availability, we focused on drugs that activate
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death through induction of DNA damage. For this set of

compounds, drug potency should be proportional to level of

c�H2AX, which marks sites of DNA double-stranded breaks. We

quantified c�H2AX nuclear intensity following exposure to

DNA-damaging agents, in the presence and absence of fibroblasts.

These measurements were made at four time points following

exposure to 1 lM teniposide, cisplatin, etoposide, or camp-

tothecin. We used GFP-labeled TNBC cells to identify TNBC cell

nuclei, and images were quantified using a CellProfiler-based

automated image analysis (Fig 5C; Lamprecht et al, 2007). We
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Figure 4. Divergent interactions between TNBCs and fibroblasts based on fibroblast tissue of origin.

A PCA of coculture drug responses, as in Fig 3. Projection of scores shown to highlight separation of cocultures by fibroblast identity on PC1. Uterine-derived
fibroblasts (orange) and lung-derived fibroblasts (green) highlighted. See also Appendix Fig S9.

B Statistical analysis of fibroblast influence. Drug responses evaluated for fibroblasts from the same or different tissues using data from the coculture screen in Fig 2.
P-value derived using KS test.

C, D Ratio of coculture vs. monoculture drug response. 72 data points for each unique cancer–fibroblast–drug interaction arrayed by dose and time (nine time points
and four doses in duplicate). (C) Example of total data for BT20-Hs27A-cisplatin. Data tiles are concatenated by fibroblast identity and drug in panel (D). (D, top)
Average response ratio, as in panel (C), across all BL cell lines. (D, bottom) Average response ratio across all ML cell lines. 16 primary fibroblasts are grouped
according to tissue of origin (highlighted by colored bar, left of heatmap). 24 left-most drugs (purple bar, top) are cytotoxic chemotherapies; 18 right-most drugs
(yellow bar, top) are targeted therapies.

E Average fibroblast influence across all drugs. Data are mean log2 fold change (coculture vs. monoculture, as in D).
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began by inspecting the most strongly sensitizing and desensitiz-

ing coculture environments to determine whether these extreme

cases could be explained by differences in the apparent drug

potency. TNBC nuclear c�H2AX intensity was similar in BT-20

cells grown in monoculture or when cocultured with C12385, a

uterine fibroblast that strongly sensitized TNBC drug response

(Fig 5D). Similarly, differences in c�H2AX between mono- and

cocultures were also not observed when BT-20 cells were cocul-

tured with Hs27A, a bone fibroblast that strongly desensitized

drug responses (Fig 5E). To more comprehensively determine

whether modulation of drug potency could account for the

observed pattern of drug sensitization/de-sensitization, we

compared these changes in c�H2AX intensity from quantitative

image analysis, to the relative changes in drug sensitivity from

our coculture screen. Overall, there was a low correlation

between the degree to which c�H2AX was modulated by fibro-

blasts and the phenotypic influence of these fibroblasts, which

was not significant when compared to a randomized dataset
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Figure 5. Fibroblasts alter drug sensitivity through modulation of mitochondrial apoptotic priming.

A Schematic of possible mechanisms by which stromal cells alter drug sensitivity. See also Appendix Fig S10.
B TNBC cells labeled with GFP were grown in monoculture or in coculture with listed fibroblasts. Growth rate quantified using a fluorescence plate reader. Heatmap

data are area under curve (AUC) from biological triplicate measurements for cocultures plated at 1:1 cell ratio. Growth curves shown for the most enhanced and
suppressed growth rate. Error bars are the standard deviation among four biological replicates.

