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Grey zone amyloid burden affects memory function: the SCIENCe
project
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Abstract
Purpose To determine thresholds for amyloid beta pathology and evaluate associations with longitudinal memory performance
with the aim to identify a grey zone of early amyloid beta accumulation and investigate its clinical relevance.
Methods We included 162 cognitively normal participants with subjective cognitive decline from the SCIENCe cohort (64 ±
8 years, 38% F,MMSE 29 ± 1). Each underwent a dynamic [18F] florbetapir PET scan, a T1-weightedMRI scan and longitudinal
memory assessments (RAVLT delayed recall, n = 655 examinations). PET scans were visually assessed as amyloid positive/
negative. Additionally, we calculated the mean binding potential (BPND) and standardized uptake value ratio (SUVr50–70) for an a
priori defined composite region of interest. We determined six amyloid positivity thresholds using various data-driven methods
(resulting thresholds: BPND 0.19/0.23/0.29; SUVr 1.28/1.34/1.43). We used Cohen’s kappa to analyse concordance between
thresholds and visual assessment. Next, we used quantiles to divide the sample into two to five subgroups of equal numbers
(median, tertiles, quartiles, quintiles), and operationalized a grey zone as the range between the thresholds (0.19–0.29 BPND/
1.28–1.43 SUVr). We used linear mixed models to determine associations between thresholds and memory slope.
Results As determined by visual assessment, 24% of 162 individuals were amyloid positive. Concordance with visual assessment was
comparable but slightly higher for BPND thresholds (range kappa 0.65–0.70 versus 0.60–0.63). All thresholds predicted memory
decline (range beta − 0.29 to − 0.21, all p< 0.05). Analyses in subgroups showedmemory slopes gradually became steeper with higher
amyloid load (all p for trend < 0.05). Participants with a low amyloid burden benefited from a practice effect (i.e. increase in memory),
whilst high amyloid burden was associated with memory decline. Memory slopes of individuals in the grey zone were intermediate.
Conclusion We provide evidence that not only high but also grey zone amyloid burden subtly impacts memory function.
Therefore, in case a binary classification is required, we suggest using a relatively low threshold which includes grey zone
amyloid pathology.
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Introduction

The presence of pathological amyloid beta depositions is one
of the hallmarks of Alzheimer’s disease (AD) and amyloid
pathology is thought to play an important role in its patho-
physiology [1, 2]. Indeed, high amyloid burden in cognitively
normal individuals is associated with a greater risk of cogni-
tive decline, particularly of memory function [3–9].
Furthermore, individuals with subjective cognitive decline
(SCD) are more often amyloid positive than the general pop-
ulation and are at increased risk of cognitive decline and de-
mentia [10, 11]. Therefore, individuals with SCD form an
ideal population to study the effects of ‘early’ amyloid depo-
sition on cognition.
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Amyloid beta pathology can be assessed in vivo by [18F]
florbetapir positron emission tomography (PET) using visual
assessment in a dichotomous manner, i.e. positive versus neg-
ative [12]. However, the accuracy depends on the expertise of
the trained reader [13], and visual assessment of scans with
early amyloid accumulation can be challenging. Classification
of amyloid positivity can also be determined using a threshold
as an alternative to visual assessment. The standardized up-
take value ratio (SUVr) is a widely usedmethod for estimating
amyloid burden semi-quantitatively using a static scan proce-
dure. Dynamic scanning allows for calculation of binding po-
tential (BPND) which provides a more exact quantification of
specific binding to amyloid beta [14]. BPND has been shown
to be less prone to overestimation compared with SUVr and is
more reliable when studying early amyloid accumulation
[15–17]. So far, different SUVr thresholds for [18F] florbetapir
have been proposed [18–23], but these thresholds are highly
variable (range SUVr thresholds 1.08–1.34). BPND thresholds
have not been published yet.

