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Abstract
Despite recent advances in imaging for myocardial deformation, left ventricular ejection fraction (LVEF) is still the most 
important index for systolic function in daily practice. Its role in multiple fields (e.g., valvular heart disease, myocardial 
infarction, cancer therapy-related cardiac dysfunction) has been a mainstay in guidelines. In addition, assessment of LVEF 
is vital to clinical decision-making in patients with heart failure. However, notable limitations to LVEF include poor inter-
observer reproducibility dependent on observer skill, poor acoustic windows, and variations in measurement techniques. 
To solve these problems, methods for standardization of LVEF by sharing reference images among observers and artificial 
intelligence for accurate measurements have been developed. In this review, we focus on the standardization of LVEF using 
reference images and automated LVEF using artificial intelligence.

Keywords Ejection fraction · Artificial intelligence · Echocardiography · Machine learning

Introduction

Despite recent advances in imaging for myocardial deforma-
tion, left ventricular ejection fraction (LVEF) is still the most 
important index for systolic function in daily practice. Its 
role in multiple fields (e.g., valvular heart disease, myocar-
dial infarction, cancer therapy-related cardiac dysfunction) 
has been a mainstay in guidelines [1–3]. For example, in the 
case of heart failure with reduced ejection fraction, renin-
angiotensin system (RAS) inhibitors or beta-blockers have 
been shown to improve the prognosis. On the other hand, 
routine administration of RAS inhibitors or beta-blockers is 
not recommended for heart failure with preserved ejection 
fraction [4]. This is a typical example in which LVEF is an 
important index in cardiovascular clinical practice. However, 
notable limitations to LVEF include poor inter-observer 

reproducibility dependent on observer skill, poor acoustic 
windows, and variations in measurement techniques [5]. To 
solve these problems, methods for standardization of LVEF 
by sharing reference images among observers and artificial 
intelligence for accurate measurements have been developed.

In addition, due to an aging population and the preva-
lence of lifestyle-related diseases, the number of patients 
who visit hospitals for cardiovascular diseases is very high. 
In the intensive care unit, there are cases in which it is neces-
sary to make a visual judgment of function using echocar-
diographic images due to time constraints. Recently, in an 
environment with a rapidly increasing number of confirmed/
suspected COVID-19 patients, non-specialists, such as emer-
gency physicians, are more likely required to perform this 
examination in the infection control room [6]. Development 
of an automatic analysis tool for echocardiographic images 
is desired as a decision support system.

In this review, we focus on the standardization of LVEF 
using reference images and automated LVEF using artificial 
intelligence (AI).
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Measurement of LVEF

LVEF is an index of LV contractility that indicates the 
degree of change in LV volume from diastole to systole. 
It is calculated by subtracting the end-systolic LV volume 
from the end-diastolic LV volume and dividing it by the 
end-diastolic LV volume. There is no definitive consensus 
on the normal value, as it is affected by age, gender, race, 
measurement method, and so forth. Based on the guidelines 
of the American Society of Echocardiography and reports 
from Japan, the lower limit of normal for LVEF is set at 
around 50% in many institutions [7–9]. Several methods 
have been proposed to measure LVEF with echocardiog-
raphy (Fig. 1). A comparison of the advantages between 
different techniques for the measurement of LVEF is shown 
in Table 1. The most common quantitative method is the 
biplane disk-summation method. In this method, the LV is 
divided into 20 disks along the long axis. The volume is 
calculated from the sum of the cross-sectional areas of the 
disks using the long axis and the short axis of each disk. In 
clinical practice, the LV volume is calculated by tracing the 

LV endocardium in 4-chamber and 2-chamber views at the 
end-systolic and end-diastolic phases.

Reproducibility of LVEF

Cardiac magnetic resonance (CMR) imaging represents the 
gold standard in the quantification of LVEF. The reproduc-
ibility of CMR measurements is superior to echocardiogra-
phy in most studies [10–12] The biplane disk-summation 
method using echocardiography has a measurement error 
of approximately 10% for LVEF [13]. In the field of cancer 
therapy-related cardiac dysfunction, this value is equal to 
a diagnostic criterion (10% decrease from baseline). Small 
changes in LVEF may not necessarily represent true changes 
due to reproducibility issues [14]. In addition, a large varia-
bility in LVEF measurements may occur at different centers, 
and therapies may be confounded when decisions are made 
based solely on LVEF. Against this backdrop, a reproducible 
method is necessary for the measurement of LVEF.