C–F c-H2AX (p-H2AX, S139) monitored by immunofluorescence microscopy. (C) Representative image of GFP-BT20 cells cocultured with HADF. (D) Quantification of
TNBC nuclear c-H2AX from imaging experiment described in panel (C). In the boxplots, the red horizontal line represents the median; blue box show the 25th –
75th percentile range; whiskers show the full range of the data. Boxplot shown for BT-20 cells grown in monoculture (M) or in coculture (C) with strongly drug-
sensitizing (C12385) fibroblasts. Cells counted using automated image analysis (CellProfiler). (E) As in panel (D), but for BT-20 cells grown in monoculture or in
coculture with strong drug desensitizing (Hs27A) fibroblasts. (F) Scatterplot of coculture:monoculture viability ratio (from screen in Fig 2E) compared to
coculture:monoculture ratio of c-H2AX intensity. Both plotted in log2 scale. For panels (D–F), average number of nuclei per counted per condition is 758 (range
93–1,632)

G–I Evaluation of fibroblast influence on mitochondrial priming. (G) Cytochrome C retention quantified using the iBH3 profiling assay. Alamethicin (ALA) used as a
positive control for mitochondrial rupture and cytochrome C release. (H) Mitochondrial priming quantified using exposure to varied concentrations of BIM in BT-20
cells. (I) Scatterplot comparing relative drug sensitivity (as in panel E) compared to degree of coculture induced change in mitochondrial priming. Priming status
quantified as AUC from BIM dose response. Data are from biological quadruplicates. BT-20 (BL subtype); MDA-MB-231 (M231; ML subtype).
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(r = 0.134, P > 0.05; Fig 5F). Thus, it does not appear that fibrob-

last influences on drug sensitivity generally occur through modu-

lation of drug availability or potency.

The insights gained from c�H2AX intensity analysis are also

consistent with our general observation that fibroblast cells influence

drug sensitivity in similar ways across diverse and unrelated classes

of drugs. In other words, it does not appear that the mechanisms by

which fibroblast cells influence the drug responses in TNBC cells are

specific to the drug compounds themselves or drug-specific

responses of TNBC cells. Drug-induced cell death is the product of at

least two independent influences: the drug-specific cell response

(i.e., the ability of a drug to change a cell from a healthy to a dead

state) and the degree to which the cell is “primed” for death (i.e.,

how “close” the healthy cell is to dying; Chonghaile et al, 2011;

Montero et al, 2015). Thus, a third mechanism that we tested was

whether fibroblasts alter the degree of mitochondrial apoptotic prim-

ing (Fig 5A, example iii). The state of apoptotic priming is thought to

relate to the relative local concentration of pro- and anti-apoptotic

proteins on the surface of mitochondria (Ryan et al, 2010). Thus, the

priming state of a cell is not easily determined from gene or protein

expression levels, but relative changes in priming can be empirically

determined using the BH3 profiling technique (Ryan & Letai, 2013).

This assay was recently used to demonstrate that normal or cancer-

associated fibroblasts (CAFs) from mammary and brain tissue induce

resistance to the HER2 inhibitor, lapatinib, in HER2 overexpressing

breast cancers (Marusyk et al, 2016). Similarly, mammary- and

brain-derived fibroblast also induced desensitization to lapatinib in

our screen (Fig 4D). Thus, we used the BH3 profiling assay to assess

the degree to which fibroblasts alter the mitochondrial priming state

of TNBC cells. We selected five fibroblast cells that produced the

strongest and most consistent modulation of drug sensitivity. The

mitochondrial response to BIM peptide was quantified by monitoring

cytochrome c retention within cancer cells by flow cytometry

(Fig 5G). BH3 profiling revealed that fibroblast coculture signifi-

cantly altered the mitochondrial priming state in both basal-like (BT-

20) and mesenchymal-like (MDA-MB-231) TNBC cells (Fig 5H and

I). Furthermore, the degree to which mitochondrial priming was

increased or decreased was also highly correlated with relative drug

sensitivity observed in our coculture screen (Fig 5I). Thus, in

instances where fibroblasts strongly alter broad-spectrum drug sensi-

tivities of TNBC cells, both the positive and negative changes in drug

sensitivity are induced by modulation of mitochondrial priming.

We next aimed to determine whether the fibroblast-induced

changes in TNBC mitochondrial priming translated to different levels

of sensitivity to drugs designed to modulate the apoptotic threshold.

For example, BH3 mimetic drugs function by inhibiting anti-apoptotic

proteins, such as BCL2 and other related family members. Because

these agents inhibit apoptotic inhibitors, but do not in and of them-

selves generate pro-apoptotic activating signals, their efficacy relies

on the native priming state of cancer cells (Adams & Cory, 2017).