Dichotomizing amyloid burden into a negative and positive
status can be useful in clinical and research settings, but it
disregards the potential significance of early (pathological)
amyloid accumulation [24]. Recent studies show that even
in individuals that are initially labelled as amyloid negative,
the amyloid accumulation slope is associated with memory
decline [25, 26]. It is uncertain whether this suggests that
current thresholds are simply too high and lower thresholds
would be able to correctly classify individuals, or that there is
a more gradual association between memory decline and am-
yloid burden. The latter would point towards a ‘dose-depen-
dent risk’ with a grey zone amyloid burden reflecting an at-
risk state for AD.

In the current study, we aimed to define thresholds for
amyloid positivity using data-driven methods based on both
SUVr and BPND. Subsequently, we compared each of these
classifications with visual assessment of amyloid positivity
and determined associations with memory function over time.
In addition, we identified a ‘grey zone’ of amyloid burden in
cognitively normal individuals, and investigated its clinical
significance, by exploring the nature of the relationship be-
tween amyloid levels in the subthreshold range and memory
slope.

Method

Population

We included 162 cognitively normal participants with SCD
from the Subjective Cognitive Impairment Cohort (SCIENCe)
within the Amsterdam Dementia Cohort at the Alzheimer
Centre Amsterdam [27, 28]. All subjects with [18F] florbetapir
PET, magnetic resonance imaging (MRI) scan and cognitive

data available were included. One hundred and fifty-two par-
ticipants were referred to the memory clinic by their general
physician, a neurologist or a geriatrician, and underwent an
extensive standardized diagnostic workup that included a neu-
rologic and neuropsychological examination, laboratory test-
ing and brain MRI [28, 29]. In a consensus meeting, partici-
pants were labelled SCD when cognitive performance ap-
peared within normal limits compared with peers, and criteria
were not met for mild cognitive impairment (MCI), dementia
or other neurological or psychiatric diseases that could possi-
bly cause cognitive complaints. At annual follow-up visits,
neuropsychological testing was repeated and diagnoses were
re-evaluated. In addition, 10 participants were included as
research participants via the Dutch Brain Research Registry
(hersenonderzoek.nl). They also experienced cognitive com-
plaints in absence of a diagnosis of MCI or dementia, and
received the same baseline workup.

Neuropsychological assessment

We previously showed that the relationship between amyloid
burden and cognitive decline was strongest for the memory
domain, especially for the Rey auditory verbal learning task
(RAVLT) delayed recall [7]. Therefore, for this study, we
used the RAVLT delayed recall as a measure for memory
function. We used visits conducted before as well as after
the PET scan to accurately estimate the memory slope,
resulting in longitudinal cognitive data covering 3.8 ±
3.1 years. Concurrent time points were defined as the visit
closest to the PET scan date (median − 0.19 (IQR − 0.38–
0.14 years)). We used two different versions of the RAVLT,
between which we alternated at the annual follow-up visits. In
total, 655 neuropsychological examinations of 162 partici-
pants were available (149 ≥ 2 visits; range 1–10; median 3
visits).

Questionnaires

Within the SCIENCe cohort, a number of questionnaires are
administered to evaluate subjective cognitive complaints,
mental health, instrumental activities of daily living and life-
style [27]. For this study, we used the cognitive change index
(CCI, 20 questions, range 0–80) to quantify the degree of
subjective cognitive complaints. We additionally used the ge-
riatric depression scale (GDS, 15 questions, range 0–15) to
evaluate depressive symptoms. For both questionnaires, a
higher score reflects more severe symptoms.

