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Abstract.	 [Purpose] The intensity of therapeutic physical exercise is complex and sometimes controversial in 
patients with neural injuries. This review assessed whether therapeutic physical exercise is beneficial according to 
the intensity of the physical exercise. [Methods] The authors identified clinically or scientifically relevant articles 
from PubMed that met the inclusion criteria. [Results] Exercise training can improve body strength and lead to the 
physiological adaptation of skeletal muscles and the nervous system after neural injuries. Furthermore, neurophysi-
ological and neuropathological studies show differences in the beneficial effects of forced therapeutic exercise in 
patients with severe or mild neural injuries. Forced exercise alters the distribution of muscle fiber types in patients 
with neural injuries. Based on several animal studies, forced exercise may promote functional recovery following 
cerebral ischemia via signaling molecules in ischemic brain regions. [Conclusions] This review describes several 
types of therapeutic forced exercise and the controversy regarding the therapeutic effects in experimental animals 
versus humans with neural injuries. This review also provides a therapeutic strategy for physical therapists that 
grades the intensity of forced exercise according to the level of neural injury.
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INTRODUCTION

Among the many therapeutic strategies used following 
neurological injuries, physical exercise aids in functional 
recovery by increasing resistance to nerve injury, enhanc-
ing neuron survival, stimulating neurogenesis, increasing 
learning ability, and improving recognition and memory 
function1). A dominant theory regarding the central nervous 
system (CNS) following neurological injury posited that no 
reassortment of any type occurs in neuronal populations. 

Since the 1990s, however, various studies have identified 
precursor neural stem cells (NSCs) and demonstrated that 
neurons are generated continuously within the CNS2). It is 
now widely accepted that neurogenesis in adults occurs in 
the subventricular zone of the forebrain and subgranular 
zone of the hippocampus3), particularly via the proliferation, 
differentiation, and migration of precursor NSCs. These pro-
cesses are regulated by neurotrophic factors, such as brain-
derived neurotrophic factor (BDNF), nerve growth factor 
(NGF), neurotrophin-3 (NT-3), and basic fibroblast growth 
factor (FGF-2), which are increased in the brain by physi-
cal exercise and sensory stimulation and, in turn, increase 
the number of surviving new neurons4, 5). This suggests that 
neurological disorders, such as stroke, spinal cord injury 
(SCI), and Alzheimer’s disease (AD), are treatable6–8).
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DIFFERENT EFFECTS OF MILD AND FORCED 
EXERCISE IN PHYSIOLOGICAL AND NEURAL 

THERAPY

In animal models, forced exercise, such as treadmill 
running, and voluntary exercise, like wheel running, are 
interventions that are used widely to study the effects of 
physical exercise on the recovery of physiological function 
in neurological injury9). The application of these exercises 
following neurological injury results in increased angiogen-
esis in the cerebral cortex10) and enhanced neurogenesis11) 
and positively affects neuroplasticity, recognition, and 
memory function12) via neuroprotective actions against the 
structural injury of nerve cells13) and the increased expres-
sion of neurotrophic factors14, 15). Rehabilitation therapies 
following neurological injury vary, based on the ethological 
aspects of forced and voluntary exercise, including timing, 
period, and intensity16) in terms of the recovery of nerve 
cells. The intensity of the exercise is an important factor.

