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Several neurological disorders have been linked to mutations in chaperonin genes and
more specifically to the HSPD1 gene. In humans, HSPD1 encodes the mitochondrial
Heat Shock Protein 60 (mtHsp60) chaperonin, which carries out essential protein folding
reactions that help maintain mitochondrial and cellular homeostasis. It functions as a
macromolecular complex that provides client proteins an environment that favors proper
folding in an ATP-dependent manner. It has been established that mtHsp60 plays a
crucial role in the proper folding of mitochondrial proteins involved in ATP producing
pathways. Recently, various single-point mutations in the mtHsp60 encoding gene have
been directly linked to neuropathies and paraplegias. Individuals who harbor mtHsp60
mutations that negatively impact its folding ability display phenotypes with highly
compromised muscle and neuron cells. Carriers of these mutations usually develop
neuropathies and paraplegias at different stages of their lives mainly characterized by leg
stiffness and weakness as well as degeneration of spinal cord nerves. These phenotypes
are likely due to hindered energy producing pathways involved in cellular respiration
resulting in ATP deprived cells. Although the complete protein folding mechanism of
mtHsp60 is not well understood, recent work suggests that several of these mutations
act by destabilizing the oligomeric stability of mtHsp60. Here, we discuss recent studies
that highlight key aspects of the mtHsp60 mechanism with a focus on some of the
known disease-causing point mutations, D29G and V98I, and their effect on the protein
folding reaction cycle.
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INTRODUCTION

Protein folding is an important aspect of cellular function and viability because the accumulation
of misfolded proteins leads to the formation of insoluble aggregates that ultimately cause cell death.
Chaperonins form macromolecular protein complexes that assist the proper folding of nascent
proteins to obtain the native state and to refold misfolded proteins to prevent aggregation. Absence
of chaperonins in cells results in cell death as demonstrated in bacterial, yeast, and mouse models
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(Cheng et al., 1989; Fayet et al., 1989; Horwich et al., 1993; Fang
and Cheng, 2002; Fan et al., 2020). In humans, mitochondrial
Heat Shock Protein 60 (mtHsp60) is in charge of folding
mitochondrial proteins along with its co-chaperonin Hsp10
(Lubben et al., 1990; Hartman et al., 1992). The mtHsp60
encoding gene HSPD1 is a nuclear gene that is translated in
the cytosol and imported into the mitochondria due to the
presence of an N-terminal mitochondrial targeting sequence
that is cleaved upon translocation across the mitochondrial
membrane (Cheng et al., 1989, 1990; Reading et al., 1989;
Singh et al., 1990). A small fraction of Hsp60 resides in the
cytosol and also at the cell surface but the function outside
of the mitochondria has not been well established (Soltys and
Radhey, 1997; Chun et al., 2010; Choi et al., 2015; Kalderon
et al., 2015). Chaperonins carry out protein folding cycles in
an ATP-dependent manner. ATP binding, hydrolysis, and ADP
release prompt conformational changes that drive the catalytic
folding cycles (Fayet et al., 1989; Ostermann et al., 1989; Saibil
et al., 1993; Levy-Rimler et al., 2001; Fenton and Horwich,
2008; Illingworth et al., 2015). Due to the intrinsic instability
of mtHsp60 complexes in vitro, much of what is known about
mtHsp60 has come from comparing it to mutant versions of its
bacterial counterpart GroEL. GroEL exists mainly as a double
ring tetradecameric complex with each ring containing a barrel-
like central cavity that accommodates substrates and provides
a thermodynamically favorable protein folding environment
(Viitanen et al., 1992; Horwich et al., 1993; Braig et al., 1994;
Xu and Sigler, 1998; Fenton and Horwich, 2008; Hayer-Hartl
et al., 2016). However, contrary to the GroEL mechanism,
recent structural studies have determined that mtHsp60 in its
catalytically active form exists as a single ring (heptamer) or
a double ring (tetradecamer). These single ring intermediates
have not been well documented in the GroEL folding cycle and
require additional studies (Viitanen et al., 1992, 1998; Nielsen and
Cowan, 1998; Nielsen et al., 1999; Levy-Rimler et al., 2001; Sun
et al., 2003; Chen et al., 2006; Liu et al., 2009; Illingworth et al.,
2011; Nisemblat et al., 2014, 2015; Vilasi et al., 2014; Enriquez
et al., 2017; Jebara et al., 2017; Bhatt et al., 2018; Yan et al.,
2018). Nucleotide binding and release control the association
or dissociation of the heptameric rings along their equatorial
domains as protein folding takes place inside the mtHsp60 cavity.
It is believed that changes in nucleotide affinity or nucleotide-
bound complex stability significantly compromise the catalytic
activity of mtHsp60 (Ostermann et al., 1989; Saibil et al., 1993;
O’Brien and McKay, 1995; Wilbanks and McKay, 1995; Levy-
Rimler et al., 2001; Illingworth et al., 2015). Here, we will focus
on two HSPD1 point mutations that have been linked to separate
neurodegenerative disorders. The mtHsp60 D29G and V98I
missense mutations have shown direct correlation to hereditary
spastic paraplegia type 13 (SPG13) and mitochondrial Hsp60
chaperonopathy (MitCHAP-60). It has been found that these
point mutations act by destabilizing the oligomeric mtHsp60
complex thereby hindering its ability to fold client proteins. It is
hypothesized that these loss-of-function mutants pose a high risk
of cell damage due to a higher susceptibility to protein aggregate
formation. Additionally, there is an inability to fold key proteins
involved in the energetic pathways found in mitochondria, the