PET acquisition and image analysis

PET scans were acquired on an Ingenuity PET-CT (n = 115)
or a Gemini TF PET-CT (n = 47; Philips, Best, the
Netherlands) scanner. Dynamic PET emission scans of
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90 min (n = 137) were obtained starting directly after tracer
injection of approximately 370 M Becquerel (MBq) [18F]
florbetapir. During the course of the study, our group showed
that the scan duration could be reduced without compromising
the reliability of results [14]. Therefore, the more recent scans
(n = 21) had a duration of 70 min. Furthermore, in four partic-
ipants, the scan was terminated early (three after 60 min, one
after 79 min) due to participant-related issues. These scans
were still used since they had an uninterrupted 60 min of
scanning [14]. Head movement when lying in the camera
was monitored with laser beams, and if necessary, the position
of the head was corrected. Data were reconstructed with a
standard LOR RAMLA reconstruction algorithm into 22
frames, and images were corrected for scatter, random coinci-
dences, attenuation, decay and dead time. Images were recon-
structed with a matrix size of 128 × 128 × 90 and a voxel size
of 2 × 2 × 2 mm3. Isotropic 3-dimensional T1-weighted MR
images (GEDiscoveryMR750 3 T (n = 58), PETMR 3 T (n =
71), Signa 1.5 T (n = 6), Signa 3 T (n = 2), Titan 3 T (n = 24)
and external scan (n = 1)) were co-registered to PET images
using the Vinci software (Max Planck Institute, Cologne,
Germany). Regions of interest (ROIs) were defined on the
co-registered MRI using the Hammers probability atlas [30]
in PVElab. Receptor parametric mapping (RPM) was used to
generate BPND images with cerebellar grey matter as a refer-
ence region [16, 31, 14, 17]. We extracted BPND and SUVr50–
70 values in the following a priori defined regions:
orbitofrontal, temporal, parietal, anterior cingulate, posterior
cingulate and precuneus [21]. An SUVr time interval of 50–
70 min post-injection was chosen because this is commonly
used, and our group showed before that SUVr becomes con-
stant from 40min onward [14, 18].We subsequently averaged
the values of the a priori defined regions into one volume
weighted mean cortical BPND or SUVr value. The difference
in time between MRI and PET was generally within 1 year
(median time difference 0.22 years (IQR − 0.49–0.55)).

Threshold derivation

SUV images were visually assessed as ‘positive’ or ‘negative’
by a trained and experienced nuclear medicine physician
(BvB) who was blinded for clinical information, based on
standards provided by the manufacturer [32]. Next, we used
different data-driven methods to obtain thresholds for amyloid
positivity for both BPND and SUVr. First we used the R studio
function normalmixEM to fit Gaussian mixture models
(GMM) with 1–9 components. Bayesian information criterion
(BIC) indicated a model with 2 components as being the most
optimal fit to our data. A threshold was derived representing
the mean of the calculated mu of both components. The cal-
culated thresholds were similar when we used the proportions
derived from visual assessment (24% and 76%) as a starting

value for mixture weights. This resulted in cut-off points of
0.23 (BPND) and 1.34 (SUVr).

Next, we used K-means clustering. We assumed the data
consisted of two clusters. We derived two cut-off values, the
first representing the 90th percentile of the cluster with low
amyloid burden, and the second representing the 10th percen-
tile of the cluster with high amyloid burden. The cut-off values
were purely data-driven, and information about visual assess-
ment of scans was not used for these thresholds. This resulted
in a low threshold (0.19 BPND and 1.28 SUVr), and a high
threshold (0.29 BPND and 1.43 SUVr). Subsequently, we took
the area between the lower and higher thresholds derived by
K-means clustering to operationalize a grey zone. Figure 1
shows a summary of all derived thresholds and visualizes
the predefined grey zone.

Fig. 1 Visualization of thresholds and grey zone. Two frequency
histograms containing all mean BPND values (a) and SUVr values (b),
with K-means cluster membership visualized by different colours (blue
and red). The dashed lines represent the 6 different thresholds (for BPND:
0.19, 0.23 and 0.29, for SUVr: 1.28, 1.34 and 1.43). The grey zone was
operationalized as the range between the lowest and the highest
thresholds derived through K-means clustering. For BPND, 121
participants had an amyloid burden lower than the low K-means
threshold, 15 participants had grey zone amyloid burden and 26
participants had an amyloid burden higher than the high K-means
threshold. For SUVr, the numbers were 125, 15 and 22 respectively
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Statistics