Thus, we reasoned that fibroblasts that enhance or suppress the prim-

ing state of cancer cells may differentially alter sensitivity to BH3

mimetic drugs. To test this, we exposed GFP-labeled BT-20 cells to

varying concentrations of the topoisomerase II inhibitor teniposide

and/or ABT-737, a broad-spectrum BCL2 family inhibitor. Images

were collected following 48 hours of drug exposure (Fig 6A). To

quantify cells, we used a CellProfiler-based automated image analysis.

Contrary to what is commonly seen for many hematopoietic cancers,

ABT-737 did not kill BT-20 cells when applied as a single agent

(Fig 6B, left); however, combinations of ABT-737 and teniposide were

generally synergistic when applied to BT-20 cells grown in monocul-

ture (Fig 6C, left). The synergistic interaction between ABT-737 and

teniposide was further enhanced when BT-20 cells were grown in

coculture with C12385, a uterine fibroblast that enhanced apoptotic

priming (Fig 6B and C, middle). In contrast, when BT-20 cells were

grown in coculture with HADF, an adrenal fibroblast that potently

decreased apoptotic priming, the drug synergy between these two

agents was largely blocked, with most dose combinations resulting in

additivity, or even modest drug antagonism (Fig 6B and C, right).

These data confirm the role of fibroblasts in modulating apoptotic

priming of associated tumor cells. Additionally, our data demonstrate

that tumor–stroma interactions have the capacity to modulate, not

only drug sensitivity, but also drug–drug interactions, further high-

lighting that these interactions are critical features that dictate how

cancer cells respond to drugs.

Discussion

In this study, we explored interactions between tumor cells and stro-

mal cells to identify those that modulate sensitivity to commonly

used chemotherapeutics. We found that fibroblasts alter drug sensi-

tivity of tumor cells, and that the responses were highly variable,

both in magnitude and in direction. Our statistical analysis clarified

that the directional variability in fibroblast influence is predominantly

associated with the anatomical tissue from which the fibroblast cells

were harvested. This is an important observation, particularly consid-

ering that prior studies have typically only observed that stromal

influences were unpredictable and/or very specific to the particular

tumor–fibroblast–drug combination (Mcmillin et al, 2010). Surpris-

ingly, we found that fibroblast-dependent changes in drug response

were consistently observed, regardless of which drug was applied,

which was driven by fibroblast-dependent modulation of mitochon-

drial apoptotic priming within cancer cells.

A major surprise from our work is the substantial directional

variability in fibroblast influence and in particular the large

proportion of tumor–fibroblast interactions that result in drug

sensitization. Prior studies that have interrogated fibroblast–tumor

▸Figure 6. Modulation of mitochondrial priming by fibroblasts alters sensitivity to BH3 mimetic drugs.

A Representative images of GFP-BT20 cells grown in monoculture or in coculture with fibroblasts that increase or decrease the apoptotic threshold (C12385 and HADF,
respectively). Each culture was treated with varying concentrations of the Topo II inhibitor teniposide or ABT737, BH3 mimetic that inhibits members of the BCL2
family of anti-apoptotic proteins. GFP-BT20 are green. In cocultures, fibroblast cells are red. In monocultures, BT-20 cells stained with a red cell dye were added to
normalize plating densities.

B Relative cell viability from experiment described in panel (A). Heatmap reports mean cell number, relative to untreated cells. Cells were quantified using CellProfiler
from six images per drug condition. Average number of cells per image was 160. Each drug was tested at six doses, which were half-log10 dilutions from 10 lM.

C Drug Combination Index (CI) relative to predicted % viability under Bliss Independence.
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cell–drug interactions have found that these interactions generally

result in drug resistance, with only rare instances in which stro-

mal cell interactions lead to drug sensitization (Mcmillin et al,

2010; Straussman et al, 2012; Marusyk et al, 2016). The dif-

ferences observed in our screen likely resulted, in part, from the

experimental scale used in our study. For example, some recent

smaller scale studies have concluded that fibroblasts induce thera-

peutic resistance regardless of their tissue of origin (Marusyk

et al, 2016). As noted above, our study successfully replicated the

drug resistance phenotypes found in prior studies, and in our

data, these drug resistance phenotypes are found in the context

of many drug-sensitizing phenotypes that were not previously

tested. An additional possibility is that our screening methodol-

ogy, which was designed to exclusively monitor drug-induced cell

death, contributed to the enhanced resolution of cell death sensiti-

zation. In fact, this feature is likely to have played a major role,

considering the limited ability of other common approaches to

quantify differences in the degree of cell death (Appendix Fig S2).

