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Abstract
The study aim was to compare the predictive validity of the often referenced tradi-
tional model of human endurance performance (i.e. oxygen consumption, VO2, or 
power at maximal effort, fatigue threshold values, and indices of exercise efficiency) 
versus measures of skeletal muscle oxidative potential in relation to endurance cy-
cling performance. We hypothesized that skeletal muscle oxidative potential would 
more completely explain endurance performance than the traditional model, which 
has never been collectively verified with cycling. Accordingly, we obtained nine 
measures of VO2 or power at maximal efforts, 20 measures reflective of various 
fatigue threshold values, 14 indices of cycling efficiency, and near-infrared spec-
troscopy-derived measures reflecting in vivo skeletal muscle oxidative potential. 
Forward regression modeling identified variable combinations that best explained 
25-km time trial time-to-completion (TTC) across a group of trained male partici-
pants (n = 24). The time constant for skeletal muscle oxygen consumption recovery, 
a validated measure of maximal skeletal muscle respiration, explained 92.7% of TTC 
variance by itself (Adj R2 = .927, F = 294.2, SEE = 71.2, p < .001). Alternatively, 
the best complete traditional model of performance, including VO2max (L·min−1), 
%VO2max determined by the ventilatory equivalents method, and cycling economy at 
50 W, only explained 76.2% of TTC variance (Adj R2 = .762, F = 25.6, SEE = 128.7, 
p < .001). These results confirm our hypothesis by demonstrating that maximal rates 
of skeletal muscle respiration more completely explain cycling endurance perfor-
mance than even the best combination of traditional variables long postulated to 
predict human endurance performance.
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1  |   INTRODUCTION

Traditional exercise physiology dogma presents endurance 
performance aptitude as a biological formulate determined 
primarily through a combination of: (a) Measures reflect-
ing one's maximal rate of whole-body oxygen (O2) con-
sumption (VO2max); (b) A valid fatigue threshold; and (c) 
An index of bioenergetic efficiency during exercise (Coyle, 
1995; Gabriel & Zierath, 2017; Joyner & Coyle, 2008). 
More specifically, this established and accepted postulate 
suggests that one must maintain an external workload at a 
high percentage of their aerobic power (a product of VO2max 
and fatigue threshold; “performance VO2”) that benefits 
from comparably higher metabolic (phosphorylative-cou-
pling) and mechanical (contraction coupling) efficiencies 
(Whipp & Wasserman, 1969) to maximize endurance per-
formance. This premise has never been empirically verified 
collectively, to the best of our knowledge, and instead relies 
on implicit assumptions from the aggregation of literature 
examining human integrative physiology in relation to cy-
cling endurance performance.

The physiologic mechanisms underlying aerobic power, 
fatigue thresholds, and exercise efficiency are not entirely 
independent from one another. The common biology shared 
across these variables relate to bioenergetic properties of skel-
etal muscle with emphasis on skeletal muscle mitochondria, 
as have been previously discussed (Gabriel & Zierath, 2017; 
Jacobs et al., 2011). Thus, a novel and more concise postulate 
advocates that skeletal muscle respiratory potential directs bi-
ological control of endurance performance potential. There is 
preliminary evidence in support of this theory (Jacobs et al., 
2013, 2011). Accordingly, the intent of this study is to empir-
ically scrutinize both postulates regarding the predictive phys-
iology of endurance cycling performance in trained human 
participants.

The aims of the present study are to: (a) Verify that tra-
ditional variables commonly used to represent the capacity 
for exercise at maximal effort, a valid fatigue threshold, and 
an index of exercise efficiency, as is often discussed across 
the literature, do collectively account for a high percent-
age of cycling endurance performance (i.e. >75%); and (b) 
Demonstrate the close relationship between endurance per-
formance and in vivo measures reflecting maximal skeletal 
muscle respiratory rates assessed with near-infrared spectros-
copy (NIRS), thereby expanding upon the traditional exer-
cise physiology dogma of the physiologic limits of human 
performance. We hypothesize that the traditionally held 
formula used to describe endurance performance potential 
will aptly predict a high percent of endurance performance. 
However, we anticipate that measures indicative of maximal 
rates of skeletal muscle respiration will improve the phys-
iological model explaining the potential of human endur-
ance performance when cycling given the biologically based 

overlap of traditional variables and skeletal muscle respira-
tory capabilities.

2  |   MATERIALS AND METHODS

2.1  |  General experimental design

2.1.1  |  Participants

Study protocol and consent were approved by the 
Institutional Review Board at the University of Colorado 
Colorado Springs (UCCS; IRB 18-122), and all experi-
mental procedures conformed to the standards set by the 
latest revision of the Declaration of Helsinki. Study par-
ticipants (male; n = 24) were informed of the experimental 
purpose, procedures, and risks before providing informed 
written consent to volunteer in the study. Participants were 
only considered eligible if they had regularly engaged in at 
least 3 days of endurance training per week for a minimum 
of 6 months prior to data collection. All participants were 
nonsmokers, determined capable of performing maximal 
exercise as per the recommendations of the American 
College of Sports Medicine (Riebe et al., 2015), free of 
any known cardiovascular, metabolic, and neurologi-
cal diseases, and abstained from alcohol (24 hr), caffeine 
(12 hr), and exercise (48 hr) prior to data collection. Study 
participant characteristics are shown in Table 1.

T A B L E  1   Participant characteristics and indices of cycling 
endurance performance. BMI, body mass index; TT25, 25-km time 
trial; and TTC, time-to-completion

Variable Mean ± SD Relation to TTC

Sample size N = 24
(F-statistic; 
p-value)

Time of day (hh:mm:ss) 13:20:03 ± 02:30:48 3.66; .0687

Temperature (°C) 21.7 ± 0.4 .01; .9163

Humidity (%) 21.9 ± 11.0 1.64; .2139

Age (years) 36.8 ± 11.6 .26; .6157

Height (cm) 180.4 ± 5.4 .19; .6695

Body mass (kg) 76.6 ± 9.8 .00; .9492

BMI 23.5 ± 2.6 .07; .7982

Time trial length (km) 25  

TTC (s) 2,680.9 ± 263.9  

Time per km (km·hr−1) 33.9 ± 3.3  

Average TT25 power (W) 214.2 ± 51.8 673.0; <.0001

Power-to-Weight ratio 
(W·kg−1)

2.84 ± 0.76 80.8; <.0001

Power-to-Weight ratio 
(W·kg−0.32)

53.6 ± 13.2 350.2; <.0001
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2.1.2  |  Study design

All experimental procedures were completed in the Human 
Performance & Bioenergetics Research Laboratory on the 
same day over ~4 hr at the Osborne Center for Science and 
Engineering, UCCS (~1,950 m elevation). All participants 
had ad libitum access to water throughout the study. The 
general study design, illustrated in Table 2, included an in-
cremental ramp test to volitional fatigue (exercise test 1), a 
verification max test 10 min following the end of the initial 
incremental ramp test (exercise test 2), and then a 25-km 
time trial (TT25), which commenced 60 min following the 
verification max test. Measures of power along with abso-
lute (abs; l·min−1) and relative (rel; ml·kg−1·min−1) rates of 
whole-body VO2 collected at maximal efforts from exer-
cise tests 1 and 2 are represented by a superscripted number 
referencing the exercise test used to derive each measure. 
(1 or 2, respectively). All other variables do not include a 
superscripted number, as all other variables were derived 
from a single exercise test as explained subsequently and 
in Table 2.