We used t test, Mann-WhitneyU and chi-square where appro-
priate to compare demographic measures between amyloid
positive and amyloid negative groups, based on visual assess-
ment. We used Cohen’s kappa to determine the degree of
concordance between visual assessment on the one hand and
the six thresholds on the other hand. We used linear mixed
models (LMM) to assess the associations between amyloid
status (visual and data-driven) and memory slopes. Separate
models were run for each of the seven ways of defining am-
yloid positivity. Amyloid status, time and the interaction be-
tween amyloid status and time were included as independent
variables, age, sex, education and scanner type were included
as covariates, and scores on the RAVLT delayed memory task
were used as dependent variables. Intercept and time were
included as random factors, as this resulted in a better fit.
Using thesemodels, we estimated the annual change over time
for both a negative and a positive amyloid status. We com-
paredmodels based on betas, p values and Akaike information
criterion (AIC).

Subsequently, using an increasing number of quantiles, we
divided the sample into two, three, four and five equal-sized
distributions (i.e. subgroups) to explore whether there is a
gradual association between amyloid burden and memory
slope. We subsequently used LMM to estimate memory
slopes for each subgroup. Separate analyses were run for each
quantile-based division. Subgroups (entered as dummies),
time and the interaction between subgroups and time were
included as independent variables, age, sex, education and
scanner type were included as covariates, and RAVLT de-
layed recall score was used as dependent variable. In addition,
we ran models including subgroups as continuous variables,
and present the resulting p value for trend.

All analyses were done using SPSS version 26 and R studio
version 1.1.463. For the estimated trends, we used the R studio
function of emtrends. p values < 0.05 were considered
significant.

Results

Baseline demographics

At baseline, individuals were on average 64 ± 8 years old, 63
(39%) were female and MMSE was 29 ± 1 (Table 1). Among
162 individuals, 38 (24%) were amyloid positive as defined
by visual assessment. Amyloid positive (A+) individuals were
on average older and more often APOE4 carrier than amyloid
negative (A−) individuals.

We presented thresholds, frequency and kappa values in
Table 2. When we applied the different thresholds, the amy-
loid positivity rates ranged from 26 (16%) to 41 (25%) for

BPND thresholds, and from 22 (14%) to 37 (23%) for SUVr
thresholds. For BPND as well as SUVr, the low K-means
threshold resulted in the highest percentage of A+ individuals,
and the high K-means threshold in the lowest percentage of
A+ individuals. The grey zone, operationalized as the range
between the lowest and highest K-means thresholds, consisted
of 9% of individuals for both BPND and SUVr. Cohen’s kappa
showed that there was substantial concordance between visual
assessment and each of the six thresholds. Upon visual inspec-
tion, concordance was highest for BPND thresholds, but con-
fidence intervals overlapped.

Amyloid positivity thresholds in relation to memory
slopes

We investigated the association between different definitions
of amyloid positivity and memory slopes. We found each
operationalization of amyloid positivity was associated with
rate of decline on the RAVLT delayed recall (Table 3).
Models in which A+ was defined by visual assessment or
BPND thresholds performed somewhat better than models
based on SUVr (i.e. lower AIC values).

Relationship between grey zone amyloid burden and
memory slope

Next, we categorised participants based on an increasing num-
ber of quantiles to evaluate whether the association between
amyloid burden and memory slope is based on a gradual
change in amyloid burden. For all models, a gradually lower
annual memory performance is seen with increasing amyloid
levels (all p for trend < 0.05). Subgroups with the lowest am-
yloid burden (1st halve, 1st third, 1st quarter, 1st fifth and K-
low) showed a practice effect, with an increase in memory
performance over time, whilst subgroups with the highest am-
yloid burden (3rd third, 4th quarter, 5th fifth and K-high)
showed memory decline over time (Fig. 2). Memory slopes
of individuals in the grey zone were intermediate, with betas
closer to zero or negative, shown most clearly in the grey zone
(0.19–0.29 BPND) and the 4th fifth (0.14–0.22 BPND, 0.21–
1.31 SUVr, Fig. 2).