A third possibility is that fibroblast-mediated drug sensitization is

a more common phenotype in TNBC, as this cancer subtype was

not deeply profiled in prior studies. A focused interrogation of

other cancer subtypes may help to determine the extent to which

fibroblast influences vary across different cancers.

Taken together, the findings from our study have potentially

important implications that warrant consideration in the context of

“personalized” or “precision” medicine, particularly for efforts to

improve efficacy of commonly used therapies, such as cytotoxic

chemotherapies or other pro-apoptotic agents. For instance, as we

did not see differences in chemosensitivity between BL and ML cells

grown in monoculture, it is possible that differences in chemosensi-

tivity between these subtypes of TNBC may not be cell-intrinsic

features, but instead may be the product of interactions between

these cells and stromal cells. Thus, it is unclear whether detailed

studies on the genomics of TNBC cells will be informative for identi-

fying strategies to enhance chemosensitivity. Additionally, our

experiments exploring the efficacy of BH3 mimetic compounds in

combination with conventional chemotherapy reveal that the nature

of drug–drug interactions (i.e., synergy or antagonism) depends

strongly on the growth environment and not only on the cancer

genotype. Furthermore, our ability to predict this drug–drug–envi-

ronment interaction was facilitated by a mechanistic understanding

of how fibroblasts modify drug responses in TNBC cells. Thus,

future efforts to predict effective drug combinations in vivo will like-

wise require a greater understanding of how stromal cells from dif-

ferent tissues modulate the drug sensitivity of cancer cells.

Our findings highlight two potentially new opportunities to

improve therapeutic responses in TNBC. First, our data show that

the relative drug insensitivity of ML subtype TNBCs is restricted to

only a few drug classes, which were generally strong apoptotic

agents that are commonly used in treatment today. The drug speci-

ficity of the BL/ML dichotomy suggests that opportunities may exist

for improving the responses of ML subtype cancers, perhaps in the

context of other classes of drugs. Indeed, some drugs—which were

equally efficacious in BL and ML cells grown in monoculture—were

in fact more effective in the ML subtype when these cells

were grown in coculture (see for example, bortezomib, Fig 4D). The

ability to directly test these hypotheses in vivo is currently limited,

as coculture xenograft models typically require the use of external

matrix (e.g., Matrigel) to support the implantation of fibroblasts,

which obscures the tumor–fibroblast interaction (Appendix Fig

S11). Second, the strong drug-independent influences of fibroblasts

suggest that a more generalizable strategy may be to block interac-

tions with drug desensitizing fibroblasts or to mimic the interactions

of drug-sensitizing fibroblasts. Future studies should therefore aim

to gain a comprehensive understanding of the mechanisms of inter-

action between fibroblasts and cancer cells, and in particular, the

mechanisms by which fibroblasts alter the priming state of cancer

cells.

