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Does environmental confounding mask pleiotropic effects
of a multiple sclerosis susceptibility variant on vitamin D
in psychosis?
Conrad O Iyegbe1,7, Anita Acharya1,2,7, John Lally1,3,8, Poonam Gardner-Sood1,8, Louise S Smith4, Shubulade Smith5, Robin Murray1,
Oliver Howes1,9 and Fiona Gaughran1,3,6,9

BACKGROUND: This work addresses the existing and emerging evidence of overlap within the environmental and genetic profiles
of multiple sclerosis (MS) and schizophrenia.
AIMS: To investigate whether a genetic risk factor for MS (rs703842), whose variation is indicative of vitamin D status in the
disorder, could also be a determinant of vitamin D status in chronic psychosis patients.
METHODS: A cohort of 224 chronic psychosis cases was phenotyped and biologically profiled. The relationship between rs703842
and physiological vitamin D status in the blood plasma was assessed by logistic regression. Deficiency was defined as a blood
plasma concentration below 10 ng/µl. Potential environmental confounders of the vitamin D status were considered as part of the
analysis.
RESULTS: We report suggestive evidence of an association with vitamin D status in established psychosis (ßstandardized = 0.51,
P= 0.04). The logistic model fit significantly benefited from controlling for body mass index, depression and ethnicity (χ2 = 91.7;
2 degrees of freedom (df); P= 1.2 × 1020).
CONCLUSIONS: The results suggest that, in addition to lifestyle changes that accompany the onset of illness, vitamin D
dysregulation in psychosis has a genetic component that links into MS. Further, comprehensive studies are needed to evaluate this
prospect.
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INTRODUCTION
The discovery of genetic risk markers for schizophrenia on a large
scale1 permits broader questions to be asked about the genetic
architecture of the illness.2 Accordingly, recent investigative efforts
have sought to determine the extent of overlap between the
common genetic architecture of schizophrenia and those of other
psychiatric and non-psychiatric traits. A recent study found no
evidence of a shared genetic etiology between schizophrenia and
Type 2 Diabetes.3 There is, on the other hand, persuasive evidence
of a genetic link with cardiovascular disease.4 The implication of this
is that, in addition to lifestyle changes that accompany the onset of
schizophrenia, the high burden of cardiovascular disease in
schizophrenia is partly due to sharing of genetic factors by both
traits. Cross-disorder genomic studies recently revealed the exis-
tence of genetic links between schizophrenia and multiple sclerosis
(MS; OMIM:126200),5 a neurodegenerative condition in which the
biological competence of the neuronal system is undermined by
chronic autoimmunity. Epidemiological evidence enhances the basis
for such a link. For example, a previous study of population registry
data has demonstrated MS can be a risk factor for schizophrenia and
for non-affective psychosis,6,7 whereas a family history of MS has
been associated with schizophrenia and non-affective psychosis.7

The parallels between schizophrenia and MS even extend to the
(non-genetic) risk factors that they share. For instance, both
disorders show directionally consistent effects of geography,
migration and season on risk.8–14 Because (i) these risk factors are
also proxies for vitamin D status15,16 and (ii) low vitamin D status is a
common finding in both conditions,17,18 the possibility exists that
vitamin D is the factor that explains this symmetry. Vitamin D has
been proposed as a susceptibility factor for a number of
neuropsychiatric disorders. The strength of substantiating evidence
is variable between schizophrenia, autism and Alzheimer’s Disease.19

It is strongest however in MS, where earlier suspicions of vitamin D
involvement have been confirmed by genome-wide association
studies (GWAS).20,21 Concrete evidence of vitamin D causality
remains elusive in the field of schizophrenia genetics, although
calcium signaling is now a recurring theme in its GWAS.1 Because
one of the key roles of vitamin D is to facilitate the absorption and
homeostasis of calcium,22 it is now also possible to envisage a role of
some kind for vitamin D in the pathogenesis of schizophrenia.
To better understand whether vitamin D deficiency in schizo-

phrenia and MS might be biologically linked, this study tests the
possibility that deficiency is partly the result of shared genetic
influences (in addition to shared lifestyle effects). The focus of the
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study is a single-nucleotide polymorphism (rs703842), located on
the CYP27B1 gene (chromosome 12). Support for the contribution
of the rs703842 locus to MS susceptibility is unequivocal.21,23,24