2.1.3  |  Exercise tests

Three exercise tests were performed on an electrically 
braked cycle ergometer (Velotron, Racermate Inc.), which 
allowed the use of the participant's own cycling shoes, 
pedal clips, and bike seat. Participants were fitted with a 
HR monitor (Polar T31, Polar Electro Inc., Bethpage) and 
continuous-wave NIRS device (Oxymon MKIII, Artinis 

Medical Systems) for all exercise tests. Participants were 
also fitted with a head net and face mask combination 
(Hans Rudolph, Inc) with inspired and expired oxygen 
and carbon dioxide concentrations continuously measured 
and analyzed as breath-by-breath values (Ultima CPX, 
Medgraphics Diagnostics) to assess VO2 and rates of car-
bon dioxide production (VCO2) during exercise tests 1 
and 2. The gas analyzers and flowmeters were calibrated 
before each study. Participants were instructed to refrain 
from interrupted breathing while ventilatory measures 
were collected.

Exercise test 1 consisted of a pre-programmed standard-
ized warm-up and incremental ramp to volitional exhaustion 
(Velotron Coaching Software). This test was designed to: (a) 
Collect measures of exercise efficiency at the same absolute 
workloads during a standardized warm-up; (b) Determine 
various measures of fatigue threshold during an incremental 
ramp protocol; and (3) Calculate VO2max

1 with correspond-
ing averaged measures of maximal power output (Wmax

1), 
VO2peak

1 with corresponding average measures of peak power 
output (Wpeak

1), and peak power output (PPO1), which was 
the power output at the point of exhaustion (Table 2). A more 
complete description of these calculations is detailed below. 
The 15-min standardized warm-up consisted of cycling at 
two sequential 7.5 min workloads of 50-and- 100 W at a set 
cadence of 80 rpm. Immediately following the 100 W stage, 
participants were free to pedal at a self-selected cadence as 
the workload was increased by 18–26 W·min−1 (dependent 
upon age, BMI, and cycling experience) until achieving vo-
litional exhaustion, which was defined as a drop in cycling 
cadence < 55 rpm. Participants were verbally encouraged to 

T A B L E  2   The experimental sequence of study design organizes measured variables with the events/test during which they were derived (read 
right to left; up to down)

Abbreviations: abs, absolute; ATT, adipose tissue thickness; CE, cycling economy; DE, delta efficiency; EC, exercise economy; ExCO2, excess CO2 method; GE, 
gross efficiency; Isch Calib, ischemic calibration; k, rate constant for the recovering rates of muscle oxygen consumption (mVO2); PPO, the power output at the point 
of exhaustion; rel, relative; Tc, time constant for the recovery of mVO2; TT25, 25-km time trial; TTC, time-to-completion; VEQ, ventilatory equivalents method; 
VO2max, maximal rate of whole-body oxygen consumption; VO2peak, peak rate of whole-body oxygen consumption; V-Slope, modified V-Slope method; VTavg, 
averaged ventilatory threshold (VT) values, including VEQ, ExCO2, and V-Slope; W, watt; Wmax, averaged power output corresponding to VO2max; Wpeak, averaged 
power output corresponding to VO2peak.
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continue cycling to complete exhaustion once a consistent 
RER > 1.00 was identified. Following cessation of exercise 
test 1, participants rested on the cycle ergometer for 10 min 
as PPO1 was determined and subsequently used to program 
exercise test 2 (Velotron Coaching Software; RacerMate).

Exercise test 2 was designed to ensure valid measures of 
VO2max

1 were collected in exercise test 1 (Poole & Jones, 
2017) and to collect measures of exercise efficiency across 
the same relative constant workloads (Table 2). This test 
commenced after 10-min of rest and/or light active recovery, 
as participants completed two sequential 7.5 min workloads 
set to 15% and 30% PPO1, respectively, again at a set cadence 
of 80 rpm. Immediately following the 30% PPO1 stage, work-
load increased to 110% PPO1 over a 60 s interval. Thereafter, 
participants continued to pedal at a self-selected cadence at 
110% PPO1 until volitional exhaustion (cadence < 55 rpm). 
Participants were again verbally encouraged to continue cy-
cling to complete exhaustion throughout the final workload. 
Following exercise test 2, participants rested for one hour be-
fore completing a TT25.

Fifteen minutes prior to beginning the TT25, all partici-
pants were provided an isocaloric beverage with a standard 
carbohydrate load of 36  g (Gatorade, PepsiCo) that had to 
be consumed prior to beginning the time trial (n  =  24) to 
normalize participant nutrition and provide standardized ex-
ogenously available substrate for the TT25. After resting for 
one hour following completion of exercise test 2, participants 
completed an all-out TT25 (Racermate One Software, SRAM 
Inc.) to assess endurance cycling performance. They were 
instructed to complete the TT25 as quickly as possible using 
the same cycle ergometer individually fitted to each partici-
pant prior to exercise test 1, with the ability to freely adjust 
their power output, similar to shifting gears, at any given time 
throughout the entire test. Participants received restricted 
temporal feedback during the TT25, limited to verbal confir-
mation for every 5-km completed for the initial 20 km, and 
then every 1-km for the final 5 km. Our index of cycling en-
durance performance derived from this test was time-to-com-
pletion (TTC).

2.2  |  Methodology for collecting traditional 
physiologic variables relating to human 
endurance performance

2.2.1  |  Determination of VO2 and power 
output at maximal effort

VO2 and cycling power were derived at maximal efforts 
using multiple methods to account for a wide array of con-
cerns regarding measures derived at maximal exercise (Poole 
& Jones, 2017). Least squares linear regression was used to 
identify the highest but most stable (flattest slope) average 

VO2 across the greatest range of time to determine VO2max
1 

with corresponding measures of Wmax
1 derived as the av-

erage power across that same range of time. Alternatively, 
VO2peak

1 & 2 were determined as the highest 30 s average VO2 
throughout each respective exercise test with Wpeak

1 values 
reflecting average measures of power output across that same 
range of time. Given our experimental design:

As the verification test was programmed to ramp up to a 
constant power output equal to 110% of PPO1, all measures 
of power in the verification max test, exercise test 2, are in-
herently collinear with PPO1. Consequently, all measures of 
cycling power used for statistical analyses were limited to 
those derived from exercise test 1.

2.2.2  |  Determination of fatigue thresholds

Identification of fatigue thresholds using methods to de-
termine ventilatory threshold (VT) have been identified as 
superior (Amann, Subudhi, & Foster, 2006) or equivalent 
(Aunola et al., 1988; Cerezuela-Espejo, Courel-Ibáñez, 
Morán-Navarro, Martínez-Cava, & Pallarés, 2018; Pallarés 
et al., 2016) to measures and/or surrogates (Black, Durant, 
Jones, & Vanhatalo, 2014) of lactate threshold (LT). As such, 
three common methods to determine VT were evaluated, as 
previously explained (Gaskill et al., 2001). Briefly, the meth-
ods evaluated include the following:

1.	 Ventilatory equivalent method (VEQ): The intensity of 
activity that causes the first rise in the ventilatory equiv-
alent of oxygen (VE/VO2) without a concurrent rise in 
the ventilatory equivalent of carbon dioxide (VE/VCO2).

2.	 Excess carbon dioxide method (ExCO2): The intensity of 
exercise that causes an increase from steady state to an 
excess production of CO2 and is calculated as ((VCO2

2/
VO2)−VCO2).