Discussion

In this sample of cognitively normal individuals with SCD, we
observed that grey zone amyloid burden contains relevant
clinical information. Furthermore, we obtained thresholds
for amyloid positivity based on both SUVr and BPND, which
corresponded well with visual assessment of amyloid
deposition.

We investigated the association between grey zone amy-
loid burden and memory function. We found that cognitively
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healthy individuals with low amyloid levels showed improved
memory performance over time, which could be due to a
practice effect. By contrast, individuals with substantial amy-
loid burden showed memory decline over time. Individuals
with grey zone amyloid burden had slopes in between, show-
ing neither decline, nor improvement in memory. This implies
that these individuals did not benefit from a practice effect,
like amyloid negative individuals do. The absence of a prac-
tice effect is not an innocent finding, as it has previously been
demonstrated as a predictor of future deterioration [34–37].
Although for all subgroups, the estimated annual change
was relatively small, the fact that differences could already
be measured in this very early stage provides evidence for

the concept of a grey zone. Furthermore, some individuals
might already experience a subclinical decline in test scores,
whilst the test scores themselves are still within normal limits.
This illustrates the relevance of longitudinal research to cap-
ture within-subject changes over time. Comparison with other
studies is complicated because there is not one universal grey
zone definition. Studies that focused on peri- or subthreshold
amyloid levels have had different approaches, for example
studying amyloid negative subthreshold individuals [25, 26,
38], or CSF/PET discordant cases [39]. In a recent article, the
grey zone is proposed as a region of uncertainty around the
threshold for which more data is needed to actually estimate
the risk of cognitive decline or clinical progression [40]. These

Table 1 Baseline demographics
by amyloid status based on visual
assessment

Total n = 162 Amyloid negative n = 124 Amyloid positive n = 38

Age, mean (SD) 64 (8) 63 (8) 68 (8)*

Sex, n female (%) 63 (39%) 47 (38%) 16 (42%)

Education, mean (SD)a 6 (1) 6 (1) 6 (1)

APOE4 status, n carrier (%) 54 (36%) 31 (26%) 23 (68%)*

CCI, mean (SD)a,b 21.8 (14.5) 21.4 (15.0) 23.0 (13.1)

GDS, mean (SD)a,b 2.4 (2.0) 2.5 (2.1) 2.3 (1.9)

MMSE, mean (SD)a,b 28.9 (1.2) 28.9 (1.2) 28.7 (1.2)

RAVLT delayed, mean (SD)b 9.1 (3.0) 9.3 (3.0) 8.3 (3.2)

Amyloid load (BPND), mean (SD) 0.16 (0.13) 0.11 (0.06) 0.33 (0.18)*

Amyloid load (SUVr), mean (SD) 1.24 (0.18) 1.17 (0.08) 1.45 (0.26)*

Amyloid status was determined by visual assessment of the [18 F] florbetapir PET scan. Education is rated using
the DutchVerhage system [33]. Amyloid load represents the volume-weightedmean cortical value in a composite
region of a priori defined regions (orbitofrontal, temporal, parietal, anterior cingulate, posterior cingulate and
precuneus), with cerebellar grey matter as reference region. CCI and GDS test scores were available for 159 and
96 participants respectively

CCI cognitive change index, SCF subjective cognitive functioning,GDS geriatric depression scale,MMSEmini-
mental state examination, RAVLT Rey auditory verbal learning task, BPND binding potential, SUVr standardized
uptake value ratio
aMann-Whitney U test. All other analyses were performed using t test and Chi-square
b Score on concurrent test
* p < 0.01 for difference between amyloid negative and positive individuals

Table 2 Cut-off values for
different methods Derivation method Threshold n positive (%) Kappa (95% CI)

Visual assessment 38 (24%)

BPND Low K-means 0.19 41 (25%) 0.65 (0.51–0.79)

GMM 0.23 30 (19%) 0.70 (0.57–0.84)

High K-means 0.29 26 (16%) 0.65 (0.51–0.80)

SUVr Low K-means 1.28 37 (23%) 0.60 (0.45–0.75)