Furthermore, the encoded gene product, 25-hydroxyvitamin
D-1 α-hydrolase (or 1α(OH)ase), is responsible for converting the
storage form of vitamin D, 25-hydroxyvitamin D (or 25(OH)D), into
the biologically active vitamin D compound, 1,25(OH)2D3. The
integral nature of the encoded enzyme to vitamin D biosynthesis
would suggest that the true causal variant presumably tagged by
rs703842 will influence vitamin D levels (and MS risk) through
polymorphic variation in enzymic activation. But formal experi-
ments that test this theory have not been reported. Current
follow-up work has instead yielded insights into the consequences
of rs703842 variation on gene expression. Expression profiles have
been investigated using both diseased (MS) and non-diseased
populations;25,26 there is a reassuring level of consistency between
them. For instance, knock-on effects on FAM119B transcripts have
been identified in both studies. Together, these studies suggest
that variation at rs703842 is a conduit to molecular targets other
than just vitamin D.
This study explores whether variation at rs703842 is associated

with vitamin D deficiency in chronic psychosis, in addition to its
role in MS. This is performed by modeling the relationship
between the rs703842 polymorphism and vitamin D levels in
chronic psychosis patients. An association analysis of rs703842
genotypes and case–control status is not within the scope of the
study, as controls are not included in the cohort.
Finally, because physiological vitamin D status is also sensitive

to a number of extraneous factors,16 our methodological approach
assumes that controlling for such effects will promote the
detection of association signals that would normally be lost to
confounding. Similar strategies are applied widely in vitamin D
genetic research.24

MATERIALS AND METHODS
The Improving physical health and reducing substance use in psychosis
(IMPACT)-randomized controlled trial is a clinical trial designed to evaluate
the efficacy of a health intervention program in reducing the burden of
heart disease, diabetes and stroke in patients with psychosis. The
study is on the International Standard Randomized Controlled Trial
Number (ISRCTN) online public registry (trial number: ISRCTN58667926;
http://www.controlled-trials.com/ISRCTN58667926/IMPACT+RCT).

Recruitment
Recruited patients met the following inclusion criteria: 18–65 years old and
an ICD-10 diagnosis of psychotic disorder (F20–29, F31.2, F31.5). Overall,
224 ethnically-representative subjects within The South London and
Maudsley NHS Trust gave informed consent before their participation in
the study. The exclusion criteria were as follows: a primary diagnosis of
learning disability, a co-existing physical health problem that would, in the

opinion of the medical investigators, independently have an impact on
metabolic measures and/or substance use habits, current pregnancy,
mothers less than 6 months post partum and life-threatening or terminal
medical conditions where intensive care is already provided.

Diagnoses
Diagnoses were based on ICD-10 diagnostic criteria and were extracted
from the documented diagnosis made by the treating consultant
psychiatrist in the clinical notes at the time of recruitment.

Blood extraction and biological assays
Consented patients provided blood samples for DNA analysis and
metabolic profiling. DNA was extracted using the phenol–chloroform
method. Genotypic status at rs703842 was determined using a custom-
designed Taqman assay. Design of the assay probes used an 800-base pair
region downloaded from the ENSEMBL website (http://www.ensembl.org).
The sequence incorporated the regions flanking the rs703842 locus. The
sequence was subsequently uploaded to the assay design feature in the
Applied Biosystems website (https://www5.appliedbiosystems.com/tools/
cadt/). Reaction products were run on a 7900HT sequence detection
system (Applied Biosystems, Paisley, UK).
All 224 subjects yielded unambiguous genotyping results (100% call rate).