latter resulting in energy deprived cells (Parnas et al., 2009;
Wang et al., 2019).

THE CHAPERONIN PROTEIN FOLDING
CYCLE

The bacterial homolog of mtHsp60, GroEL, remains the most
widely studied of the chaperonins. It is remarkably stable even
after chromatography purification and it retains folding activity
in vitro (Braig et al., 1994; Xu and Sigler, 1998). It is composed
of two heptameric rings with their equatorial domains stacked
against each other, forming a large double-barrel complex.
The architecture of the monomeric protein is constituted of
apical, intermediate, and equatorial domains. The apical domain
contributes to the formation of the ring opening where substrate
is thought to interact, bind, and enter the inner cavity, while
the equatorial domain is involved in nucleotide binding and
intra-ring communication. The intermediate domain mostly
undergoes conformational changes in response to nucleotide
binding and dissociation, driving most of the activity inside
of the barrel (Horwich et al., 1993; Braig et al., 1994; Xu and
Sigler, 1998; Fenton and Horwich, 2008; Hayer-Hartl et al.,
2016). GroEL requires the activity of a co-chaperonin, GroES,
much like mtHsp60 requires Hsp10 during its own folding
cycle (Fayet et al., 1989; Horwich et al., 1993; Weissman
et al., 1995; Xu and Sigler, 1998; Hayer-Hartl et al., 2016).
GroEL is thought to interact with misfolded substrates via
hydrophobic patches near the apical domain and along the inner
walls of the barrel. Selectivity for misfolded substrates arises
from the exposed hydrophobic patches that are characteristic
of partially denatured proteins (Houry, 2001; Horwich et al.,
2009). Once inside of the cavity, the substrate is trapped by
the binding of GroES to the apical domain of the GroEL
barrel. Catalysis is driven by the hydrolysis of ATP that is
bound to each GroEL subunit in an ATP binding pocket near
the equatorial domain of the complex. Hydrolysis of ATP and
subsequent release of ADP trigger conformational changes that
induce the folding of the substrate inside the cavity followed
by release of GroES and finally the liberation of the folded
substrate (Saibil et al., 1993; Weissman et al., 1995; Xu and
Sigler, 1998; Fenton and Horwich, 2008; Hayer-Hartl et al.,
2016). This folding mechanism is highly controlled and can be
seen in other chaperonins such as mtHsp60 albeit with some
key differences.

MtHsp60 can alternate between single and double heptameric
ring conformations upon nucleotide binding and following
hydrolysis (Viitanen et al., 1992, 1998; Nielsen and Cowan,
1998; Nielsen et al., 1999; Levy-Rimler et al., 2001; Nisemblat
et al., 2014, 2015; Vilasi et al., 2014, 2018; Enriquez et al.,
2017; Jebara et al., 2017; Bhatt et al., 2018; Wang et al.,
2019; Gomez-Llorente et al., 2020). Furthermore, the structure
of the ATP bound conformation has recently been solved,
both by crystallography and electron microscopy. In these
structures, mtHsp60 adopts a symmetric “American football”
like conformation, with two rings sitting against each other via
contacts in their equatorial domains, while both rings are capped
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by one heptameric ring of Hsp10 positioned directly on the
apical domain (Nisemblat et al., 2014, 2015; Wang et al., 2019;
Gomez-Llorente et al., 2020). Recently, ADP bound mtHsp60
has been shown to separate into single rings capped with an
Hsp10 heptamer (Wang et al., 2019). Additionally, nucleotide
free mtHsp60 has been shown to form single ring toroidal
complexes when reconstituted in vitro (Viitanen et al., 1998).
It has also been demonstrated, however, that tetradecameric
complexes composed of two rings sitting against each other can
also be purified intact from bacteria (Enriquez et al., 2017).
Although higher resolution structural data are needed to fully
support the existing oligomeric state hypotheses, when compared
with GroEL, mtHsp60 has unique conformations that are likely
important in its folding cycle. Other chaperonins displaying
single ring intermediates have also been studied such as the 8EL
chaperonin and the OBP chaperonin, both from bacteriophages.
For example, 8EL exists as a double ring tetradecamer in its
nucleotide free and ATP bound states but dissociates into two
single heptameric rings in its ADP bound state. The single
ring conformation observed in these chaperonins is thought to
be a key intermediate in the protein folding cycle and not an
off-pathway artifact (Cornelissen et al., 2012; Hildenbrand and
Bernal, 2012; Kurochkina et al., 2012; Semenyuk et al., 2015, 2016;
Molugu et al., 2016; Bhatt et al., 2018).