3.	 Modified V-slope method (V-slope): The intensity of exer-
cise that, in a plot of the VCO2 over the VO2, shows an in-
crease in the slope from less than 1 to greater than 1. This 
method was modified from the original method (Beaver, 
Wasserman, & Whipp, 1986) that used breath-by-breath 
gas analysis to the use of 5-s gas collection averages.

Corresponding fatigue threshold values of absVO2, relVO2, 
%VO2max, workload (W), and %Wmax were determined using 
each method. All measures respective to each VT method 
(methods 1–3 explained above) were also averaged (VTAVG), 
because the average of these three methods is postulated to be 
more resistant to false VT determinations and better reflect 
one's VT (Gaskill et al., 2001).

1.10×PPO1 =Wmax2 =Wpeak2 =PPO2
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2.2.3  |  Determination of cycling efficiency

Four common methods to determine cycling efficiency were 
evaluated, as previously described (Lucía, Hoyos, Pérez, 
Santalla & Chicharro 2002; Moseley et al., 2004; Moseley & 
Jeukendrup, 2001). Bioenergetic efficiency of cycling was as-
sessed by determining gross efficiency (GE), exercise economy 
(EC), and cycling economy (CE) at the same absolute (50- 
and- 100 W) and relative (15% and 30% PPO1) steady-state 
workloads, as well as delta efficiency (DE) across the same 
absolute and relative steady-state workloads. Calculations of 
GE, EC, CE, and DE were derived from measures of energy 
expenditure, VO2, and work rate. Energy expended (EE) was 
calculated from the measures of VCO2 and VO2 (Ultima, 
Medgraphics Diagnostics) and analyzed using the formula:

GE was calculated as the mean of the most level portion 
over the latter portion of each steady-state workload:

EC was calculated as the power output divided by the rate 
of O2 consumption using the most level portion of the lat-
ter portion of each steady-state workload and expressed in 
kJ·L−1; CE was expressed in (W·L−1·min−1); and both abso-
lute (abs) and relative (rel) measures of DE were calculated as 
change in work performed divided by the change in energy 
expenditure (Jacobs et al., 2011).

Metabolic steady-state is achieved within 3–6 min of exer-
cise at a constant workload, especially at relatively lower sub-
maximal workloads (Gaesser & Brooks, 1975; Wasserman et 
al., 1973; Whipp & Wasserman, 1972). To ensure that steady-
state was reached during all four constant-load stages (Table 
2), each stage consisted of cadence-controlled (metronome 
set to 80  rpm) fixed-effort cycling for 7.5  min stages. To 
ensure that end-stage averaged values reflected true steady-
state conditions, least squares linear regression was used to 
identify the most level portion (flattest slope) across the end 
of each constant-load stage for exercise efficiencies derived 
during all submaximal stages of exercise tests 1 and 2.

2.3  |  Methodology for collecting maximal 
rates of skeletal muscle respiration via NIRS

2.3.1  |  Ultrasound (US)

Thigh adipose tissue thickness (ATT) was measured using 
B-mode ultrasound (VIVID e; GE HealthCare), as previ-
ously described (Müller et al., 2013). Briefly, randomized 

and counter-balanced measurements were made in a supine 
position superficial to the left or right m. vastus lateralis 
~10  cm superior to the proximal edge of the patella. The 
US probe was placed, using minimal pressure, parallel to 
the direction of the m. vastus lateralis with 3–5 mm of US 
gel (Aquasonic Clear; Parker Laboratories, Inc., Fairfield) 
between the probe and skin. All measures of ATT were col-
lected by the same research assistant with the US system 
set to ‘default’ except for frequency and time-gain compen-
sation. All scans were repeated until image resolution was 
sufficiently clear for the subcutaneous fat-skeletal muscle 
interface to be identified. Measures of ATT, in millimeters, 
were taken to be the average of three points, determined via 
software calipers, across the image.

2.3.2  |  NIRS device

Continuous-wave NIRS (Oxymon MKIII, Artinis Medical 
Systems) optodes were placed on the skin over the m. vastus 
lateralis. As previously described (Ryan, Southern, Reynolds, 
& McCully, 2013), the probe was set to have two source-de-
tector separation distances (between 30 and 45 mm), with the 
smallest source-detector distance set to approximately twice 
the ATT. The second source-detector distance was set 1 cm 
greater than the first. NIRS data were collected at 10 Hz. All 
statistical analyses included only NIRS-derived measures 
of deoxygenated hemoglobin and myoglobin (HHbMb). 
Continuous-wave derived measures of HHbMb are less in-
fluenced by skin blood flow immediately below the sensors 
allowing for a valid estimate of local muscle fractional O2 
extraction (Koga et al., 2015).

2.3.3  |  Ischemic/hyperemic calibration

Immediately following exercise test 2, participants were 
seated on a reclinable chair (Ostrich Deluxe Chair, Detless 
Corp.) with their feet elevated approximately paral-
lel to the floor, while an ischemic calibration procedure 
was performed. Blood pressure cuffs (Hokanson SC12D) 
were placed proximal to the NIRS optodes on the upper 
thigh of each leg and connected to a rapid-inflation sys-
tem (Hokanson E20). The blood pressure cuffs were in-
flated to ~300 mmHg for 5 min (or until the HHbMb signal 
plateaued). An ischemic/hyperemic occlusion protocol 
was used to normalize the HHbMb signals to the maximal 
physiological range of each participant. The highest value 
obtained represented zero oxygenation in the tissue under 
the NIRS probe. Upon release of the blood pressure cuff, a 
hyperemic response causes a re-oxygenation overshoot in 
the NIRS signal, with the minimum HHbMb identified to 
represent 100% oxygenation.

Energy Expenditure
(

J ⋅s
−1
)

=Watts (W)=
[(

3.869×VO2

)

+
(

1.195×VCO2

)]

×(4.186∕60)×1000.

GE(%)=(Work Rate (W) ∕Energy Expended (W))×100%
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2.3.4  |  Leg occlusion cuffing protocol

Noninvasive determination of skeletal muscle O2 con-
sumption (mVO2) recovery rates were determined using 
a protocol similar to several previously described (Ryan, 
Brizendine, & McCully, 2013; Ryan et al., 2014; Ryan, 
Southern, Reynolds, et al., 2013). Immediately following 
the ischemic/hyperemic calibration, while remaining seated 
in a recumbent position, participants performed near-max-
imal to maximal voluntary isometric leg extension con-
tractions for 2 × 10 s contraction/10 s relaxation, followed 
by one 20 s contraction (60 s in total), which led directly 
into the occlusion cuffing protocol. Increased measures 
of mVO2 between isometric contractions and electrically 
stimulated contractions have been shown to be similar and 
independent of exercise intensity (Ryan, Brizendine, et al., 
2013). Immediately after completion of the 1 min isometric 
contraction protocol, the blood pressure cuffs were inflated 
to ~300 mmHg for a series of 5–15 s occlusions to measure 
mVO2 recovery kinetics. The cuffing protocol consisted of 
15 cuffs as follows: cuffs 1–5 (5 s on/off), 6–10 (10 s on/
off), 11–15 (15  s on/off). The isometric contractions and 
leg occlusion cuffing protocols were completed twice for 
duplicate measures and values determined for each proto-
col were averaged.