The distribution of genotypes at rs703842 was in Hardy–Weinberg equilibrium
(P=0.87). G (minor) allele frequency is consistent (0.33) across YRI and CEU
Hapmap populations. Vitamin D levels (serum 25(OH)D) were determined with
a chemiluminescence immunoassay (DiaSorin, S.P.A. Saluggia, Vercelli, Italy).

Vitamin D status
In the analyses that follow, individuals with 25(OH)D levels below 10 ng/ml
(o25 nmol/l) were classified as vitamin D deficient. Individuals above this
threshold were considered ‘non-deficient’. This stringent interpretation of
the literature27–29 takes account of the fact that the median vitamin D
levels in schizophrenia are much lower than those found in the general
population. For example, our own analyses reveal that the median vitamin
D level in the 'non-deficiency' subgroup only reaches 16.6 ng/ml (see
Results; Table 1). Thus, a threshold of 10 ng/ml29 optimizes the distribution
of cases between comparison groups. Moreover, the 10-ng/ml threshold is
physiologically relevant, as calcium absorption is known to decline rapidly
below this serum concentration.30,31

Covariates
Information on the following factors was collected: age at sampling,
season of sampling, gender and self-reported ethnicity. Body mass index
(BMI) was calculated using height and weight data collected at the time of
recruitment. Total scores were calculated for International Physical Activity
Questionnaire32 and Montgomery Asberg Depression Rating Scale.33 Infor-
mation on medication (chlorpromazine equivalence) was also collected.
Conversion of antipsychotic medication dose to chlorpromazine equiva-
lence values was performed according to the established protocols.34,35

Percentage of the maximum daily chlorpromazine equivalent dose (the
maximum daily dose of chlorpromazine) is equivalent to 1000mg daily, as
defined by the British National Formulary-licenced maximum dose.36

Table 1. Diagnostic breakdown of the sample

Diagnosis Full sample n= 218a

% (n)
o10 ng/ml n=101

% (n)
⩾ 10 ng/ml n=117

% (n)
Test statisticb

SCZ 67.4 (147) 72.3 (73) 63.3 (74)
SZAD 14.2 (31) 15.8 (16) 12.8 (15)
BPAD 14.7 (32) 8.9 (9) 19.7 (23) Fisher's exact test P= 0.173
Dep 2.75 (6) 2.0 (2) 3.42 (4)
DEL 0.92 (2) 1.0 (1) 0.9 (1)

Affective psychoses (Dep, BPAD, SZAD) 31.7 (69) 26.7 (27) 35.9 (42) Pearson Χ2= 2.1 P= 0.15
Non-affective psychoses (SCZ, DEL) 68.4 (149) 73.3 (74) 64.1 (75)

Abbreviations: BPAD, bipolar affective disorder; DEL, delusional disorder; Dep, depression; SCZ, schizophrenia; SZAD, schizoaffective disorder.
aAvailable diagnoses.
bFor the comparison of diagnostic composition between deficiency/non-deficiency groups (columns 3 and 4).
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Statistical analyses
Power calculations were performed using the software QUANTO37 to
determine the numerical adequacy of the available sample (n= 224) for the
planned analyses, given expected genetic odds ratios in the range 1.7–2.0.
On the basis of a log-additive genetic model, a prevalence of vitamin D
deficiency of 65% in the schizophrenia population38 and a two-sided alpha
of 0.05, statistical power was determined to be between 73 and 91%.
All other analyses were performed in STATA 12 (StataCorp, College

Station, TX, USA) with two-tailed P-values reported. The Shapiro–Wilks test
was used to assess normality of variables included in the analysis. The
relationship between environmental factors and vitamin D status was then
defined using the appropriate bivariate test (Independent samples t-test or
Mann–Whitney). Environmental factors found to be discriminating of
vitamin D status were incorporated into a final logistic regression model
that included vitamin D status (deficiency: coded as ‘0’ or non-deficiency:
coded as ‘1’) as outcome and age, gender and self-reported ethnicity.
Ethnicity in these analyses was represented either as individual dummy
variables (Caucasian, black/white mixed and African heritage), or as a
single variable (using all white Caucasians as the reference group).
Raw genotypic values were recoded to reflect 0, 1 or 2 rs703842-A risk

alleles (for MS). Logistic regression models were fitted to test for the effect
of rs703842 genotype on the vitamin D status after adjustment for
sociodemographic effects and environmental confounders.