GMM 1.34 25 (15%) 0.63 (0.48–0.78)

High K-means 1.43 22 (14%) 0.60 (0.44–0.75)

Cohen’s kappa was used to determine the degree of concordance between visual assessment and the six different
thresholds

BPND binding potential, GMM Gaussian mixture modelling, SUVr standardized uptake value ratio
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previous studies found that individuals in the subthreshold
range can be on the path to further neurodegeneration (i.e.
atrophy, tau pathology, hypometabolism) [38, 41], and are at
risk of further amyloid accumulation, cognitive decline and
clinical progression [25, 26, 39]. In the present study, we
defined the grey zone making use of two thresholds obtained
in a data-driven way. In a second approach, we subdivided the
data using divisions based on quantiles. Irrespective of the
approach, our findings showed that the negative relationship
between amyloid and memory performance is not merely
driven by the small number of individuals with high amyloid
burden, but rather that the variability in amyloid burden, even
within normal limits, has potential clinical value.

We used different data-driven methods, such as Gaussian
mixture modelling and K-means clustering, to derive cut-off
values for amyloid positivity. We found thresholds of 0.19,
0.23 and 0.29 for BPND, and thresholds of 1.28, 1.34 and 1.43
for SUVr. Literature has generated inconsistent findings with
respect to amyloid thresholds, ranging from 1.08 to 1.34 for
SUVr, with 1.10 being reported most frequently [12, 18–23,
42–45]. The large variability indicates that thresholds may to
some extent rely on methodology, image processing pipeline
used and study sample. For example, the partial volume cor-
rection method [46] and the choice of ROIs [47] affect the
degree of amyloid burden. For this reason, we used a com-
monly used ‘meta ROI’ [21, 24, 25], which is able to clearly
distinguish AD patients from cognitively normal controls.
However, small differences can be seen across studies [26,
48, 49]. In addition, thresholds are dependent on sample

characteristics [50]. We aimed to minimize this effect with
our choice of robust data-driven methods. Although our
thresholds seemed substantially higher than the aforemen-
tioned thresholds, all corresponded equally well to visual as-
sessment. We show that dichotomized BPND values may even
correspond to visual assessment somewhat better, which is
consistent with the findings of a previous [18F] flutemetamol
PET study [13]. All amyloid positivity thresholds predicted
future memory decline, which is consistent with another study
[51], although models with BPND thresholds and visual as-
sessment seemingly resulted in a slightly better fit. Because
of the underlying gradual association between amyloid burden
and memory function, apparently the height of the threshold
does not necessarily have a substantial effect on the associa-
tion between amyloid positivity and memory function.

Strengths of this study include that we used two measures
of amyloid quantification, BPND and SUVr, and that we ap-
plied various data-driven approaches. BPND has been shown
to be less sensitive to differences in flow and we found a good
concordance with visual assessment. Using BPND and SUVr
as continuous measures enabled us to thoroughly explore the
grey zone, which is not possible with a strict binary division
like visual assessment. Furthermore, we had a large, well-
defined cohort, with a relatively long follow-up. Limitations
include the lack of a gold standard such as pathology confir-
mation. Notwithstanding, we used visual assessment for com-
parison analyses which has been shown to correlate very well
with pathology [12, 52]. Furthermore, we used memory de-
cline as outcome measure, as opposed to clinical progression

Table 3 Relationship between
different amyloid positivity
thresholds and longitudinal
performance on a memory task

Threshold Amyloid status Estimated annual change AIC

Visual assessment Negative 0.19 (0.05) 2933.7
Positive − 0.28 (0.09)**

BPND 0.19 Negative 0.19 (0.05) 2938.5
Positive − 0.22 (0.08)**

0.23 Negative 0.17 (0.05) 2935.8
Positive − 0.28 (0.11)**

0.29 Negative 0.15 (0.05) 2938.2
Positive − 0.28 (0.12)**

SUVr 1.28 Negative 0.16 (0.05) 2941.2
Positive − 0.21 (0.10)**

1.34 Negative 0.14 (0.05) 2940.0
Positive − 0.28 (0.12)**

1.43 Negative 0.14 (0.05) 2943.0
Positive − 0.29 (0.13)**

Values given are beta (SE), as estimated by linear mixed models (predictor: amyloid status, outcome: score on
RAVLT delayed recall). Numbers reflect annual change in raw score points. Models are adjusted for age, sex,
education and scanner type

