
The RING finger ATPase Rad5p of Saccharomyces
cerevisiae contributes to DNA double-strand break
repair in a ubiquitin-independent manner
Shuhua Chen1,2, Adelina A. Davies2, Daniel Sagan1 and Helle D. Ulrich1,2,*

1Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Strasse, D-35043 Marburg, Germany and 2Cancer
Research UK, London Research Institute, Clare Hall Laboratories, Blanche Lane, South Mimms, Herts EN6 3LD, UK

Received August 17, 2005; Revised and Accepted September 28, 2005

ABSTRACT

Tolerance to replication-blocking DNA lesions is
achieved by means of ubiquitylation of PCNA, the
processivity clamp for replicative DNA polymerases,
by components of the RAD6 pathway. In the yeast
Saccharomyces cerevisiae the ubiquitin ligase (E3)
responsible for polyubiquitylation of the clamp is
the RING finger protein Rad5p. Interestingly, the
RING finger, responsible for the protein’s E3 activity,
is embedded in a conserved DNA-dependent ATPase
domain common to helicases and chromatin remod-
eling factors of the SWI/SNF family. Here, we demon-
strate that the Rad5p ATPase domain provides
the basis for a function of the protein in DNA
double-strand break repair via a RAD52- and Ku-
independent pathway mediated by the Mre11/Rad50/
Xrs2 protein complex. This activity is distinct and sep-
arable from the contribution of the RING domain to
ubiquitin conjugation to PCNA. Moreover, we show
that the Rad5 protein physically associates with the
single-stranded DNA regions at a processed double-
strand break in vivo. Our observations suggest that
Rad5p is a multifunctional protein that—by means
of independent enzymatic activities inherent in its
RING and ATPase domains—plays a modulating
role in the coordination of repair events and replica-
tion fork progression in response to various different
types of DNA lesions.

INTRODUCTION

DNA as a chemically reactive molecule is subject to a variety
of insults from exogenous as well as endogenous sources that

require distinct strategies for their removal. One of the most
dangerous DNA lesions is a double-strand break (DSB), which
can be caused by ionizing radiation and also results from
replication over single-strand breaks or from enzymatic activ-
ities during developmental processes such as meiosis, yeast
mating type switching or the generation of diversity within the
immune system. When left unrepaired, a DSB can cause per-
manent cell cycle arrest and ultimately cell death. Accord-
ingly, several distinct mechanisms exist for its repair (1,2).
On the one hand, a DSB can be repaired by direct ligation in a
process termed non-homologous end-joining (NHEJ), usually
but not exclusively mediated by the Ku heterodimer, which
binds to double-stranded DNA ends and facilitates ligation (3).
Unless the termini are compatible and cohesive, NHEJ gen-
erally results in sequence deletions of varying sizes. On the
other hand, accurate restoration of the broken ends can be
achieved by means of homologous recombination (HR), pro-
vided that homologous sequences are present elsewhere in the
genome (4). Finally, in a process called single-stranded
annealing (SSA), internal complementary sequences on both
sides of the break can anneal with each other in order to be
ligated, resulting in the loss of intervening sequence (2). In
yeast HR and SSA depend on the recombination factor
Rad52p, which initiates the search for homology. Implicated
in both HR and NHEJ is the multifunctional protein complex
of Mre11p, Rad50p and Xrs2p (the MRX complex), which
comprises both exo- and endonucleolytic as well as strand
annealing activities (5–7).

In addition to those systems that remove lesions cells also
possess mechanisms of damage bypass that enable them to
complete DNA replication in the presence of unrepaired dam-
age. The enzymatic system that controls damage bypass, the
RAD6 pathway (8–10), comprises members of the ubiquitin
conjugation system that cooperate in the modification of the
eukaryotic processivity clamp for DNA polymerases, PCNA
(encoded in yeast by POL30). Upon treatment of cells with
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DNA-damaging agents, PCNA is monoubiquitylated at a sin-
gle lysine residue by a complex of the ubiquitin-conjugating
enzyme (E2) Rad6p and the RING finger ubiquitin protein
ligase (E3) Rad18p (11), resulting in the activation of
damage-tolerant polymerases for translesion synthesis in
yeast and mammalian cells (12–14). Monoubiquitylated
yeast PCNA can be polyubiquitylated by the action of a second
E2–E3 pair, the heterodimeric E2 Ubc13p-Mms2p in complex
with the RING finger E3 Rad5p (11). By an unknown mech-
anism, this form of PCNA activates an error-free damage
avoidance pathway that is believed to involve a switching
of the replication machinery to the undamaged sister chro-
matid.