Ethics committee approval
Ethical approval for this study was obtained from The Joint South London and
Maudsley and The Institute of Psychiatry NHS Research Ethics Committee.
Ethical approval was granted on 17 July 2009 (REC Ref no. 09/H080/41).

RESULTS
A diagnostic breakdown of the cohort is provided in Table 1.
Two-thirds of the total sample have an ICD-10 diagnosis of
schizophrenia. The bulk of the remaining cases are split between
schizoaffective and bipolar affective disorders. The combined
number of delusional disorder and depression cases does not
reach a double-digit proportion of the total sample (Table 1). We
do not find evidence that the diagnostic composition of the

cohort varies with respect to the vitamin D status, and this is true
regardless of whether the diagnosis are kept split or grouped
according to affective/non-affective status (P⩾ 0.15)
Table 2 provides a combined demographic, environmental and

genetic overview of the study cohort. The ratio of males to
females in the analyzed cohort (n= 224) is almost 2:1. White British
Caucasians represent the largest ethnic group, followed by
individuals of African heritage. The remainder are of mixed White
Caucasian/African heritage. The median age of the cohort is 45
(range in full sample: 23–66). As there were no significant
differences in age or gender, the deficient and non-deficient
groups are reasonably balanced in terms of demography (Table 2).
Apart from the anticipated differences in plasma levels of 25(OH)D
between deficient and non-deficient groups, patients with clinical
vitamin D deficiency also tended to have a higher BMI, and
score higher on the depressive symptom scale, compared with
those who were non-deficient (Table 2). The direction of these
differences is conventional in the sense that increasing depression
symptoms, BMI and African heritage all correlate negatively with
vitamin D at European geographical latitudes. Although these
covariates have small effects, their aggregate effect on the vitamin
D status in the logistic model is substantial (likelihood ratio
statistics: χ2 = 91.7 (2 degrees of freedom (df)) P= 1.2 × 10− 20).
Differences between the comparison groups in terms of age,
medication, season of sampling, gender and ethnic makeup were
not statistically meaningful (Table 2).
Table 3 illustrates the relationship between the rs703842-A risk

allele (MS) and non-deficiency. It can be seen that the strength of
the coefficient varies as different covariates are added to the
logistic model (column 2, Table 3). The lowest P value achieved
by modeling covariates individually is P= 0.09. The aggregate
effect of including age, gender, ethnicity, BMI and depressive
symptoms together is reflected in the full-adjusted model. The
result is suggestive of an underlying genetic effect (ßstandardized =
0.51, P= 0.04). The genetic effect is directionally consistent
across all the models in Table 3. The G allele mediates the drop

Table 2. Clinical vitamin D status versus covariates

Variable Full sample n= 224,
median

o10 ng/ml, n= 105,
median (range)

⩾ 10 ng/ml, n= 119,
median (range)

Test statistica

25(OH)D (ng/ml) 10.45 7.2 (4.0–9.9) 16.6 (10.4–88.8) z=− 14.97, Po0.0001
Age 45 45 (25–66) 46 (23–66) t=− 0.389, P= 0.70
Depression score (MADRS) 9 10 (0–35) 8 (0–37) z= 1.81, P= 0.07
Body mass index (kg/m2) 30 31 (18–51) 29 (21–51) z= 1.72, P= 0.08
IPAQ (outdoor activity)b 346.5 297 (0–4158) 396 (0–4158) z=− 0.168, P= 0.09
Chlorpromazine (%max)c 40 30 (0–180) 40 (0–360) z= 0.49, P= 0.63