Materials and Methods

Cell lines and reagents

Cell lines BT-20, HCC-1143, Hs578T, Hs578BST, MDA-MB-231,

MDA-MB-436, MDA-MB-468, HCC-2157, HCC-1806, HCC-1395,

Hs27A, HS-5, WI-38, IMR-90, Hs343T, WS-1 were obtained from

American Type Culture Collection (ATCC, Manassas, VA), and cell

line CAL-120 was obtained from Deutsche Sammlung von Mikro-

organismen und Zellkulturen GmbH (DSMZ). All cell lines were

grown in 10% FBS (Thermofisher Hyclone cat# SH30910.03 lot#

AYG161519), 2 mM glutamine, and penicillin/streptomycin. BT-20,

CAL-120, and WS-1 were cultured in Mema + Earle’s salts. HCC-

1143, HCC-2157, HCC-1806, and HCC-1395 were cultured in RPMI

1640 media. Hs578T, MDA-MB-231, MDA-MB-436, MDA-MB-468,

Hs27A, HS-5, and Hs343T were cultured in Dulbecco’s modified

Eagle’s medium (DMEM). Hs578T was further supplemented with

10 lg/ml insulin. Hs578BST was supplemented with 30 ng/ml

EGF. Primary fibroblasts, H-6231, H-6201, H-6076, H-6019, and H-

6013, were purchased from Cell Biologics (Chicago, IL); HCPF,

HPF-a, HHSteC, HMF, HAdF, HUF, and HCF-a were purchased

from ScienCell (Carlsbad, CA); and C-12385 was purchased from

Promocell (Heidelberg, Germany). Primary fibroblast cells

purchased from Cell Biologics, ScienCell, and Promocell were

cultured in the media (ScienCell—Fibroblast Medium cat# 2301;

Cell Biologics—Complete Fibroblast Medium/w Kit cat# M2267;

Promocell—Fibroblast Growth Medium 2 cat# C-23020) for four

doublings before being transitioned to DMEM. All cells were

cultured at 37°C in a humidified incubator supplied with 5% CO2

and maintained at a low passage number (< 20 passages for

cancer). Prior to expansion and freezing, a small sample of each

primary fibroblast was expanded to determine each cell’s Hayflick

limit to ensure that experiments could be performed prior to the

onset of replicative senescence. A complete list of drugs used in

this study is included in Table EV2.

Coculture screen using JC1 dye

Fibroblast cell lines were grown to 80% confluence before being

trypsinized and stained with 5 lM CellTrace Violet Proliferation dye

(Thermofisher #C34557) in PBS at a concentration of 1 × 106 cell/

ml for 15 min at 37°C. 1,500 stained cells were plated in 40 ll Fluor-
oBrite media (Thermofisher # A1896701), supplemented with 10%

FBS, 2 mM glutamine, and penicillin/streptomycin, in a Greiner

clear 384-well plate (#781986) and allowed to adhere for 3 h.

Cancer cell lines were then trypsinized and stained with 1.5 lg/ml
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(final concentration) JC-1 (Thermofisher # T3168) in FluoroBrite at

a concentration of 1 × 106 cell/ml for 20 min at 37°C. Cancer cells

were then plated at 1,500 cells in 40 ll FluoroBrite per well in the

384-well plate. For monoculture conditions, unlabeled cancer cells

were added to each well, in order to keep the cell density consistent

with coculture conditions. Cells were allowed to adhere overnight.

The following morning, 8 ll of a 10× drug stock was added to the

wells using a VIAFLO 96 Electronic 96-channel pipetting robot. JC-1

fluorescence was then read at five spots across each well using a

Tecan M1000 Pro Plate Reader at the excitation wavelength of

535 nM � 17 nM and an emission wavelength of 590 nM � 17 nM

every 8 h for 72 h. Background fluorescence was determined by

treating labeled cells with alamethicin, a membrane permeabilizing

agent that punctures plasma membrane and mitochondrial

membranes. Fluorescence measurements were normalized relative

to pre-drug treatment values for each well.

Cell viability and cell death assays

Cell viability assays were performed either using CellTiter-Glo (cat#

G7570), for cells grown in monoculture, or flow cytometry, for

coculture assays (other than the coculture screen, described above).

For CellTiter-Glo, which measures viability as a function of ATP

concentration, cells were plated in Greiner 96-well plates (cat# 655

090) at 5,000 cells per well in 100 ll of their respective growth

media and allowed to adhere overnight. 10 ll of a 10× drug stock,

diluted in PBS, was added to each well. Cells were subsequently

allowed to grow at 37°C for 72 h. At 72 h post-drug addition, 33 ll
of CellTiter-Glo reagent was added to each well. The CellTiter-Glo

assay was performed according to manufacturer’s directions, with

the reagent diluted 1:3 (relative to media volume). Luminescence

was read using a Tecan M1000 Pro Plate Reader. Cell death

measurements to validate the JC-1 screen data were collected using

the Live/Dead Violet reagent (Thermofisher cat# L34963) and

analyzed by flow cytometry. Cancer cells and fibroblast cells were

plated at a 1:1 ratio in DMEM and allowed to adhere overnight.