Several lines of evidence suggest a function of yeast Rad5p
beyond its activity in damage tolerance. Deletion of RAD5
results in considerably higher sensitivities toward various
types of DNA damage than deletion of UBC13 or MMS2
(15). Furthermore, rad5 mutants display several other pheno-
types that are not shared by mutants of its cognate E2: they are
highly sensitive to ionizing radiation (16), display elevated
rates of spontaneous mitotic recombination and gross chromo-
somal rearrangements (17,18) but increased stability of simple
repetitive sequences (19) and elevated levels of end-joining
activity in a plasmid gap repair assay designed to distinguish
between HR and NHEJ (20). Based on these observations it
has been suggested that Rad5p contributes to DSB repair,
possibly as a positive regulator of HR (20,21). The structure
of the protein is highly unusual for an E3 enzyme: its RING
domain, responsible for E3 activity and E2 interaction (15,22),
is embedded in a conserved helicase-like domain of the SWI/
SNF family, members of which include DNA and RNA
helicases as well as chromatin remodeling factors (19,23)
(Figure 1A). Although there is currently no evidence for a
helicase activity of the purified protein, a single-stranded
DNA (ssDNA)-stimulated ATPase activity of the purified
protein was demonstrated in vitro (24).

Here we show that RAD5 contributes to DSB repair not by
means of HR, but in a RAD52- and Ku-independent pathway
mediated by the MRX complex. This function of RAD5 does
not involve the ubiquitylation of PCNA and appears to be
independent of the protein’s ubiquitin ligase activity. In con-
trast, an intact ATP-binding domain of Rad5p is necessary
for its action in DSB repair. We found that Rad5p physically
associates with the ssDNA regions generated by the processing
of a DSB in vivo. We thus propose that Rad5p acts as a
modulator of DNA repair events that influences the coordina-
tion of strategies used by the cell in response to different types
of lesions.

MATERIALS AND METHODS

Construction of yeast strains and plasmids

Standard protocols were followed for the cultivation of yeast.
A table of strains used for this study and details about their
construction are available as Supplementary Data. Integrative
plasmids bearing wild-type or mutant versions of RAD5
(YIp211-PRAD5-RAD5) have been described previously (22).
The plasmid bearing the rad5(GAA) mutant was constructed
analogously. Mutation of amino acids K538 and T539 to alan-
ine was accomplished by PCR. Two-hybrid vectors bearing