4 chamber

3-dimentional echocardiography

2 chamber

LV end-diastolic LV end-systolic

4 chamber
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Fig. 1  Calculation of left ventricular ejection fraction using M-mode, B-mode, and 3-dimensional echocardiography. In the guidelines, if appli-
cable, 3D echocardiography is recommended to measure left ventricular ejection fraction. LV left ventricle, LA left atrium

Table 1  Comparison of advantages and disadvantages between different techniques for measurement of ejection fraction

3D 3-dimensional, AI artificial intelligence

Methods Availability Assumptions Reproducibility Speed

Eyeball Always Dependent on observer skill Low Instant
M-mode Widely used Dependent on geometric assumptions Low/modest Quick
B-mode Generally used Minimizes mathematic assumptions Low/modest Needs tracing
3D Readily available Independent of geometric assumptions High Dependent on machine
AI Not yet Black box High Dependent on machine
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Eyeball LVEF

Eyeball EF is the “appearance EF”, which is the LVEF 
estimated by experience based on the appearance (size and 
movement) of the LV. The guideline of the American Soci-
ety of Echocardiography clearly states that the biplane-disk 
method should be used to evaluate LVEF [9]. On the other 
hand, the guideline of the American Society of Intensive 
Care Medicine states that LV function should be qualita-
tively evaluated in intensive care settings [15]. The limita-
tions of eyeball EF are that it is dependent on the experience 
of the examiner and it has relatively poor reproducibility. 
The results of our previous multicenter study involving 13 
centers showed that eyeball EF varied from center to center, 
with five of the 13 centers differing by more than 3% in the 
absolute value of LVEF (Fig. 2) [16].

Several papers have reported a quality assessment pro-
gram in a clinical setting [17, 18]. The investigators used 
reference cases as a standard to reduce inter-observer 
variability. Reference LVEFs were provided by echocar-
diographic expert reviews. In these studies, intervention 
with reference images could improve the reproducibility of 
visually estimated LVEF [17, 19, 20]. In our previous mul-
ticenter study, we prepared reference images of three apex 

cross-sectional images from 20 to 70% EF and showed 
that the inter-institutional variability could be reduced to 
less than 3% by using the reference images. In addition, 
a learning session using reference images also resulted 
in less misclassifications of LVEF, especially in mild to 
moderately impaired LVEF, regardless of observers’ expe-
rience [16]. These results suggest that a simple learning 
session with reference images can minimize inter-observer 
variability and misclassification in practitioners with var-
ied experience.

Reliability and accuracy are separate aspects of echo-
cardiographic measurements. When you get the same 
incorrect answer all the time, a result can be reliable and 
inaccurate. We can use shooting at a target as an example 
to clarify the definitions of reliability and accuracy. Fig-
ure 3 shows all combinations of reliability and accuracy. 
Some ideas can be implemented to improve accuracy and 
reliability. If we can get a stable trace line of LV with 
practice, the reliability will improve. Furthermore, a learn-
ing system for accurate EF using reference images will 
increase accuracy. Based on this theory, we believe that 
learning with reference images can help to increase accu-
racy in measurements of LVEF.

Fig. 2  Overestimation and underestimation of visual LVEF between 
laboratories in Japan. Six laboratories overestimated visual EF, and 
seven laboratories underestimated visual EF compared with reference 

values. Two laboratories modestly overestimated and three laborato-
ries modestly underestimated (bold)
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Automated LVEF

Automated LVEF is key to improving reproducibility. There 
are various steps required to measure LVEF automatically 
(Fig. 4).

1. Identification of the end-diastolic and end-systolic 
phases from the ECG.

2. Detection of the boundary between the cardiac cavity 
and the myocardium.

3. Tracking the endocardial boundary.
4. Calculation of LV volumes at end-diastole and end-

systole.

Trials have been conducted to automatically measure 
LVEF using combinations of these steps. However, because 
of the variation in position and size of the heart, the tech-
nology for automatic LV tracing using the pattern match-
ing method has limitations in tracking. In addition, it is not 
always possible to obtain a clear image of the cardiac cavity 
boundary in all patients. To overcome this issue, a tracing 
method called "knowledge-based systems" has been devel-
oped, which calculates the most appropriate tracing line by 
installing a database of multiple cases and tracing examples. 

This has made it possible to draw the optimal trace line with 
high accuracy. In a global multicenter study of fully auto-
mated software for calculating LVEF, a relatively high corre-
lation coefficient of about 0.7–0.8 was obtained [21, 22]. On 
the other hand, one of the limitations of knowledge-based 
algorithms is that even in cases with good image quality, the 
similarity of data may result in incorrect tracing. For exam-
ple, Fig. 5 shows a case of fully automated tracing of the LV 
using Auto EF, but a large tracing line was drawn from the 
left to the right ventricle because the ventricle was not iden-
tified properly by the algorithm. This is a field where further 
improvement in accuracy is expected with AI algorithms.

AI for LVEF

In recent years, with the development of computer technol-
ogy, the accuracy of automated diagnosis of medical images 
by machine learning has been improved. In 2012, deep learn-
ing was shown to have high accuracy in image classifica-
tion, where the computer learns the features extracted by 
repeated trials. Deep learning can be regarded as a type of 
machine learning, but its potential as a self-encoding and 
universal approximator has led to more accurate results than 

Fig. 3  Reliability vs accuracy. Novice observers often had inaccurate and low precision of measurements. Expert observers sometimes had high 
precision and inaccurate measurements
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conventional machine learning [23, 24]. This algorithm was 
combined with the development of highly sophisticated 
techniques for the prevention of overlearning and gradient 
vanishing. It is now possible to obtain more accurate results 
than traditional machine learning [25–30]. Deep learning 
does not require the setting of feature values by humans, and 
by learning many supervised data, it is becoming possible 
for “computer eyes to judge medical images” (Fig. 6). This 
process seems to be the learning process of “human eyes to 
judge medical images” and may be particularly useful in the 
field of diagnosis by visual appearance (e.g., eyeball LVEF).

