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Species within the Aspergillus spp. cause a wide range of infections in humans,

including invasive pulmonary aspergillosis, chronic pulmonary aspergillosis,

and allergic bronchopulmonary aspergillosis, and are associated with high

mortality rates. The incidence of pulmonary aspergillosis (PA) is on the rise,

and the emergence of triazole-resistant Aspergillus spp. isolates, especially

Aspergillus fumigatus, limits the efficacy of mold-active triazoles. Therefore,

host-directed and novel adjunctive therapies are required to more effectively

combat PA. In this review, we focus on PA from a microbiome perspective. We

provide a general overview of the effects of the lung and gut microbiomes on

the growth of Aspergillus spp. and host immunity. We highlight the potential of

the microbiome as a therapeutic target for PA.
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Introduction

Pulmonary aspergillosis (PA) is an infection or allergic response caused by Aspergillus

spp (1). Aspergillus spp. are widely present in the environment and are mainly transmitted

via airborne conidia (2, 3) (Figure 1). Aspergillus fumigatus is one of the most common

Aspergillus spp. It is responsible for the majority of PA incidences (6). Depending on host

immunity, pulmonary ailments caused by Aspergillus spp. can be mainly classified as

invasive pulmonary aspergillosis (IPA), chronic pulmonary aspergillosis (CPA), or allergic
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bronchopulmonary aspergillosis (ABPA) (6, 7). Recent global

estimates revealed that 8,000,000 cases of PA occur annually (8).

Mold-active triazole exerts cidal activity, and as such are the

frontline antifungals used to treat aspergillosis, while

echinocandins show static activity and amphotericin B

prescription is limited owing to its cytotoxic activity (9).

Unfortunately, the extensive use of fungicides in the

environment as well as in the clinic, has resulted in the

increasing emergence of triazole resistant aspergillosis, mostly

owing to A. fumigatus (9–12). Additionally, expensive and/or

toxic drugs, drug-drug interactions, and unequal clinical resources

in different regions reduce the potential for survival and recovery

(13, 14). Therefore, there is an unmet need to identify/design

novel antifungal drugs as well as make use of host-directed

strategies to combat PA and to improve the clinical outcomes of

inflicted patients.

Despite being a novel field, the current paradigm suggests that

communities of microbes living on various epithelial surfaces,

known as microbiome, are linked to an array of complications in

humans and dysregulation in the composition of such

communities, known as microbiome dysbiosis, can have

profound impact on predisposition to various infections and

complications ranging from pulmonary infections and cancer to

diabetes and neurological disorders (15–19). On the one hand, the

application of fecal microbial transplantation from healthy donors

to patients was found to be promising against a wide range of

ailments. On the other hand, human complications are often

accompanied by microbiome alterations, and as such,

determination of the microbiome signature could potentially

offer a robust diagnostic tool, and its leverage could
Frontiers in Immunology 02
subsequently aid in timely and effective treatment. For instance,

Hérivaux et al. (20) reported that microbiome diversity was found

to predict IPA onset and the mortality rate associated with this

complication. Apart from scattered studies reported thus far, the

association of the human microbiome with PA remains largely

elusive. Determination of a clear picture of the healthy

microbiome and dysbiosis in the context of PA could

potentially enhance the therapeutic capacity; therefore, the

current study thoroughly discusses and links the human

microbiome to PA.

Although the microbiome composition of the lung remained

elusive in early times, the development of quantitative molecular

sequencing methods has identified a complicated microbial

community inhabiting the lung, known as the lung

microbiome (21). The lung microbiome is associated with

immune activation and regulation (22); it is also known to

diverge substantially between healthy (23) and diseased states

(24, 25). Dysbiosis of the lung microbiome is related to the

exacerbations of several respiratory diseases such as

bronchiectasis, cystic fibrosis (CF), and chronic obstructive

pulmonary disease (26–28). The components and metabolites

of the gut microbiome can also influence immune responses

(29). Intestinal dysbiosis has been linked to alterations in host

immunity and disease development, including respiratory

diseases (30). Moreover, numerous pieces of evidence support

the key contribution of the microbiome in the prevention and

treatment of respiratory diseases. Gram-negative bacilli

(Pseudomonas aeruginosa, Acinetobacter baumannii, and

Escherichia coli, etc.) that colonize the lungs usually cause

nosocomial pneumonia. Antimicrobial therapy improves the
Air-borne transmission

Malignancy

Organ transplantation
Pulmonary 
aspergillosis Automminue disease

Inflammatory conditations

SFB

Probiotics

C. albicans

The release of rhamnolipids

The release of VOCs
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FIGURE 1