2.3.5  |  Rates of skeletal muscle O2 
consumption recovery

Rates of mVO2 recovery were calculated using simple linear 
regression across 3 s of each occlusion (30 data points × 15 
occlusions). The post exercise repeated measurements of 
mVO2 were fit to a monoexponential curve according to the 
formula below:

where y(t) is the relative mVO2 during the arterial occlu-
sion at time t, end is the mVO2 immediately following 
exercise, delta is the change in mVO2 from rest to end-ex-
ercise, and k is the fitting rate constant. According to this 
first-order metabolic model, the recovery kinetics follow 
a monoexponential function that is independent of exer-
cise intensity (Crow & Kushmerick, 1982; Mahler, 1985; 
Meyer, 1988; Paganini et al., 1997; Ryan, Brizendine, et 
al., 2013; Walter et al., 1997). The rate constant k cor-
relates with maximal rates of skeletal muscle respiration 
determined via high-resolution respirometry (Ryan et al., 
2014). The corresponding time constant (Tc) for the recov-
ery of mVO2 (1·k−1) correlates with PCr recovery kinetics 
via 31phosphorus-magnetic resonance spectroscopy (Ryan, 
Brizendine, et al., 2013).

2.3.6  |  Correction for blood volume

All NIRS data obtained during the ischemic calibration and 
cuffing occlusion protocol were corrected for blood volume 
changes as previously described (Ryan et al., 2012). Briefly, 
it is assumed that oxygenated hemoglobin and myoglobin 
(O2HbMb) and HHbMb change at a 1:1 ratio during arterial 
occlusions with the resulting signals representative of mVO2, 
and the calculation of a blood volume correction factor (β) 
takes these changes into account. To correct NIRS signals for 
changes in blood volume, first the following equation was 
employed to determine a correction factor for each data point 
obtained during occlusions:

Each data point was then corrected using its correspond-
ing β in the equations shown below. This method for correct-
ing each data point for its corresponding blood volume has 
been empirically validated (Ryan et al., 2012).

In these equations, O2HbMbc and HHbMbc are the cor-
rected O2HbMb and HHbMb signals respectively.

2.4  |  Statistical analyses

Laboratory-based stationary time trial cycling tests do not 
seamlessly translate to real-world performance, as cyclists 
with a larger body mass experience greater air resistance, pri-
marily due to increased frontal area, when riding outside of 
laboratory conditions on flat terrain (Bassett, Kyle, Passfield, 
Broker, & Burke, 1999; Swain, 1994; Swain et al., 1987). 
Relative measures of VO2 consumption and all measures of 
power output were allometrically controlled for body mass-
surface area relationships using the mass exponents 0.32 to 
account for differences across cyclists and improve upon the 
real-world application of these findings (Swain, 1994).

Comparisons between two parametric or nonparametric 
variable groups were evaluated using a paired t-test or Mann–
Whitney test respectively (GraphPad Prism 8.1.2, GraphPad 
Software). Comparisons across three or more groups were 
analyzed using a one-way ANOVA or repeated measure-
ments ANOVA with a Bonferroni correction to control for 
type I error across multiple comparisons. When appropri-
ate, post hoc tests were conducted using Bonferroni multiple 
comparison test.

In total, we obtained nine variables at maximal exer-
cise, 20 measures reflective of various fatigue threshold 

y (t)= (end−delta)×ek× t

β (t)=O
2
HbMb (t) ∕

(

O
2
HbMb (t)+HHbMb (t)

)

.

O
2
HbMb

c
=O

2
HbMb−

[

THbMB× (1−β)
]

.

HHbMb
c
=HHbMb−

[

THbMb×β
]

.
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values, 14 indices of cycling efficiency, along with k and Tc 
for examination of variable modeling to best explain TTC 
variance. The most predictive variable(s) from each tier rep-
resenting different ‘traditional’ variable categories (i.e. max 
exercise, fatigue threshold, & exercise efficiency values) 
were first identified with linear regression or forward regres-
sion analysis (SigmaPlot, Systat). For statistical modeling of 
cycling endurance performance, there were two objectives: 
(a) Substantiate that measures of VO2 or power at maximal 
efforts, our strongest fatigue threshold value in relation to 
TTC, and our best measure(s) of exercise efficiency, as often 
discussed across the literature, do collectively account for 
a high percent (>75%) of variation of cycling endurance 
performance, delineated by a TT25, across a group of ac-
tive, well-trained participants; and (b) Examine whether in-
cluding in vivo rates of skeletal muscle respiration improve 
upon traditional regression models explaining endurance 
performance.

Best-fit grouped variables identified through forward 
stepwise regression analyses were assessed with a correlation 
matrix (R2  ≥  .80; Figure 2) and multiple linear regression 
(variance inflation factor, VIF  ≥  2.0) to further scrutinize 
variable collinearity. The variable with the stronger/est rela-
tion to TTC was retained for further regression model analy-
ses if collinearity was identified, as other collinear variables 
were removed.

For all statistical evaluations, an α of p < .05 was consid-
ered significant and all data are reported as mean ± SD unless 
specified otherwise.

3  |   RESULTS

3.1  |  Experimental design validation and 
group comparison analyses

Participant characteristics and indices of TT25 cycling endur-
ance performance are displayed in Table 1. Neither testing 
conditions (time of testing, temperature, and humidity) nor 
subject characteristics (age, height, weight, and BMI) signifi-
cantly related to TTC (p > .05).

3.1.1  |  Exercise tests

There were no differences in average cycling cadence 
across all four constant-load submaximal 7.5  min stages 
(79.9  ±  1.4, 80.4  ±  0.8, 80.4  ±  0.8, and 80.5  ±  0.6) for 
50 W, 100 W, 15% PPO1, and 30% PPO1 exercise intensi-
ties respectively; p >  .05). The time to fatigue for incre-
mental ramp protocols (18–26 W·min−1) in exercise test 1 
were consistent across all participants, averaging 10  min 
55 s ± 1 min 26 s.

3.2  |  Identification of best traditional 
physiologic variables relating to human 
endurance performance

3.2.1  |  Determination of the best 
indices of cycling efficiency in relation to 
human endurance performance

Indices of exercise efficiency significantly related to TTC 
are shown in Figure 3a. All relative measures of GE, EC, 
and CE were related to TTC whereas only one absolute 
measure was significant, GE50. Measures of efficiency, such 
as GE, are known to be positively influence by workload 
(Gaesser & Brooks, 1975; Moseley & Jeukendrup, 2001). 
Indeed, relative measures of GE (Figure 3b), EC (Figure 
3c), and CE (Figure 3d) were influenced by workload such 
that more ‘efficient’ measures correlated with higher work-
loads. Relative efforts during constant-load cycling at 15% 
and 30% PPO1 are inherently colinear to PPO1 as per our 
study design and thus average power determined at maxi-
mal effort, Wmax, also strongly correlates with power at 15% 
and 30% (both, R2  =  .9295). Accordingly, these relative 
measures of exercise efficiency were removed from fur-
ther grouped regression analyses as the weaker correlates. 
Instead, absolute indices of exercise efficiency that dem-
onstrated a relationship with TT25 performance (F > 2.0) 
were retained for subsequent grouped forward regression 
analyses. These indices included GE50, EC50, CE50, GE100, 
and EC100 (Figure 4).