Count (%) Count (%) Count (%) Χ2-test statistics

Female gender 81 (36.2%) 43 (40.9%) 38 (31.9%) Χ2= 1.9, P= 0.16, df= 1

Ethnicity
Caucasian (white British) 106 (47.3%) 44 (41.9%) 62 (52.1%) Χ2= 5.56, P= 0.06, df= 3
Mixed (Caucasian/African heritage) 49 (21.9% 30 (28.6%) 19 (16.0%)
African heritage 24 (10.7%) 13 (12.4%) 11 (9.2%)
Other white caucasian 45 (20.1%) 18 (17.1%) 27 (22.7%)

Sampling: spring/summer 105 (47.1%) 47 (44.8%) 58 (49.2%) Χ2= 0.43, P= 0.51, df= 1

rs703842 genotype
GG 24 (10.7%) 12 (11.4%) 12 (10.1%)
AG 97 (43.3%) 49 (46.7%) 48 (40.3%) Χ2= 1.33, P= 0.52, df= 2
AA 103 (46.0%) 44 (41.9%) 59 (49.6%)

Abbreviations: df, degrees of freedom; IPAQ, International Physical Activity Questionnaire; MADRS, Montgomery Asberg Depression Rating Scale; 25(OH)D,
25-hydroxyvitamin D.
aOn the basis of vitamin D group comparisons (deficiency/non-deficiency), independent samples t-test or Mann–Whitney test as appropriate.
bTotal metabolic minutes per week.
c% Of the maximum daily chlorpromazine equivalent dose.
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in 25(OH)D to clinical deficiency (i.e. o10 ng/µl), while the A allele
is protective. The variance attributable to rs703842 (0.049)
represents 62% of the total variance explained in the final model
(Pseudo R2 = 0.080). See Supplementary Table S1 for full logistic
regression data.

DISCUSSION
Our results suggest that, in addition to being influenced by
lifestyle changes that may accompany the onset of psychosis,
vitamin D status in psychosis may also reflect genetic variation at
rs703842, a known risk factor for MS.
Detection of the effect at rs703842 critically relies on the

removal of biases relating to ethnicity, BMI and symptoms of
depression (likelihood ratio statistics for the combined terms in
the logistic model: χ2 = 91.7 (2df) P= 1.2 × 10− 20). Our subsequent
analyses revealed the genetic association to be resilient to the
addition of the remaining (unchosen) covariates in Table 2,
namely International Physical Activity Questionnaire (outdoor
physical activity), medication use and season of blood draw. This
is to say that the genetic P value remains significant at the
Po0.05 level when these covariates are added, individually or in
combination, to the logistic model. The genetic effect can therefore
be said to be additionally free of these potential confounders. It is
important to note that such adjustment for environmental
confounding is routine in vitamin D genetic research, e.g., Ahn
et al.,39 Hiraki et al.40 and Ahn et al.,41 but is rare in schizophrenia
research. A recent meta-analysis of vitamin D studies in schizo-
phrenia helps to highlight this pitfall for the field.42 For example, the
research question posed here would be intractable in most other
schizophrenia cohorts, including those whose underlying objective
is to study vitamin D. The inclusion of depressive symptoms in our
model is unprecedented in the context of vitamin D research but
can be justified for two clinical reasons: (i) depressive symptoms in
schizophrenia are common43–45 and (ii) the inverse relationship
between depressive symptoms and vitamin D levels is robust.46,47

Our results suggest that depressive symptoms experienced in
psychosis and MS44,48,49 may contribute to vitamin D deficits
reported at the clinical stages of illness.18

Our results highlight a curious discord between the observed
effects of the rs703842 locus in psychosis and in MS; the G allele is
associated with increased vitamin D levels in MS, however our
analysis, undertaken in the context of psychosis, attributes the

same effect to the A allele. It is therefore possible that our results
reflect biological complexity of the sort that led the HLA alleles
DRB1*03:01 and DQB1*02:01 to increase risk of MS and, at the same
time, decrease the risk of schizophrenia in one recent genome-
wide study.5 A similar picture emerged in a recent genome-wide
bivariate analysis of schizophrenia and height,50 where it was
found that the directional concordance between SNPs jointly
associated with both traits does not reflect the directional
relationship anticipated from prior observational work.51,52