Interaction between the microbiome and PA. Aspergillus spp. conidia usually enter the human body through air-borne transmission. The
colonization and infection of Aspergillus spp. have dramatically increased, considering the growing numbers of patients with an impaired
immune state associated with the treatment of malignancy, organ transplantation, autoimmune diseases, and inflammatory conditions (4, 5).
The development of PA is influenced by composition and metabolites of the lung and gut microbiomes (e.g., VOCs, rhamnolipids, strict
anaerobes, SFB, probiotics, C. albicans). ↑: increase; ↓: decrease.
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outcome of nosocomial pneumonia (31). Gut commensal

microbiome regulate immune responses in the respiratory

mucosa and resist respiratory virus infections (32). Although

the significance of the microbiome has already been established

in respiratory diseases, the mechanisms by which the lung and

gut microbiomes influence PA are relatively unknown (33, 34).

Considering this, in this review, we aim to discuss the role of the

lung and gut microbiomes in the growth of Aspergillus spp. and

host immunity (Figure 1, Table 1). We hope it will serve as a vital

foundation for the further analysis of the interactions between

immunity, the microbiome, and PA. Moreover, our review will

contribute to the development of a more reliable clinical

treatment for PA.
Advances in immunity to
pulmonary aspergillosis

Conventionally, a few members of the Aspergillus spp. have

reached the alveoli and exposed the cell wall pathogen-associated

molecular patterns, such as b-D-glucan (52, 53). In

immunocompetent individuals, different pattern recognition

receptors (PRRs) include Toll-like receptors, C-type lectin

receptors (CLRs), and Nod-like receptors. PRRs can recognize

Aspergillus spp. and initiate an early immune response (54). For

instance, Dectin-1, a CLR, recognizes fungal b-glucan and

modulates the inflammatory responses by inducing the

expression of the anti-inflammatory cytokine interleukin (IL)-10

(55). Subsequently, innate immune cells (macrophages, neutrophils,

etc.) actively participate in the cellular immune responses against

Aspergillus spp. by engulfing and killing the conidia. As the main

resident leukocytes in the lungs, alveolar macrophages can rapidly

adhere to and take up conidia that enter the alveolar space (56). In
Frontiers in Immunology 03
contrast to delayed killing mediated by alveolar macrophages,

neutrophilic granulocytes rapidly kill hyphae of Aspergillus spp.

through an active oxygen-dependent mechanism at the cell surface

(57). These innate immune responses constitute the first line of

defense against pulmonary host defense and the natural and

chemical barriers of the organism.

Nonetheless, for patients with chronic respiratory disease or

impaired immune function (e.g., neutropenia), these innate

immune responses do not function normally leading to

Aspergillus spp. colonization and infection. In this case, the

adaptive immune responses are activated. CD4 (including Th1,

Th2, Th17, etc.) or CD8 T-cell responses play a critical role in PA.

After infection with Aspergillus spp., Th1 cells enhance the

antifungal activities of macrophages and neutrophils and

express the pro-inflammatory cytokines TNF-a and IFN-g (58).
Conversely, Th2 cell activation inhibits Th1 cell responses. Allard

et al. (59) reported a direct airway exposure to Aspergillus spp.