3.2.2  |  Determination of best methodology to 
identify values at fatigue threshold in relation 
to human endurance performance

There were no significant main effects (all, p < .05) for meth-
odology used to determine corresponding fatigue threshold 
values of absVO2 (F  =  3.68), relVO2 (F  =  3.74), %VO2max 
(F = 3.30), W (F = 2.52), and %Wmax (F = 2.09). Although, 
comparisons across methods to determine absVO2 (p = .057), 
relVO2 (p = .055), and %VO2max (p = .072) did show trends 
of difference driven solely by disparities between VEQ and 
ExCO2 values (Table 3). Also, fatigue threshold powers 
did not differ from the average power throughout the TT25 
(F = 2.453, p = .1112; Figure 2a).

All fatigue threshold variables significantly related 
to TTC are shown in Figure 2b (VO2) & 2C (power). The 
VEQ method in relation to TTC was identified as superior 
to all other methods used to determine all respective fatigue 
threshold values. Accordingly, fatigue threshold values de-
termined by the VEQ method (absVO2, relVO2, %VO2max, W, 
and %Wmax) were included in subsequent grouped forward 
regression analyses.
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3.2.3  |  Determination of the best 
indices of cycling efficiency in relation to 
human endurance performance

At the end of exercise test 1, VO2max and corresponding Wmax were 
determined as the highest stable (slope = 0.00005 ± 0.00811) 
averaged over the longest (51 ± 23 s) possible range. Secondary 
VO2max

1 confirmation criteria included an RER  >  1.10 
(1.16  ±  0.05) and HRmax within 20  bpm of age-predicted 
(Tanaka et al., 2001) HRmax (175 ± 11 vs. 182 ± 8 bpm respec-
tively). Maximal rates of VO2 were never stable enough at the 
end of exercise test 2 to utilize least squares linear regression 
and identify VO2max

2, therefore the only measure of VO2max as-
sessed was derived from exercise test 1.

There was a main effect for method used to determine 
absVO2 (F = 6.76, p = .0143), relVO2 (F = 7.375, p = .0106), 
and power (F = 48.84, <.0001) at maximal effort; absVO2peak

1 
was higher than both absVO2max

1 (p =  .0002) and absVO2peak
2 

(p = .0207) with no difference between absVO2max
1 and relVO-

2peak
2 (p = .1753; Figure 1a). Similarly, relVO2peak

1 was higher 
than both relVO2max

1 (p = .0003) and relVO2peak
2 (p = .0153) with 

no difference between relVO2max
1 and relVO2peak

2 (p =  .1456; 
Figure 1b). Regarding power at maximal effort, PPO1 was 
higher than Wmax

1 and Wpeak
1 (both, p < .0001) with no differ-

ence between Wmax
1 and Wpeak

1 (p > .9999; Figure 1c).
While mean differences across methods were significant, 

the relationship between TTC and measures used to deter-
mine absVO2 ( F = .04402, DFn = 2, DFd = 66, p = .9570), 

relVO2 (F =  .05587, DFn = 2, DFd = 66, p =  .9457), and 
power (F = .02738, DFn = 2, DFd = 66, p = .9730) at max-
imal efforts were not different (Figure 1d–f respectively). 
Therefore, corresponding data were averaged and used for 
subsequent regression analyses. Average measures of VO2 
and power collected at maximal efforts are referenced as 
absVO2max, relVO2max, and Wmax, respectively, throughout the 
rest of the manuscript.

Linear regression analyses identified absVO2peak (l·min−1), 
relVO2max (ml·kg−0.32·min−1), and Wmax (W·kg−0.32) as sig-
nificant in relation to TTC (Figure 1g). Therefore, all three 
variables were included in subsequent grouped forward re-
gression analyses.

3.3  |  Regression modeling to explain cycling 
endurance performance

3.3.1  |  Best traditional grouped variable 
forward regression models in relation to TTC

Traditional variable grouped forward regression analyses 
limited initial values included in the model as per suggested 
correlational collinearity (R2 ≥ .80; Figure 4). Corresponding 
measures of absVO2, relVO2, and Wmax were grouped sepa-
rately for forward regression modeling due to suggested 
collinearity and to minimize the possibility of overfitting. 
The best model of TT25 performance to include traditional 

T A B L E  3   Fatigue threshold values across methodologies. All fatigue thresholds were derived from exercise test 1 and were assessed via 
repeated measurements ANOVA with a Bonferroni correction to control for type I error across multiple comparisons

Method absVO2 relVO2 %VO2max W·kg−0.32 %Wmax

VEQ 2.56 ± 0.49 640.8 ± 119.3 63.4 ± 8.1 49.3 ± 12.0 56.2 ± 9.0

ExCO2 2.72 ± 0.60 678.5 ± 147.4 66.9 ± 9.7 52.6 ± 13.9 59.8 ± 10.9

V-Slope 2.73 ± 0.70 682.0 ± 173.1 67.2 ± 13.1 53.4 ± 16.9 60.6 ± 15.3

VTavg 2.67 ± 0.57 667.1 ± 140.5 65.8 ± 9.4 51.8 ± 13.7 58.9 ± 10.9

Note: Fatigue threshold variables consist of absolute (abs; l O2·min−1) and relative (rel; ml O2·min−1·kg−0.32) measures of oxygen consumption (VO2) or power output 
(W·kg−0.32), as well as % of maximal VO2 (%VO2max) or power (%Wmax) determined through different methods: ventilatory equivalent method (VEQ); excess carbon 
dioxide method (ExCO2); modified V-slope method (V-slope); and the average of VEQ, ExCO2, and V-Slope methods (VTavg). Data reported as mean ± SD.

F I G U R E  1   Determination of the best measures for rates of whole-body oxygen consumption (VO2) and power at maximal efforts in relation 
to endurance performance. The median difference and 95% confidence interval between methods for determining absolute (abs; L·min−1) VO2 
(a), relative (rel; ml·min−1·kg−0.32) VO2 (b), and power (W·kg−0.32; c) at maximal efforts. The relationship between absVO2 (d), relVO2 (e), and 
power (f) in relation to 25-km time trial time-to-completion (TTC). The red lines represent the respective averages of corresponding measures 
collected during exercise tests 1 (1) and 2 (2) and the dotted red line represents 95% confidence interval. Linear regression relationships between 
traditional variables collected at maximal efforts in relation to TTC (g). The labels within bars reports individual Adj R2 values representing 
explained variance and the labels outside of the error bars represents the standard error of the estimate (SEE) as a percent of the averaged group 
TTC (2,680.9 s). The highest but most stable (flattest slope) average VO2 across the greatest range of time was used to determine VO2max

1 with 
corresponding measures of Wmax

1 derived as the average power across that same range of time. Alternatively, VO2peak
1 & 2 were determined as the 

highest 30 s average VO2 throughout each respective exercise test with Wpeak
1 values reflecting average measures of power output across that same 

range of time. Peak power output (PPO1) was determined as the power output at the point of exhaustion for exercise test 1
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F I G U R E  2   Determination of the 
best methodology used to identify values 
at fatigue threshold in relation to human 
endurance performance. Individual 
differences between power determined 
using the ventilatory equivalents (VEQ), 
excess carbon dioxide (ExCO2), modified 
V-slope (V-Slope), ventilatory threshold 
average (Avg; average of VEQ, ExCO2, 
and V-Slope values) methods and average 
25-km time trial (TT25) power output (a). 
Linear regression relationships between 
TT25 time-to-completion (TTC) and 
traditional variables representing rates of 
oxygen consumption (VO2; b) or power 
(c) at fatigue thresholds identified through 
different methods. The labels within 
bars reports individual Adj R2 values 
representing explained variance and the 
labels outside of the error bars represents 
the standard error of the estimate (SEE) 
as a percent of the averaged group TTC 
(2,680.9 s)
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variables reflecting measures collected at maximal effort, fa-
tigue threshold, and exercise efficiency, as suggested by the 
literature over the past two decades, explained 76.2% of TTC 
variance (Adj R2 = .762, F = 25.6, SEE = 128.7, p < .001). 
This model consisted of absVO2max (p < .001), %VO2max

VEQ 
(p = .001), and CE50 (p = .070) (Figure 5).