Drugs were added from a 1,000× stock, and cells were exposed for

the specified times. Cells were trypsinized at the specified times,

suspended in PBS at a concentration of 1 × 106 cells/ml and stained

with a 1:1,000 dilution of the Live/Dead Violet reagent for 30 min

on ice. Cells were then fixed with 4% formaldehyde for 10 min at

room temperature and run on an LSR II FACS machine with a laser

excitation of 405 nm and emission of 450 nm.

Drug sensitivity of cells grown in 3D culture conditions

Culturing of TNBC cells in 3D colonies was performed using the “3D

on top” method developed by Bissell and colleagues (Lee et al,

2007). Briefly, a thick layer of cold Matrigel (corning cat#356235)

was applied to the bottom of 96 well plates, which were subse-

quently heated to 37°C for 30 min to promote solidification. Cancer

cells were plated at a concentration of 10,000 cells in 100 ll
complete media + 2% Matrigel and were grown for 72 h to induce

3D colony formation. After 72 h of growth, the media were aspi-

rated and media containing drug + 2% Matrigel were added to each

well. At 72 h post-drug addition, cell viability was measured by

adding 100 ll of CellTiter-Glo reagent to each well. The CellTiter-

Glo assay was performed according to the manufacturer’s

directions, and luminescence was read using a Tecan M1000 Pro

Plate Reader.

Growth rate measurements using GFP-labeled cells

To determine cell proliferation rate using a fluorescence plate

reader, TNBC cells were stably transfected with GFP (pRetroQ-

AcGFP1-N1). Transfected cells were selected with puromycin (BT-

20 at 1.5 lg/ml, 468 at 0.5 lg/ml, and 231 at 2 lg/ml). Cells were

selected until a parallel non-transformed plate exposed to puro-

mycin was completely dead. The selected population was subse-

quently sorted by FACS to collect cells with similar levels of GFP

fluorescence. For coculture experiments, fibroblast cell lines were

plated at an 8:1, 4:1, 2:1, 1:1, and 1:2 ratio to cancer cells in a

Greiner 96-well plate in 100 ll of FluoroBrite media and allowed to

adhere for 3 h. Following adherence of fibroblast cells, TNBC cells

constitutively expressing GFP were plated at a concentration of

10,000 cells per 100 ll of FluoroBrite media and allowed to adhere

overnight. Cell measurements were measured every 24 h for 96 h

using a Tecan M1000 Pro Plate reader.

Fluorescence and immunofluorescence microscopy

For quantitative analysis of p-H2AX nuclear intensity, fibroblast

cells were plated at a density of 1,500 cells per 25 ll in DMEM in a

384-well plate and allowed to adhere for 3 h. Cancer cells were

stained with 5 lM CellTrace CFSE dye (Thermofisher cat# C34554)

at a concentration of 1 × 106 cells/ml in PBS for 15 min at 37°C.

Labeled cells were plated at 1,500 cells per 25 ll DMEM and

allowed to adhere overnight. Drugs were added from a 10× stock

solution in PBS, and cells were exposed for 1, 6, and 18 h before

being fixed with 4% formaldehyde for 10 min at room temperature.

Cells were washed twice in PBS, then permeabilized with 0.5%

Triton X-100 for 10 min at room temperature. Cells were washed

twice with PBS; blocked in 10% goat serum (Thermofisher cat#

16210064) for one hour; stained with the p-Histone H2A.X (Ser139)

antibody (Cell Signaling Technologies #9718S) in 1% goat serum in

PBS overnight at 4C; stained with Alexa-647 antibody (1:250 dilu-

tion, Thermofisher A21244) in 1% goat serum in PBS for 2 h at

room temperature. Imaging was performed using an IXM-XL high-

throughput automated microscope. Analysis was performed using a

custom CellProfiler pipeline (available upon request). For imaging

of GFP-labeled cells, cells were plated in 96-well plates at a density

of 5,000 cells per well and allowed to adhere overnight. Following

drug exposure (various times as indicated in figures), images were

collected using an EVOS FL-AUTO automated fluorescence micro-

scope. Analysis was performed using a custom CellProfiler pipeline

(available upon request).