Lysates boost the Th2 cell responses in the lungs of mice, resulting

in symptoms similar to those of ABPA. Symptoms include

eosinophilic inflammation, mucus hypersecretion, and increased

airway resistance. In contrast, the role of Th17 cell responses in

Aspergillus spp. infection is debatable. IL-17 and IL-23 produced

by Th17 cells can suppress Th1-mediated protective immunity

against fungi and increase susceptibility to Aspergillus spp. in mice

(60). However, some studies have concluded that IL-17 is involved

in protective responses against PA. For example, Werner et al.

(61) observed that the neutralization of IL-17 significantly

impaired A. fumigatus clearance. In summary, innate and

adaptive immune responses help host resistance against PA.

Relevant advances have been made in devising

immunotherapeutic strategies for PA. Among the innate

immune responses, Bruton’s tyrosine kinase (BTK), a key

molecule in multiple signaling pathways, activates fungal
TABLE 1 The possible mechanisms underlying the effects of the lung and gut microbiomes on PA.

Microbial
colonization site

Alterations in the microbiome Possible mechanism References

Lung P. aeruginosa or other gram-negative bacteria Release of VOCs to stimulate the growth of A. fumigatus without direct
contact.

(35, 36)

P. aeruginosa Release of rhamnolipids to inhibit the growth of A. fumigatus by direct
contact.

(37)

Gut

The variety of bacteria declines, whereas fungi increase
quickly

Worsen the prognosis of IPA. (20)

The increase of strict anaerobes Reduces the risk of PA by limiting the expansion of pathogenic
Proteobacteria.

(38, 39)

SFB

Probiotics

Stimulate lung autoimmunity by inducing IL-1 receptor ligands and
Th17 cells.
Affect immune cells or release metabolites to inhibit the development of
PA.

(40–42)

(43–47)

Gut microbiome disrupted by antibiotics The overgrowth of C. albicans induces cross-reactive Th17 cells to
promote ABPA.

(48–51)
fr
VOCs, volatile bacterial organic compounds; IPA, invasive pulmonary aspergillosis; SFB, segmented filamentous bacteria; PA, pulmonary aspergillosis; ABPA, allergic bronchopulmonary
aspergillosis.
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recognition immune responses. The clinical application of BTK

inhibitors is to impair several immune functions of platelets in

response to A. fumigatus and increases the risk of invasive

aspergillosis in patients with chronic lymphocytic leukemia (62).

Among the adaptive immune responses, from a neutropenia

perspective, transfusable neutrophil progenitors serve as new

cellular therapies for the prevention of IPA. This treatment

produces unlimited numbers of homogenous granulocyte-

macrophage progenitors, greatly improving survival in models

of PA (63). Although an increasing number of new therapeutic

strategies are being discovered, most of the studies are still limited

to animal experiments. Whether these therapeutic strategies are

applicable to humans remains uncertain and cannot be

extrapolated directly. Thus, further studies are needed to

determine how the immune system functions during Aspergillus

spp. infection. Researchers should strive to translate these findings

into valuable therapeutic tools for clinical settings.
Effects of the lung microbiome on
pulmonary aspergillosis

Lung bacteria are vital in protecting against PA. Pseudomonas

aeruginosa and A. fumigatus frequently coexist in the lungs. These

two species have competitive interactions that can influence the

growth of the microbiome and disease outcomes. Volatile bacterial

organic compounds (VOCs) produced by P. aeruginosa or other

gram-negative bacteria (e.g., E. coli and Burkholderia cepacia) can

stimulate the growth ofA. fumigatuswithout direct contact (35, 36)

(Figure 1, Table 1). Li et al. (64) identified VOCs that can be used

as biomarkers for differential diagnosis and therapeutic response

prediction in patients with CPA. In contrast, A. fumigatus biofilm

formation is inhibited by direct contact with P. aeruginosa (65).

Pseudomonas aeruginosa showed a strong association with A.

fumigatus hyphae. When P. aeruginosa is in direct contact with

A. fumigatus, the diffusible extracellular molecules produced by P.

aeruginosa disrupt its growth. Specifically, rhamnolipids secreted

by P. aeruginosa block fungal b1,3 glucan synthase activity.