The next best traditional model included relVO2max 
(p = .036), absVEQ (p = .022), and CE50 (p = .022), which 
explained 73.4% of cycling endurance performance (Adj 
R2 = .734, F = 22.1, SEE = 136.1, p < .001).

The last traditional model, explaining 81.8% of TTC vari-
ance, included Wmax (p < .001), %VO2max

VEQ (p = .003), and 
GE100 (p = .204). However, GE100 did not significantly con-
tribute to the model with the combination of Wmax (p < .001) 
and %VO2max

VEQ (p = .005) primarily predicting TTC (Adj 
R2 = .812, F = 50.6, SEE = 114.5, p < .001).

3.3.2  |  Best grouped variable forward 
regression models in relation to TTC including 
measures of maximal skeletal muscle respiration

Values showing rates of mVO2 recovery, k, and Tc across 
performance quartiles are shown in Figure 6. Forward re-
gression analyses were assessed with k or Tc along with all 
other top traditional variables excluding those identified as 
collinear with the NIRS-derived measures of maximal skel-
etal muscle respiration (Figure 4). The most complete model 
regarding TT25 performance included only Tc, which, alone, 
explained 92.7% of TTC variance (Adj R2 = .927, F = 294.2, 
SEE = 71.2, p < .001).

Independent variables used for regression modeling were 
normally distributed (Shapiro-Wilk test) and all regression 
analyses (Figure 5) were reported to have sufficient power 
(all, 1.000) to perform tests with α = .05 (SigmaPlot, Systat).

4  |   DISCUSSION

The present study scrutinized biological predictors of human 
cycling endurance performance by examining the explained 
variance of a 25-km time-trial (TT25) time-to-completion 
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2 max
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F I G U R E  3   Determination of the best indices of cycling efficiency in relation to human endurance performance. Linear regression 
relationships between 25-km time-to-completion (TTC) and traditional variables representing gross efficiency (GE), exercise economy (EC), and 
cycling economy (CE) at 50 W (50), 15%, or 30% of power output at the point of exhaustion for exercise test 1 (a). The labels within bars reports 
individual Adj R2 values representing explained variance and the labels outside of the error bars represents the standard error of the estimate (SEE) 
as a percent of the averaged group TTC (2,680.9 s). Indices of exercise efficiency, including GE (b), EC (c), and CE (d), all improved in relation to 
higher cycling workloads during exercise test 2
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(TTC) across a well-defined group of trained adult males 
(n = 24). Our most important and novel finding is that the 
time constant for the rate of skeletal muscle oxygen con-
sumption (mVO2) recovery, Tc, alone, provided the most 
complete model of cycling endurance performance by ex-
plaining 92.7% of TTC variance across participants. The best 
model of endurance performance using traditional variables 
were not as robust. The maximal rate of whole-body oxygen 
(O2) consumption (l·min−1; absVO2max), %VO2max determined 
by the ventilatory equivalents method (%VO2max

VEQ), and 
cycling economy assessed at 50  W (CE50) collectively ex-
plained 76.2% of endurance performance variance. A more 
complete traditional model that included maximal power out-
put (Wmax) and %VO2max

VEQ, which could not be strength-
ened by any index of exercise efficiency, only explained 
81.2% of TTC variance. This is the first study to verify that 
traditional variables including measures obtained at maximal 
effort, a valid fatigue threshold value, and an index of exer-
cise efficiency do collectively explain a majority of cycling 
endurance performance (i.e. >75% variance). Additionally, 
this is the first study to demonstrate the relationship between 
NIRS-derived maximal rates of skeletal muscle respiration 
and cycling endurance performance. These findings expand 

upon and improve the clarity of how human biology directs 
cycling endurance performance by highlighting the impor-
tance of skeletal muscle respiratory potential over classically 
held traditional variables in relation to the limits of human 
performance.

The positive relationship between exercise training, mi-
tochondrial adaption in skeletal muscle, and exercise perfor-
mance is well-documented. Skeletal muscle mitochondrial 
protein content (Granata, Jamnick, & Bishop, 2018; 
Holloszy, 1967; Robinson et al., 2017), volume density 
(Granata et al., 2018; Hamaoka et al., 1996; Meinild Lundby 
et al., 2018), and maximal rates of respiration (Granata et al., 
2018; Jacobs et al., 2013; Pesta et al., 2011) increase with 
endurance-type exercise training. These adaptations help fa-
cilitate training-induced improvements in endurance capac-
ity (Jacobs et al., 2013; Lundby & Jacobs, 2016). Skeletal 
muscle respiratory potential contributes to the biological 
mechanisms underlying both VO2max, as detailed by the Fick 
equation, and one's fatigue threshold. Skeletal muscle spe-
cific capillary density (Hoppeler et al., 1985; Zumstein et 
al., 1983), mitochondrial volume density (Hoppeler et al., 
1985; Hoppeler, Lüthi, Claassen, Weibel, & Howald, 1973; 
Lundby & Jacobs, 2016), mitochondrial protein content 

F I G U R E  4   Shown above is a correlation matrix of all this study's best traditional variables typically used to describe human endurance 
performance along with indices of maximal rates of skeletal muscle respiration. Variables include absolute (abs; L·min−1) rates of whole-body 
oxygen consumption (VO2), relative (rel; ml·min−1·kg−0.32) VO2, power (W·kg−0.32), gross efficiency (GE), exercise economy (EC), cycling 
economy (CE), rate constant for the recovery of skeletal muscle oxygen consumption (k) or the reciprocal time constant for the recovery of skeletal 
muscle oxygen consumption (Tc). Traditional measures of VO2 or power collected at maximal efforts were averaged (max). All fatigue thresholds 
were determined using the ventilatory equivalents (VEQ) method. Indices of exercise efficiency were determined during cadence-controlled cycling 
(80 rpm) at either 50 or 100 W
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(Blomstrand, Rådegran, & Saltin, 1997; Jacobs & Lundby, 
2011), and measures of maximal cellular respiration (Ivy, 
Costill, & Maxwell, 1980; Jacobs & Lundby, 2013; Jacobs et 
al., 2012; Pesta et al., 2011) all correlate with VO2max. High-
intensity interval training can increase maximal rates of skel-
etal muscle respiration, VO2peak, and endurance performance 
independent of changes in maximal cardiac output, blood 
volumes, and oxygen carrying capacity of the blood (Jacobs 
et al., 2013). The strong relationships (R2  >  .80) between 
fatigue thresholds and maximal rates of skeletal muscle res-
piration (Ivy et al., 1980), which were confirmed in the cur-
rent study (Figure 4), emphasize the primary role of skeletal 
muscle bioenergetic oxidative potential in determining one's 
fatigue threshold during exercise (Holloszy & Coyle, 1984; 
Poole et al., 2016; Vanhatalo et al., 2016). Maximal rates 
of skeletal muscle respiration obtained via high-resolution 
respirometry have also been identified as the single best pre-
dictor of cycling endurance performance in highly-trained-
to-elite level athletes (Jacobs et al., 2013). The biological 
relationship between VO2max, fatigue thresholds, and skele-
tal muscle oxidative potential most likely explain why max-
imal rates of skeletal muscle respiration more completely 
describe endurance performance (Figure 5) when compared 
to other traditional variables commonly referenced in rela-
tion to the limits of human endurance potential across de-
cades of human performance research (Coyle, 1995; Gabriel 
& Zierath, 2017; Joyner & Coyle, 2008).