It is important to distinguish GroEL and Hsp60, both
considered group I chaperonins, from their group II
counterparts. Some examples of group II chaperonins include
the archaeal thermosome and the eukaryotic TRiC chaperonin.
These chaperonins typically vary in subunit number and
in some cases, their hetero-oligomeric nature. The archaeal
thermosome found in Thermoplasma acidophilum consists
of stacked eight membered rings with alternating alpha and
beta subunits. The eukaryotic TRiC chaperonin, on the other
hand, is comprised of eight different subunits forming each
ring. Interestingly, these two chaperonins display a significant
level of homology in their subunits despite the fact of several
different subunits being involved. Another key difference is
the absence of a co-chaperonin in group II chaperonins (Trent
et al., 1991; Frydman et al., 1992; Phipps et al., 1993; Klumpp
et al., 1997; Ditzel et al., 1998; Cong et al., 2012; Lopez et al.,
2015). Instead, a “built-in” lid is formed from apical helix
protrusions that close the ring opening, trapping substrate in
the main cavity. In humans, mutations in the epsilon subunit
of TRiC have been linked to neuropathies, analogous to the
neuropathies seen in patients with mutations in the Hsp60
encoding HSPD1 gene (Bouhouche, 2005). In yeast, it was found
that introducing similar mutations in conserved regions of
the eight different subunits of TRiC results in eight different
phenotypes, highlighting the individual significance of each
subunit (Amit et al., 2010).

Structural and mechanistic diversity is clearly highlighted
when comparing chaperonins across various types of organisms.
However, one similarity of special importance among
chaperonins is the universal dependence on ATP not only
as an energy source but as a conformational trigger of the protein
folding cycle. ATP binding, hydrolysis, and ADP release are key
factors in the folding cycle progression, and disruption of these

events have been shown to be deleterious for protein function
and cell viability.

CHAPERONOPATHIES AND THE ROLE
OF mtHsp60 IN DISEASE

Chaperonins are ubiquitously expressed across all types of
organisms, from bacteriophages to humans (Perezgasga et al.,
1999; Hansen et al., 2003; Reissmann et al., 2007; Cornelissen
et al., 2012; Kurochkina et al., 2012; An et al., 2017; Fan et al.,
2020). They are indispensable for cellular viability because their
absence results in cell death. GroEL knockout bacterial strains are
unable to grow, even at lower temperatures. This shows that they
are not only necessary during stress conditions such as heat shock
but also for normal growth (Fayet et al., 1989). Furthermore,
it has been found that human mtHsp60/Hsp10 can replace
bacterial GroEL/GroES in vivo even though it is believed they
are mechanistically distinct and demonstrate the universality of
their function (Nielsen et al., 1999; Bross and Fernandez-Guerra,
2016). Comparable loss-of-function experiments have been done
in yeast with similar results (Fang and Cheng, 2002). In that
work, the number of amino acids removed from the c-terminus
resulted in a direct effect on cell survival as the removal of 26
amino acids resulted in viable cells at lower temperatures but
the removal of 27 amino acids yielded no cell growth. This
suggests that the 26 amino acid truncation in Hsp60 resulted
in partially functional proteins able to support cell growth. The
lack of growth observed after removing just one more amino
acid highlights a defined boundary between functional and non-
functional Hsp60 and its direct effect on cell survival (Fang
and Cheng, 2002). Drosophila survival has also been shown to
be dependent on Hsp60 availability (Perezgasga et al., 1999).
Additionally, in vivo studies have demonstrated that Hsp60
is essential for the survival of mouse embryos. Furthermore,
the deletion of Hsp60 in adult mouse cardiomyocytes leads to
heart failure and significantly perturbs mitochondrial protein
homeostasis and mitochondrial function (Christensen et al.,
2010; Fan et al., 2020).