Rhamnolipids inhibit the growth of A. fumigatus in in vitro

experiments (37) (Figure 1, Table 1). Moreover, Hérivaux et al.

(20) observed a loss of bacterial diversity and overgrowth of

bacteria (e.g., Staphylococcus, Escherichia, Paraclostridium, and

Finegoldia genera) in the lungs of patients with IPA. These

changes in the lung microbiome were predictive of disease

outcomes across IPA. In summary, there were complex reactions

between lung bacteria and A. fumigatus. The growth of A.

fumigatus may be regulated by lung bacteria, which, in turn,

affects the severity of PA. Most of the studies were conducted in

the context of CF, which has some similarities to the regulation of

A. fumigatus growth by lung bacteria during PA; however, further

validation is needed.

However, little is known about the direct regulation of PA by

lung fungi. Several studies have focused on fungi that interact
Frontiers in Immunology 04
with lung bacteria and indirectly influence PA. Candida albicans

colonization of the airway increases the prevalence of P.

aeruginosa in rat lungs by inhibiting the production of reactive

oxygen species by alveolar macrophages (66). An increase in the

prevalence of P. aeruginosa in the lungs is likely to accelerate the

growth of A. fumigatus and induce PA. Additionally, some

studies have shown that changes in the composition of the

lung microbiome can predict the survival of patients with IPA.

On the one hand, the variety of lung bacteria declines, whereas

lung fungi increase quickly. These changes worsen the prognosis

of patients with IPA (20) (Table 1). On the other hand, the

increase in strict anaerobes in the lungs reduces the risk of A.

fumigatus infection by limiting the expansion of pathogenic

Proteobacteria (38, 39) (Figure 1, Table 1). Notably, the lung

microbiome has been shown to play a role in the regulation of A.

fumigatus growth and even influence the progression of PA.

However, studies on how the lung microbiome affects PA remain

inadequate. As a potential treatment for PA, there is immense

potential for future research on the lung microbiome.

The role of the lung microbiome in PA is probably largely

underestimated because of non-specific and insensitive sampling

and diagnostic tools. Compared with the gut microbiome, the

lung microbiome is not easy to obtain and has low microbial

biomass (67). Owing to the existence of physiological processes

(e.g., aspiration), it is difficult to avoid the oral microbiome when

trying to isolate the lung microbiome (23, 68). Deep sputum

conjoint culture has been shown to distinguish oropharyngeal

flora from lung fungi and diagnose lung fungal infections early

(69). Pragman et al. (68) concluded that the lung lobectomy

protocol utilized is well suited for obtaining reasonable non-

invasive samples. Among the several methods used to obtain

lung microbiome samples, bronchoscopy may cause sample

contamination, but its effects are largely negligible (23). Micro-

anatomical differences exist in the lung microbiome. Different

parts of the lungs of the same individual have different

microbiomes (70). In addition, individuals from different

regions can also contain different lung microbiomes (71, 72).

Rapid advances in technology have helped advance the study of

the lung microbiome; however, several related problems exist

owing to the lack of standardization. Diagnostic tools include

high-throughput sequencing, phylogenetic microarray analysis,

terminal restriction fragment length polymorphism, and

amplicon length heterogeneity-polymerase chain reaction. The

results obtained by different analytical methods vary (73, 74). In

conclusion, many studies on the lung microbiome have been

limited by small sample sizes, different sample collection

techniques, different sampling sites, different regions of the

subjects, and different analysis techniques. These limitations

make it difficult to compare the results of the different studies.

The impact of the lung microbiome on PA is an emerging area

that needs further exploration and validation. Moreover, to

better assess different studies and acquire reliable findings,

continued research in this field is likely to establish a
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standardized method for obtaining and analysing the

lung microbiome.
Role of the gut microbiome in
pulmonary aspergillosis

Bacteria colonizing the intestinal mucosa are involved in the

maintenance of host immune homeostasis. Normal immune

homeostasis further helps the host remove invasive fungi from

the outside world. Ivanov et al. (40) found that segmented

filamentous bacteria (SFB) can colonize the surface of the

ileum in mice and induce intestinal CD4(+) T helper cells to

produce IL-17 and IL-22 (Th17 cells). Furthermore, during

fungal infections, SFB can induce lung autoimmunity by

stimulating the systemic release of IL-1 receptor ligands and

inducing gut-lung axis Th17 cells expressing dual TCR (41, 42)

(Figure 1, Table 1). Mice infected with A. fumigatus show

changes in the diversity of their gut bacteria, which affects

intestinal immune tolerance and predisposes them to intestinal

inflammation (75).