AIC Akaike information criterion, SE standard error, RAVLT Rey auditory verbal learning task, BPND binding
potential, SUVr standardized uptake value ratio
** p value < 0.01. p value represents the significance of the difference between a positive amyloid status compared
with a negative amyloid status
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to MCI or dementia. This might have led to less robust results
because memory performance may be reversible, particularly
in cases with limited amyloid burden. On the other hand, it
might take a relatively long time before a substantial part of
this sample shows clinical progression or cognitive impair-
ment. Nevertheless, since we had cognitive data covering on
average 3.8 years, our models should give an accurate estima-
tion of memory slope. Using these methods, we were able to
capture subtle decline, and found evidence for a diminished

practice effect in grey zone amyloid burden. Last, although
BPND and SUVr are widely used continuous measures, it is
difficult to compare tracers and sites due to the large variabil-
ity in methodology previously mentioned. The aim of the
Centiloid Project is to provide a method with which this is
possible. In this method, all outcome measures are standard-
ized by scaling them to a 0 to 100 scale [53, 54]. For future
research, it would be of interest to explore how our results
translate to the Centiloid scale [55].

Fig. 2 Estimated longitudinal
change on RAVLT delayed
recall. Bar graphs showing
estimated longitudinal change for
performance on RAVLT delayed
recall over time. The sample was
divided into subgroups using
visual assessment (a), an
increasing number of quantiles
(b–i), and the predefined grey
zone (j–k). aVisual assessment. b
Two-way division (BPND). c
Two-way division (SUVr). d
Three-way division (BPND). e
Three-way division (SUVr). f
Four-way division (BPND). g
Four-way division (SUVr). h
Five-way division (BPND). i Five-
way division (SUVr). jGrey zone
(according to K-means
thresholds) (BPND). k Grey zone
(SUVr)). Bars represent predicted
annual change in raw test score,
and error bars represent 95%
confidence interval. Ptrend repre-
sents p value for trend. *: p value
represents significance (< 0.05) of
the difference between the sub-
group under investigation and the
reference category within the
subgroup division (1st subgroup)
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Our demonstration of the potential significance of grey
zone amyloid burden may have several clinical consequences.
Especially for individuals with amyloid burden within the
grey zone, a single threshold might not be very good at
distinguishing individuals with a high and a low risk of cog-
nitive decline [4, 40].When a binary division is warranted, our
results imply that only lower thresholds that include the grey
zone capture all individuals at risk of memory decline, which
corresponds to a previous study that showed existing thresh-
olds for Pittsburgh compound B (PIB) seem too high [24].
When a high threshold is used (e.g. 0.29 BPND) that classifies
16% as amyloid positive, 9% of individuals that are actually
also at risk are labelled amyloid negative. This means a total of
25% of individuals is at risk of future deterioration. When
considering that the 4th subgroup of the 5-way division also
already demonstrates a diminished practice effect, even up to
40% might be at risk (4th and 5th subgroup together). This
could have consequences for clinical trials that only include
amyloid positive individuals. Excluding grey zone individuals
would lower recruitment rates and means loss of valuable
information. In addition, these subjects could benefit the most
from disease modifying drugs as they are very early in the
disease course.

In summary, we showed that various thresholds correspond
well to visual assessment in our sample, particularly BPND
thresholds. We furthermore show that not only a high amyloid
burden but also grey zone amyloid burden has an effect on
longitudinal memory function. We therefore suggest, when
the same methodology is used, to use a low BPND threshold
of 0.19 when a binary classification is needed, to also include
the grey zone.
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