Mild exercise is effective for neurological recovery12). 
Exercise intensity influences cell proliferation and neuro-
genesis in the adult dentate gyrus, and mild exercise is more 
effective for cell proliferation than high-intensity exercise17). 
Mild treadmill exercise increases cell proliferation via the 
enhancement of insulin-like growth factor (IGF)-1 and FGF-
2 levels in the brain17). Moreover, Lee et al.18) found that 
the application of mild exercise in ischemic animal models 
resulted in a lower infarct volume and greater numbers of 
astrocytes than high-intensity exercise, indicating that mild 
exercise is more effective for neurological and functional 
recovery. Astrocytes are glial cells in the brain and spinal 
cord that are more active in proximate injury regions and 
act in the repair and scarring process following neuronal 
injury19). These glial cells contribute to functional recovery 
through the activation of angiogenesis, neurogenesis, and 
the secretion of neurotrophic factors20). Accordingly, mild 
exercise is effective for neurological recovery via the induc-
tion of astrocyte proliferation. By contrast, forced exercise 
inhibits the degree of cell proliferation in the adult dentate 
gyrus, and it also reduces cell proliferation by decreasing 
the amount of BDNF in the dentate gyrus21). Additionally, 
forced exercise induces stress, which enhances the secretion 
of glucocorticoids and may initiate increased corticosterone 
synthesis21). Otherwise, long-term voluntary exercise has 
a considerable impact on hypothalamic-pituitary-adrenal 
(HPA) axis regulation22); thus, clarification of the associa-
tion between exercise intensity and the HPA axis is needed.

However, some studies have found that high-intensity 
exercise has more positive effects on neurological recovery 
and neuroprotection. Hayes et al.13) reported that forced ex-
ercise, with a stressful component, was neuroprotective after 
nerve injury via upregulation of the expression of the stress-
induced heat shock protein (Hsp)27 and Hsp70 genes. Hsp27 
and Hsp70 have been identified in many areas of the brain13), 
cartilage23), and skeletal muscle24). In addition, these genes 
exhibit altered expression following exposure to different 
environmental stresses, such as heat, exercise, infection, 
inflammation, ischemia, and oxidative stress23–25). Hsp27 
and Hsp70 act as intracellular chaperones for other proteins 
with physiologically neuroprotective activities25, 26). In par-

ticular, Hsp70 regulates apoptotic cell death by interfering 
with apoptosis-inducing factors and increasing the expres-
sion of anti-apoptotic proteins via the inhibition of caspase 
and cytochrome c (Cyt c) release27, 28). The expression of 
the Hsp27 and Hsp70 genes increased significantly follow-
ing forced exercise, compared with voluntary exercise, and 
their expression could play an important role in neuropro-
tection13). Kinni et al.29) investigated cerebral metabolism 
using the expression of glucose transporter (GLUT)-1 and 
GLUT-3, phosphofructokinase (PFK), lactate dehydroge-
nase (LDH), and adenosine monophosphate kinase (AMPK) 
mRNA and protein and found significantly greater increases 
following forced exercise versus mild exercise. These au-
thors suggested that forced exercise was more effective for 
neuroprotection.

Physical exercise facilitates functional recognition and 
memory recovery after nerve injury and improves short-
term and spatial memory by repressing apoptotic neuronal 
cell death and enhancing newborn cell survival in the hip-
pocampal dentate gyrus30, 31). Shimada et al.12) investigated 
the recovery of memory function following different levels 
of exercise intensity and found that mild exercise resulted 
in greater improvements in memory function than high-
intensity exercise by increasing the number of neurons in 
the hippocampal dentate gyrus and enhancing microtubule-
associated protein (MAP) expression. Similarly, low-
intensity exercise enhanced neurogenesis and significantly 
increased the expression of neurotrophic factors, such as 
BDNF, N-methyl-d-aspartate receptor type 1 (NMDAR1), 
and vascular endothelial growth factor (VEGF), in the den-
tate gyrus of the hippocampus, compared with high-intensity 
exercise32). Increased BDNF gene expression effectively 
increases neurogenesis and neuroplasticity, which may have 
a positive effect on the structural and functional recovery 
of neurons. By contrast, although the method of exercise 
was different, Ogonovszky et al.33) found that overtraining 
of swimming exercise in rat with neurological disturbance 
improved memory and increased BDNF expression.

Although these studies showed some discrepancies 
regarding the physiological and ethological effects of vol-
untary versus forced exercise during neurological treatment, 
exercise intensities should be compared very carefully. They 
are similar, have been applied in a variety of ways by differ-
ent studies, and are associated with many other factors that 
are not yet understood. Determining an appropriate exercise 
strategy to aid recovery following neurological injury also 
depends not only on the exercise intensity but also on the 
timing and period.
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