While Hsp60 is predominantly found in the mitochondria,
during cellular stress, it can be overexpressed and translocated
into the cytosol as well as the extracellular space where it has
been found to have various moonlighting functions (Henderson
et al., 2013). A study has shown that Hsp60 that has yet to
have its mitochondrial targeting sequence cleaved is able to
oligomerize outside of the mitochondria; however, it is not quite
certain whether Hsp60 that gets translocated outside of the
mitochondria functions as an oligomer or a monomer (Vilasi
et al., 2014). Inside the cytosol, Hsp60 can modulate the yeast
proteasome by interacting with various substrates and preventing
their degradation, reducing 20S peptidase activity, and increasing
protein ubiquitination (Kalderon et al., 2015). Hsp60 can also
interact with the IKK complex promoting the phosphorylation-
dependent activation of the IKK/NF-κB survival pathway in
response to TNF-a (Chun et al., 2010). NF-κB is an important
transcription factor for not only the immune system, but also
many survival processes. Hsp60 activation of the IKK/NF-κB
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pathway for survival can be seen in vascular smooth muscle cells
where it can prevent apoptosis as well as promote neointimal
thickening of the damaged vessels. However, persistent activation
of the pathway has been linked to various chronic inflammatory
diseases such as cancer and atherosclerosis (Choi et al., 2015).
From the cytosol, Hsp60 can leave the inside of the cell and attach
itself to the cell’s surface or enter the extracellular space through
secretory vesicles (Campanella et al., 2012). Once outside the
cell, Hsp60 can stimulate both the innate as well as the adaptive
immune system. High amounts of Hsp60 can be found on the cell
surface in response to risk factors associated with atherosclerosis
and are highly reactive to T-cells (Grundtman et al., 2011).
Hsp60 can also activate the ERK/MAPK pathway as well as TLR4
which can induce vascular smooth muscle cell migration, a key
contributor to atherosclerosis (Zhao et al., 2015).

Chaperonopathies refer to any pathology resulting
from a mutated or otherwise altered chaperone. Genetic
chaperonopathies include but are not limited to diseases caused
by point mutations in the mtHsp60 encoding HSPD1 gene,
as well as other pathologies involving different chaperones
(e.g., Hsp40) or chaperonins (e.g., TRiC chaperonin). Acquired
chaperonopathies are due to non-genetic chaperone defects
such as defective post-translational modifications or mis
regulated gene expression (Macario, 2007; Lupo et al., 2016).
A few examples of known chaperonopathies include dominant
distal myopathy (Hsp40), hypomyelinating distrophy (Hsp60),
Charcot-Marie-Tooth disease (Hsp27), and Bardet–Biedl
syndrome (BBS proteins) (Lupo et al., 2016; Álvarez-Satta et al.,
2017; Palmio et al., 2020; Sarparanta et al., 2020). The mtHsp60
gene has been localized to chromosome 2 in humans. The gene
for the co-chaperonin Hsp10 is localized in a head-to-head
position with respect to Hsp60 (Hansen et al., 2003). Several
genetic mutations in the HSPD1 gene have been associated to
human disease. These include SPG13 and MitCHAP-60, both
neurodegenerative diseases with different symptoms and modes
of inheritance (Bross et al., 2007; Cappello et al., 2014; Bross and
Fernandez-Guerra, 2016). The first disease-causing mutation
associated with mtHsp60 is V98I. This mutation results in an
autosomal dominant form of hereditary spastic paraplegia (SPG)
linked to SPG13. SPG symptoms are leg stiffness (spasticity) and
weakness although their progression can vary depending on the
age of onset of the disease. Degeneration of spinal cord nerves is
also a characteristic feature of SPGs. It is hypothesized that the
genetic dominance of SPG13 is due to the deleterious effect that
mutant mtHsp60 has on wild-type mtHsp60. The V98I mtHsp60
mutation compromises the integrity and function of wild-type
mtHsp60 protein complexes. It was found that Gro-EL knockout
bacteria remained viable if expression of wild-type mtHsp60
was induced. However, mutant mtHsp60 (V98I) was unable to
support bacterial cell growth which highlights the effect of the
V98I mutation on mtHsp60 function (Hansen et al., 2002, 2007;
Fink, 2003; Bross et al., 2008).