Independent validation of our findings would suggest that
shared genetics may help to explain convergence between the
environmental risk profiles of psychosis and MS, based on season,
geography and migration.8–14 Sustaining progress in this niche area
of psychosis research will inevitably involve using genetics to test
the credentials of vitamin D as an underlying risk factor. It is not
possible to explore this within the current study context, due to the
absence of controls. The key objective of such studies will be to
leverage as much of the available vitamin D genetic architecture as
possible using a mendelian randomization framework.
The P value for the genetic association is marginal and the

corresponding explained variance only small (P= 0.04, Pseudo
R2 = 0.049); therefore, the failure to find methodologically compa-
tible data sets for validation purposes is a limitation. Another issue
is the failure to model all physiological confounders relevant to
the research question posed. In particular, three hormones,
calcitonin, parathyroid hormone (PTH) and prolactin, are known
to stimulate increased levels of the bioactive 1,25(OH)D3 molecule
through the altered expression of the CYP27B1 gene (known also
as 1α(OH)ase).53,54 Drugs that affect the hypothalamic dopamine
system and/or pituitary dopamine receptors can enhance
prolactin levels. Antipsychotic drugs fit into this category and
are associated with a 2–10-fold increase in prolactin levels.55 The
question of whether calcitonin or parathyroid is regulating 1α(OH)
ase gene expression at any given time-point depends on the
physiological status of calcium. For example, hypocalcemia causes
PTH to be elevated, and this initiates the renal synthesis of 1,24
(OH)2. However, at normal calcium levels PTH fails to stimulate the
expression of 1α(OH)ase54 and is substituted in this role by
calcitonin. Thus, the calcium status could potentially also be taken
into account in conjunction with the three hormones. One final
consideration relates to the assumption in our analysis that
depression symptoms lead to low vitamin D, for it is also
possible that muscular fatigue (and other symptoms associated
with extreme deficiency) could provoke the onset of depression
symptoms. We undertook post hoc analysis to understand the
extent to which the main finding of the study is sensitive to
uncertainty about this issue. The final logistic model was rerun, this
time excluding Montgomery Asberg Depression Rating Scale scores.
We established that in the absence of depression symptoms the
genetic association diminishes only slightly (odds ratio = 1.62 (0.98–
2.68) P=0.061; pseudo R2 = 0.053); clearly not by enough to
undermine our original diagnosis of a suggestive association (see
Results). Thus, our preliminary findings suggest that the MS risk
locus rs703842 may explain some of the variability of vitamin D
status in established psychosis. The nature of the association found
is consistent with the view that genetic variants linked with the
vitamin D status can become obfuscated by confounding environ-
mental factors; however, the conclusions reached by this study will
require further validation in independent data sets.
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Table 3. The effect of covariate control on the rs703842 regression
coefficient

Covariate model
(based on N= 224)

Logistic regression

Standardized
coefficient (95% CI)

Genetic
P value

1. Null (unadjusted) 0.20 (−0.19–0.60) 0.31
2. Adj. age 0.20 (−0.19–0.60) 0.30
3. Adj. gender 0.20 (−0.21–0.58) 0.36
4. Adj. ethnicity 0.40 (−0.07–0.87) 0.09
5. Adj. BMI 0.27 (−0.13–0.68) 0.19
6. Adj. depression symptoms 0.21 (−0.18–0.61) 0.29
7. Full adjusted 0.51 (0.02–1.02) 0.04

Abbreviations: Adj, adjusted; BMI, body mass index; CI, confidence interval.
The coefficients in the second column are standardized and reflect the
relationship between rs703842 genotype and vitamin D status, under
different covariate models (models 1–7). Deficiency is coded as ‘0’ and non-
deficiency coded as ‘1’. Row 1 represents a null model in which the genetic
effect is unadjusted for other modifiers. Rows 2–6 evaluate models
containing single covariates. The genetic model in row 7 is adjusted for all
covariates simultaneously.
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