Alternatively, abrogating training-induced improvements 
in skeletal muscle oxidative potential reciprocally blunts 
improvements in cardiorespiratory fitness, endurance ca-
pacity, and, sometimes, measures of whole-body health. 

Supplementation of exogenous vitamin C with exercise 
training can blunt mitochondrial biogenesis in skeletal mus-
cle (Bruns et al., 2018; Gomez-Cabrera et al., 2008) and 
minimize improvements in VO2max and/or endurance per-
formance in both humans and rats (Gomez-Cabrera et al., 
2008). Diminished skeletal muscle mitochondrial protein is 
reported to parallel increases in heart rate, ventilation, re-
spiratory exchange ratio, and blood lactate concentrations at 
the same absolute submaximal exercise intensity following 
84 days of detraining (Coyle, Martin, Bloomfield, Lowry, & 
Holloszy, 1985). Higher VO2max and lactate threshold values 
have also been attributed to approximately 50% higher mea-
sures of skeletal muscle capillarization and mitochondrial 
protein in detrained endurance athletes compared to seden-
tary controls with no history of exercise training (Coyle et al., 
1985, 1984). More recently, metformin was shown to abolish 
exercise-induced increases in skeletal muscle respiration and 
attenuate concomitant improvements to VO2max and whole-
body insulin sensitivity using a randomized double-blind 
placebo-controlled design. Training-induced changes in 
skeletal muscle respiration also correlated with changes in 
whole-body insulin sensitivity (Konopka et al., 2019). The 

F I G U R E  5   Linear regression models determined via forward 
regression analyses in relation to 25-km time-to-completion (TTC). 
The labels within bars reports individual Adj R2 values representing 
explained variance and the labels outside of the error bars represents 
the standard error of the estimate (SEE) as a percent of the averaged 
group TTC (2,680.9 s). The time constant for the recovery of skeletal 
muscle oxygen consumption (Tc); Traditional regression models 1, 
2, and 3 are defined in the Results section under the section entitled, 
Regression modeling to explain cycling endurance performance

F I G U R E  6   Measures of skeletal muscle respiration. The percent 
change in rates of skeletal muscle oxygen consumption (mVO2) over 
time (a) was used to determine the rate (k) and time constants (Tc) 
for the recovery of mVO2 (b). Values are separated into quartiles 
representing the fastest (1st) to the slowest (4th) 25-km times to 
completion, with an n = 6 in each quartile (total n = 24). The whiskers 
represent 95% confidence intervals
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importance of skeletal muscle oxidative potential most likely 
extends past the relationship with endurance performance, as 
the whole-body health benefits of exercise training track with 
improvements in exercise performance (Gabriel & Zierath, 
2017). However, until recently, our ability to assess dynamic 
measures of skeletal muscle mitochondrial function relied 
primarily on access to an MRI scanner or the more invasive 
collection of a skeletal muscle via tissue biopsy.

NIRS-derived measures of skeletal muscle oxygenation 
allow for the direct noninvasive assessment of maximal rates 
of skeletal muscle respiration (Hamaoka et al., 1996; Ryan 
et al., 2014; Ryan, Southern, Reynolds, et al., 2013), with a 
precision capable of differentiating skeletal muscle oxida-
tive potential across human participants with differing lev-
els of fitness (Brizendine, Ryan, Larson, & McCully, 2013; 
Lagerwaard et al., 2019) and within-subject skeletal muscle 
respiratory changes contrasting trained and nontrained arms 
(Ryan, Southern, Brizendine, & McCully, 2013). NIRS-
derived measures of maximal skeletal muscle respiration have 
been validated against high-resolution respirometry-derived 
measures of maximal ADP-stimulated state 3 respiration 
(Ryan et al., 2014) using an in situ mitochondrial model with 
permeabilized muscle sample preparations that leave the mi-
tochondrial reticular network intact (Kuznetsov et al., 2008) 
and in vivo PCr recovery kinetics via 31phosphorus-magnetic 
resonance spectroscopy (Ryan, Brizendine, et al., 2013). A 
benefit of this NIRS methodology is that it allows for maxi-
mal rates of skeletal muscle respiration to be assessed without 
the collection of a skeletal muscle biopsy and away from a 
costly MRI scanner. This technique, originally tested in 1996 
(Hamaoka et al., 1996) and later modified to control for blood 
volume changes with ischemic limb cuffing in 2012 (Ryan 
et al., 2012), could greatly improve practical applications 
of skeletal muscle mitochondrial assessments. Indeed, this 
study confirms previous findings (Jacobs et al., 2011), which 
were obtained through skeletal muscle biopsy sampling and 
high-resolution respirometry, showing that measures reflect-
ing integrative and dynamic rates of maximal skeletal muscle 
respiration can strongly predict human endurance perfor-
mance. More research is needed to fully examine the benefit 
of this procedure as well as general NIRS-derived measures 
of skeletal muscle oxygenation during exercise to possibly 
improve the precision with which individualized training can 
be monitored. NIRS-derived measures of skeletal muscle ox-
ygenation during exercise improved regression modeling to 
explain 26.15-km (Jacobs et al., 2011) and 15-km (van der 
Zwaard et al., 2018) time trial performances. These data pro-
vide the proof-of-concept necessary to further explore the 
use of skeletal muscle oxygenation assessment similar to, or 
along with, the use of heart rate during exercise to provide a 
real-time assessment of biological performance with respect 
to external measures of performance (i.e. power output, run-
ning velocity, etc.).

This study is the first study to completely validate the 
long-held premise that a combination of traditional vari-
ables derived from three separate physiologic tiers repre-
senting one's cardiorespiratory fitness, fatigue threshold, 
and bioenergetic efficiency during exercise, respectively, 
account for the majority of cycling endurance performance 
(i.e. >75%). The combination of absVO2max, %VO2max

VEQ, 
and CE50 accounted for 76.2% of endurance performance 
variance. Many studies have identified one or two necessary 
components of the traditional variable postulate as predic-
tive of endurance performance (Amann et al., 2006, 2004; 
Coyle, Coggan, Hopper, & Walters, 1988; Coyle et al., 1991; 
Lamberts et al., 2012; van der Zwaard et al., 2018). More re-
cently a group from The Netherlands confirmed that VO2max, 
fatigue threshold VO2s derived using both LT and VT meth-
ods, and GE all independently correlated with 15-km time 
trial performance (van der Zwaard et al., 2018). Yet, there 
was no mention of a collective 3-tier model including vari-
ables relating to maximal effort, fatigue threshold, and exer-
cise efficiency in relation to cycling performance. They did 
report that performance VO2, defined as the average rate of 
O2 consumption over a 15-km time trial test, explained 88% 
of the variance for 15-km time trial performance (van der 
Zwaard et al., 2018). A product of VO2max and LT (4 mmol/⋅
L), VO2(LT2), was reported to explain up to 93% of the vari-
ance of performance VO2 across cyclists, which should 
translate to ~80% of 15-km time trial performance variance. 
The combination of VO2max and VO2(LT2) explaining ~80% 
of 15-km time trial performance variance (van der Zwaard 
et al., 2018) is similar to our two-variable model of perfor-
mance that included Wmax and %VO2max

VEQ and explained 
81.2% of TTC variance. Measures of cycling power at maxi-
mal efforts, which also share a stronger relationship to max-
imal rates of skeletal muscle respiration (Figure 4), have 
been reported as more complete than respective measures 
of VO2 (Hawley & Noakes, 1992; Lamberts et al., 2012). 
Measures of power at maximal effort, however, provide min-
imal mechanistic insight regarding the biological parameters 
that are primarily responsible for setting the limits on human 
endurance performance.