SMA analysis by microscopy and FACS

Fibroblast cells were stained with 1uM CellTracker Deep Red Dye

(Thermofisher cat#C34565) at a concentration of 1 × 106 cells/ml

for 15 min at 37°C and subsequently plated in 96-well plates at a

concentration of 10,000 cells per well and allowed to adhere for 3 h.

Cancer cells were then stained with 5 lM CellTrace Violet Prolifera-

tion Dye at a concentration of 1 × 106 cells/ml for 15 min at 37°C

and plated at a concentration of 10,000 cells per well and allowed to
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adhere for 24 h. After 24 h, cells were fixed with 4% formaldehyde

for 10 min at room temperature and washed twice with PBS. Cells

were then permeabilized with 0.5% Triton X for 10 min at room

temperature, washed twice with PBS, and then blocked in 10% goat

serum for one hour. Cells were stained with the aSMA antibody

(1:75 dilution, Cell Signaling Technology cat#19245S) in 1% goat

serum for 8 hours at room temperature and then stained with the

Alexa-488 antibody (1:100 dilution Thermofisher cat#A11008) in

1% goat serum for 1 h at room temperature. Imaging was

performed using an EVOS FL-AUTO automated fluorescence micro-

scope. A similar process was used for analysis of SMA expression

by FACS, except following formaldehyde fixation, and cells were

exposed to 100% methanol for 2 h at �20°C and washed twice with

PBS. Cells were stained with the aSMA antibody (1:75 dilution, Cell

Signaling Technology cat#19245S) in 50% Odyssey Blocking Buffer

(LI-COR cat# 927-40000) 50% PBS-T for 8 hours at room tempera-

ture and then stained with the Alexa-488 antibody (1:100 dilution

Thermofisher cat#A11008) for 1 h at room temperature in 50%

Odyssey Blocking Buffer 50% PBS-T. FACS was run on an LSR II

machine with a laser excitation of 488nm and emission of 530 nm.

Mitochondrial priming assay

Mitochondrial priming assays were performed according to the iBH3

protocol from Ryan et al (2016). For monoculture conditions,

1 × 106 cancer cells were plated in a 10-cm dish and allowed to

adhere overnight. For coculture conditions, fibroblasts were stained

with Cell Trace Violet plated at a 1:1 ratio with cancer cells.

Twenty-four hours post-plating cells were trypsinized and arrayed

in a 384-well plate. A dose series of BIM peptide (GenScript) was

added (100, 33, 10, 3.3, 1, 0.33 lM) along with either DMSO (vehi-

cle control) or alamethicin (Enzo, BML-A150-0005), a mitochondrial

depolarizing agent, which was used at a final concentration of

25 lM as a positive control. Plasma membrane permeabilization

was achieved by the addition of digitonin at a final concentration of

20 lg/ml. Cells were incubated with BIM peptide at room tempera-

ture for 1 hour before being fixed and stained for cytochrome c

retention (Fisher cat# BDB560263). Samples were analyzed on an

LSRII flow cytometer.

Data analysis and statistics

All statistical analyses were performed using GraphPad Prism and/or

MATLAB, generally using pre-built functions (Fisher’s exact test, t-

test, etc.). PCA was performed using SIMCA, and data were z-scored

(mean centered and unit variance scaled). Hierarchical clustering

was performed using Spotfire using the default settings (UPGMA

clustering method; Euclidean distance measure; average value order-

ing weight; z-score calculation normalization method; empty value

replacement: NA). Analysis of flow cytometry data was performed

using FlowJo. Combination Index (CI) was calculated by dividing

observed drug sensitivity by the expected drug response given Bliss

Independence (for two drugs, A and B, expected = A + B � [A*B]).

Data availability

Coculture screening data are provided in Table EV3. The

CellProfiler scripts used for the analyses shown in Appendix Fig S2,

Figs 5, and 6 are provided as Code EV1, Code EV2, and Code EV3,

respectively.

Expanded View for this article is available online.
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