When we apply the deep learning algorithm to 
estimate LVEF, there are many problems in the 
echocardiographic data. For examples, there are differences 
in echocardiographic images between different venders, 
making it necessary to output the common image parts 
from DICOM data. We should consider which parts of the 

image should be analyzed as input data. After obtaining 
the image location, image size, number of images, frame 
rate, and heart rate from the DICOM tag information, 
the image is extracted based on the location information. 
Unnecessary information (such as the name of the hospital 
and date and time) included outside the echocardiographic 
image should be removed. The image size is standardized 
and reduced by rescaling and resampling pixels. For image 
standardization, there are many issues to be considered, 
such as which portions should be cropped, whether it is 
necessary to adjust the scale, and what size is appropriate 
[31].

Since LVEF is measured by left ventricular volume 
in end-diastole and end-systole, it may be possible to 
predict LVEF by the two time periods. However, there 
is a possibility of improving the accuracy by using more 
images for training, and it is necessary to try a method that 

Fig. 4  Steps of LVEF measurement. The process of LVEF measurement involves four steps
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incorporates time series data. We created a three-dimen-
sional CNN (3DCNN) model using 340 echocardiographic 
videos labeled with the LVEF calculated by experts. This 
3DCNN model consists of convolutional and pooling 

layers with an input of 10 echocardiographic images per 
heartbeat, and finally outputs a continuous value from 0 to 
1 by a sigmoid function through all coupling layers. The 
model was validated in a cohort independent from the one 
used for training, and the correlation coefficient was 0.92 
(p < 0.001), indicating that the model was able to predict 
LVEF with high accuracy by using echocardiographic 
images (Fig. 7) [32].

In principle, it is possible to calculate LVEF using only 
2-chamber and 4-chamber views, but in daily practice, the 
practitioner must also refer to other echocardiographic 
views. Therefore, it is expected that the accuracy of 
LVEF can be improved by adding 3ch, short, and long-
axis images. The 95% prediction error calculated from the 
5-section average root-mean-square-error by the 3DCNN 
model is about 14%, while the prediction accuracy of 
LVEF via segmentation using U-net is about 20% [33, 34]. 
Direct estimation of LVEF by 3DCNN seemed to be better. 
The accuracy of the 3DCNN model was AUC > 0.99 when 
the LVEF was divided into LVEF > 50% and LVEF < 50% 
[32]. Since LVEF is an important index for deciding the 
course of treatment in emergency heart failure, the model 
may be useful in clinical practice when making rapid 
treatment decisions.

Further refinement of the method is expected by increas-
ing the number of echocardiographic images. In response 
to these preliminary results, the Japan Society of Ultrason-
ics in Medicine and the Society of Echocardiography, with 

Fig. 5  A case of fully automated tracing of the left ventricular cavity 
using auto EF algorithm. A large tracing line was drawn from the left 
to the right ventricle because the ventricle was not identified properly. 
RV right ventricle, LV left ventricle

Fig. 6  Conventional artificial 
intelligence (AI) and new AI. In 
conventional artificial intel-
ligence (AI), left ventricular 
volumes should be calculated 
to measure the left ventricular 
ejection fraction (LVEF). In 
deep learning, left ventricular 
volumes can be directly esti-
mated without tracking the 
endocardial borders
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support from the Japan Agency for Medical Research and 
Development (AMED) (Fig. 8), have jointly started to create 
a database in which videos of 2- and 4-chamber images and 

their associated LVEF values are recorded. Using this large 
amount of data, it is thought that it is possible to create a 
highly accurate LVEF prediction model.

Conclusions

LVEF is an important index for visual evaluation. 
However, there are some limitations when measuring 
LVEF due to poor inter-observer reproducibility, limited 
acoustic windows, and variations in measurement 
techniques. It is likely to be a good match for deep 
learning that captures the characteristics of images. 
Recently, several studies have demonstrated automated 
quantification of ejection fraction from echocardiographic 
acquisitions [32–34]. We hope that the AI technology will 
transfer to the clinical setting [35].
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Fig. 7  Correlation between ejection fraction (EF) by deep learning 
(DL) and by expert observers. The correlation is excellent in the inde-
pendent cohort

Fig. 8  Japan Agency for Medi-
cal Research and Development 
(AMED)-supported projects. 
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ics in Medicine (JSUM) and the 
Japanese Society of Echocar-
diography started to gather 
images from multiple centers. 
NCVC National Cerebral and 
Cardiovascular Center
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