Of note, VO2max more completely explained 15-km time 
trial performance (R2 = .79) across a group of cyclists who 
competed at the national, international, or Olympic levels 
(van der Zwaard et al., 2018) than in the current study that 
included recreational-to-highly-trained participants (Figure 
1g). Together these findings highlight the inconsisten-
cies and potential methodological pitfalls when relying on 
VO2max to describe endurance performance potential, as is 
too common across exercise science research. An example 
of such research includes inappropriately controlled studies 
testing the live-high train-low model to improve sea level 
performance with VO2max as the only measure of perfor-
mance (Jacobs, 2013).
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4.1  |  Study limitations

The exercise tests conducted in this study were all obtained 
on the same day within the span of ~4 hr. No familiariza-
tion trials were conducted. We do not believe this decision 
influenced our primary outcome variables, as our data cor-
responds with previously published literature. For exam-
ple, Lamberts et al. (2012) examined predictors of 40-km 
time trial performance across a group of highly trained 
competitive male cyclists (n = 45) in Cape Town, South 
Africa (~40  m elevation). Their study participants com-
pleted familiarization tests 72  hr prior to an incremental 
ramp test to collect variables at maximal effort and a 40-km 
time trial (Lamberts et al., 2012). While we did not conduct 
familiarization tests, a subsample (n = 14) of participants 
from our entire sample group (n = 24), consisting of our 
top cyclists, shared near identical individual characteristics 
(age, height, weight, VO2max, PPO, etc.) and measures of 
performance (average time trial speed and power output) 

across independent studies (Table 4). Moreover, there was 
no difference between the ratio of power averaged through-
out the TT25 to WVEQ in those 14 study participants when 
compared to the additional 10 (Figure 7), which collec-
tively make up the entire sample group for this study. The 
similarities across independent studies suggest that the lack 
of familiarization tests in the current study did not greatly 
influence the results.

Growing evidence suggests that critical power, which was 
not assessed in the current study, may be the most appropri-
ate fatigue threshold method to assess threshold or functional 
power output in relation to endurance performance (Jones et al., 
2019). Critical power has been shown to relate to cycling en-
durance performance better than various measures of power at 
VT (Black et al., 2014; Smith, Dangelmaier & Hill 1999) while 
measures of power at VT have been reported as superior to re-
spective powers at LT (Amann et al., 2006). Given the complex-
ities, assortment of methodologies, subjective interpretations 
and/or additional burden of obtaining VT and, especially, LT 

T A B L E  4   This table reports study participant characteristics and 
indices of cycling endurance performance from a subset (n = 14) of 
top performers in the current study collected at ~1,950 m alongside 
published values derived from highly-trained cyclists (Lamberts et al., 
2012) collected at ~40 m

Sample Group Current Study
Lamberts et al. 
(2012)

Sample size n = 14 n = 45

Age (years) 35 ± 12 32 ± 6

Height (cm) 180.6 ± 4.8 180.7 ± 7.4

Body Mass (kg) 76.3 ± 6.7 76.8 ± 7.5

Power at maximal effort 
(W)

380 ± 30 381 ± 42

Maximal power-to-weight 
ratio (W·kg−1)

5.1 ± 0.5 5.0 ± 0.5

Maximal power-to-weight 
ratio (W·kg−0.32)

95.1 ± 7.7 95.1 ± 9.4

VO2max (l·min−1) 4.4 ± 0.4 4.4 ± 0.5

VO2max (ml·min−1·kg−1) 57.3 ± 6.5 57.3 ± 6.2

VO2max (ml·min−1·kg−0.32) 1,086.8 ± 100.3 1,093.9 ± 121.5

Time Trial Length (km) 25 40

TTC (s) 2,494 ± 121 3,964 ± 181

Speed (km·hr−1) 36.1 ± 1.8 36.3 ± 1.7

Average TT power (W) 250 ± 33 254 ± 32

Power-to-weight ratio 
(W·kg−1)

3.30 ± 0.57 NR (~3.31 ± 0.42)

Power-to-weight ratio 
(W·kg−0.32)

62.6 ± 8.7 NR (~63.3 ± 8.0)

Note: Data reported as mean ± SD.
Abbreviations: NR, not reported; TT, time trial; TTC, time-to-completion; 
VO2max, maximal rate of whole-body oxygen consumption. 

F I G U R E  7   Comparison of the power ratio, defined as the 
average 25-km time trial power to individual fatigue threshold power 
identified using the ventilatory equivalents method, in the fastest 
(n = 14) versus the slowest (n = 10) study participants. Residuals from 
the Mann–Whitney test are plotted in a whereas the median difference 
and 95% confidence interval is shown in b
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values, we agree, in principal, with the benefit of determining 
critical power. Consequently, we have implemented a 3-min all-
out test of critical power (Vanhatalo et al., 2007) in our ongo-
ing research in place of the verification max test utilized in the 
current study, 110% PPO until volitional fatigue. We cannot, 
however, rule out that measures of CP may have improved upon 
some of our ‘traditional’ regression models of performance. 
This decision was in part attributed to claims suggesting that 
the value of critical power is limited to high-intensity exercise 
efforts lasting under 10 min (Currell & Jeukendrup, 2008) and 
previous evidence demonstrating the strength of VT values, es-
pecially those determined by VEQ, in relation to 40-km time 
trial cycling performance (Amann et al., 2006).

Lastly, all our measures of cycling endurance performance 
were collected in a controlled environment on a stationary 
cycle ergometer. While we utilized empirically derived data 
suggested to improve the translation of stationary laboratory 
cycling tests to real-world application by allometrically scaling 
necessary data to account for relationships between body mass, 
frontal area, and air resistance/drag when cycling outside on 
flat terrain (Swain, 1994), the results presented here should be 
reexamined in real-world conditions to validate these findings.

5  |   SUMMARY

This study is the first to verify and validate the traditional 
predictive theoretical model of endurance performance 
based on one's VO2max, a valid fatigue threshold, and an 
index of exercise efficiency to explain the majority (i.e. 
>75%) of cycling endurance performance. More impor-
tantly, however, this is the first study to demonstrate that 
one noninvasive NIRS-derived measure reflecting maxi-
mal rates of skeletal muscle respiration improves upon the 
predictive power of the traditional model accounting for 
92.7% of endurance performance variance across trained 
study participants (n  =  24). When compared to 43 tradi-
tional variables long postulated to predict human endur-
ance performance, measures reflecting maximal rates of 
skeletal muscle respiration arguably stand alone as the 
best. E pluribus unum; out of many, one.
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