Probiotics are promising new targets for antifungal

treatments. Probiotics can influence the constituents of the gut

microbiome by directly affecting immune cells or releasing

health-promoting metabolites, which, in turn, affects systemic

immunity (43) (Figure 1, Table 1). For example, oral treatment

with live Lactobacillus reuteri and Bifidobacterium longum

reduces allergic airway reactions (e.g., ABPA) by increasing

the number of Tregs in the lungs (44, 45). Oral administration

of bacteria expressing high levels of a-Gal can protect turkeys

against an infectious challenge with A. fumigatus by reducing the

levels of lung anti-a-Gal IgA (46). Despite the lack of oral

experiments, the E. coli DH5a strain also inhibited the

development of A. fumigatus conidia in in vitro experiments

(47). In summary, understanding the interaction between gut

bacteria and host immunity provides a potential therapeutic

strategy for the treatment of PA.

Studies have revealed the existence of cross-protective

immunity between A. fumigatus and C. albicans. The

gastrointestinal system of mice treated with C. albicans was

protected against IPA and vice versa. In addition, cross-

protection between A. fumigatus and C. albicans is mediated by

Th1 immunity and dependent on IFN-g. IFN-g-deficient mice

vaccinated with A. fumigatus or C. albicans show no reduced

fungal growth in the lungs or the gastrointestinal system,

respectively (76). Noverr et al. (48–50) demonstrated that

antibiotic treatment changed the composition of the gut

microbiome, causing overgrowth of intestinal bacteria and C.

albicans in mice. As a result, Aspergillus-infected mice were

more sensitive to CD4 T cell-mediated pulmonary allergic

airway responses (e.g., ABPA). The reason for this may be that

the overgrowth of C. albicans increases plasma concentrations of
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prostaglandin E2 (PGE2) and induces M2 macrophage

polarization in the lungs (77). PGE2 is required for the Th17

response, and C. albicans is the major fungal inducer of human

Th17 responses (51, 78). Global antifungal Th17 modulation by C.

albicans promotes pathogenic airway inflammation triggered by

A. fumigatus in susceptible patients via the selective recruitment of

cross-reactive Th17 cells (51) (Figure 1, Table 1). Particularly,

even if mice are exposed to Aspergillus spp., allergic reactions will

not occur in the airways if the gut microbiome is not damaged by

antibiotics (49, 50). Advances in the understanding of the

relationship between the increase in intestinal C. albicans and

the occurrence of ABPA have highlighted the importance of gut

fungi in maintaining host immunity and resistance to Aspergillus

spp. Nevertheless, there is still some confusion and defects in the

mechanisms by which gut fungi regulate pulmonary immunity

after infection with Aspergillus spp. This should be further

explored in the future and should not be limited to C. albicans.
Discussion

The microbiome plays an important role in the prevention of

PA by inhibiting the growth of Aspergillus spp. or by increasing

host immunity. However, this new research field poses several

technical challenges and unanswered questions. Thus far, there

is a lack of standardized sampling of the lungs and uniform

sequencing techniques for the identification of the lung

microbiome (79). Subsequently, many questions remain

unanswered regarding the interaction of the lung microbiome

with the gut microbiome during Aspergillus spp. infection (80).

The influence of the lung and gut microbiomes on healthy and

immunocompromised individuals during Aspergillus spp.

infection remains unclear (81). Further studies focused on

these issues will contribute to a better understanding of the

effect of the microbiome and immune system on PA. The

development of PA will lead to the development of novel

treatment strategies.
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