Unlike SPG13, MitCHAP-60 is an autosomal-recessive
disease best described as a hypomyelinating leukodystrophy
caused by the D29G missense mutation (Magen et al., 2008).
Although MitCHAP-60 is fundamentally like SPG13, major
differences characterize the former. MitCHAP-60 is an early

onset disease that is better described as a lethal hypomyelinating
neurodegenerative disorder. SPG13 is best categorized as a pure
SPG if we consider that “pure” SPGs are characterized solely
by lower extremity spasticity. However, MitCHAP-60 can be
viewed as a “complicated” SPG since it is accompanied by
other more severe symptoms (Fink, 2003; Salinas et al., 2008).
Additionally, it was found that the D29G mutant is also unable
to support the growth of GroEL knockout bacteria although
it was not established if the mtHsp60 loss of function was
due to a mechanistically similar cause in the two variants
(Magen et al., 2008).

Recently, mtHsp60 studies have highlighted some of the
effects of the D29G and V98I missense mutations in vitro
and in vivo. Independent groups have shown that both
mutations are unable to support bacterial growth in GroEL
knockout complementation assays. Furthermore, using malate-
dehydrogenase refolding assays, it has been demonstrated that
the ATPase activity of both mutant variants is substantially
compromised in vitro when compared to wild-type mtHsp60.
Additional refolding assays have been done using the ATP
synthase F1 β-subunit where it was found that the D29G and
V98I mutants result in impaired ATPase activity (Wang et al.,
2019). It has also been shown that the D29G mutation affects
the oligomeric state of mtHsp60. In these studies, at low protein
concentrations, mutant mtHsp60 completely dissociated into
monomers while wild-type mtHsp60 remained mostly in its
oligomeric form (Parnas et al., 2009). Structural studies on both
mutants have highlighted the strong effect nucleotide binding
has on the mutant mtHsp60 proteins. Electron microscopy and
dynamic light scattering studies showed that mtHsp60 harboring
either the D29G or V98I mutation dissociated into monomers
upon the addition of nucleotide (ATP and ADP had the same
effect on complex disruption) (Wang et al., 2019). The nucleotide
free (APO) state was able to oligomerize and was stable under
experimental conditions suggesting that the mutations have
deleterious structural effects mainly during nucleotide binding
and or hydrolysis. Interestingly, from the wild-type ATP-bound
“American football” structure, it can be observed that both
mutations reside in the equatorial domain of mtHsp60 in very
close proximity to the nucleotide binding pocket (Nisemblat
et al., 2015). This may further substantiate the hypothesis that
the mutants are compromised at or near the nucleotide binding
domain, prompting oligomer dissociation.

CONCLUSION AND PERSPECTIVE

In summary, mtHsp60 is an indispensable chaperonin
responsible for regulating mitochondrial protein homeostasis
and mitochondrial function. Additional moonlighting roles,
especially for cytosolic Hsp60, have been suggested to be
important across many tissues and organs, but further work
is required in order to establish which oligomeric state is
responsible for its function. Presence or absence of Hsp60 is
now thought to be a significant biomarker for several diseases
(Soltys and Radhey, 1997; Chun et al., 2010; Ghosh et al., 2010;
Henderson et al., 2013; Choi et al., 2015; Kalderon et al., 2015).
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MtHsp60 has been shown to successfully replace GroEL in
bacteria and support normal cellular growth, highlighting a
fundamental functional similarity. However, studies suggest
that the two chaperonin systems follow significantly different
mechanisms, perhaps best exemplified by the single ring
intermediate observed in mtHsp60. Two missense mutations in
the mtHsp60 encoding gene HSPD1 have been linked to the
neurodegenerative diseases SPG13 and MitCHAP-60. Recently,
in vitro studies have shown that mtHsp60 complex stability is
affected by these mutations. Low protein concentrations and
nucleotide binding resulted in complete oligomer dissociation
when compared to wild-type mtHsp60.

Although current research has elucidated some of the effects
of these disease-causing mutations, further studies are needed
to fully understand the effect of the mutations at a molecular
level. High-resolution structural data of mtHsp60 complexes
and intermediates are currently limited to the ATP “American
football” conformation. It is imperative to have similar data of
the ADP and nucleotide-free intermediates to be able to better
understand the complete protein folding mechanism of wild-
type mtHsp60. Structural information of stable D29G and V98I
oligomers would then facilitate the comparison of these to their
wild-type counterpart. Furthermore, current structures rely on
mtHsp60 mutants that increase complex stability as well as
non-hydrolyzable ATP analogs, both of which may produce off
pathway intermediates. Studies using wild-type mtHsp60 as well

as natural nucleotides may be necessary to obtain a more reliable
model of its protein folding cycle.
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