Figure 1. Characterization of a mutant in the RAD5 ATP-binding domain.
(A) Domain structure of Rad5p. Conserved sequence motifs are indicated above
the protein, sites of mutations relevant for this study below. (B) A mutant in the
RAD5 ATP-binding motif, rad5(GAA), displays partial UV sensitivity that is
additive to that of the E2 mutant ubc13. Survival after UV irradiation (254 nm)
is plotted on a logarithmic scale. Error bars (standard deviations from four
independent experiments) are indicated where they exceed the size of the
plot symbols. Symbols: solid squares, wt; open squares, rad5; open circles,
rad5(GAA); closed triangles, ubc13; open triangles, ubc13 rad5(GAA). (C)
Mutation of the ATP-binding motif of Rad5p abolishes none of the associations
relevant for ubiquitin conjugation. Interactions of the wild-type and the mutant
protein with itself, Rad18p, Ubc13p and PCNA (encoded by POL30) were
analyzed in the two-hybrid system. Positive interactions were detected by
growth on histidine-free medium (�His). Fusions to the GAL4 activation and
DNA-binding domains in the two-hybrid constructs are designated AD and BD,
respectively. (D) The ATP-binding motif of Rad5p is not required for polyu-
biquitylation of PCNA. His-tagged PCNA (P) and its modified forms were
detected by western blot after Ni-NTA pull-downs under denaturing conditions
with or without treatment with 0.02% MMS in the indicated strains. (E) Western
blot analysis of strains bearing chromosomally 9myc-tagged versions of the
RAD5 ORF indicates reduced protein levels in the rad5(GAA) mutant compared
to wt RAD5. Blots were re-probed with antibodies to phosphoglycerate kinase
(PGK) as a loading control.
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the mutant RAD5 gene or POL30 were constructed by insert-
ing the respective open reading frames (ORFs) into pGAD424
and pGBT9 (Clontech). All other two-hybrid constructs have
been described previously (15). Plasmid YCp111-LacZ::HIS3
is based on the centromeric shuttle vector YCplac111 into
which the MET3 promoter, the LacZ ORF and a pGBT9-
derived transcriptional terminator sequence was inserted.
The HIS3 marker was inserted into the unique SacI site of
the LacZ gene. Details about the plasmids and primers used are
available upon request.

Measurements of sensitivities toward
UV and gamma irradiation

Sensitivities toward UV irradiation were determined as
described previously (15). For the determination of gamma
sensitivities exponential yeast cultures were diluted and plated
onto YPD at a density of approximately 200 cells/plate or
at higher density, depending on the sensitivity of the strain.
The plates were irradiated with a 137Cs source at a dose rate
of 0.8 Gy/min. The plates were incubated at 28 or 30�C for
3 days, and the number of survivors was determined by colony
counting. Averages and standard deviations were calculated
from four independent experiments.

Detection of PCNA modifications

Ubiquitylated PCNA was detected in strains in which the
endogenous POL30 gene was replaced by a His-tagged ver-
sion. Extracts were prepared and Ni-NTA affinity pull-downs
were performed under denaturing conditions as described pre-
viously (12). For the detection of PCNA modifications in
response to methyl methanesulfonate (MMS) exponential cul-
tures were treated for 90 min with 0.02% MMS, and total
extracts were prepared by trichloroacetic acid precipitation.
Western blots were developed with an affinity-purified poly-
clonal anti-PCNA antibody. For the analysis of PCNA after
introduction of EcoRI-mediated DSBs, a plasmid harboring
the endonuclease under the control of the GAL1 promoter,
YCpGal-RIb, was introduced (25), and the expression was
induced by shifting the cells from selective glycerol to galac-
tose medium for 3 h before extract preparation. Shifting to
glucose medium served as a negative control. Flow cytometry
was used to confirm the growth arrest induced by the nuclease.

Two-hybrid assays

Protein–protein interactions were analyzed in the two-hybrid
system using the reporter strain PJ69-4A as determined pre-
viously (15). Growth on histidine-free medium was used as an
indicator for positive interactions.

Plasmid repair assays

Plasmid YCp111-LacZ::HIS3 was digested with SacI. A mock
digestion reaction was set up in parallel without adding
enzyme. Both mixtures were used to transform yeast cells
(2.5 mg DNA per 108 cells), and several dilutions of the trans-
formation mixtures were plated onto leucine-free medium and
incubated at 28�C for 3–4 days in order to determine trans-
formation efficiencies of linear and circular vector. Plates with
a convenient number of colonies were examined for the
expression of b-galactosidase by an X-gal agarose overlay
assay. White colonies were picked through the layer of agar

and streaked onto histidine-free selective plates, and the num-
ber of HIS-prototrophic colonies was subtracted from the
count of total and white colonies. This step proved necessary
in those strains with very low overall repair efficiencies. Events
of double transformations of isolated HIS3 fragment and
digested vector were too rare to affect the results (S. Chen
and H. D. Ulrich, unpublished data). Transformation efficien-
cies were calculated as the ratio of colonies arising from
SacI-digested versus circular plasmid, and the percentage of
incorrect repair products was determined as the ratio of white
to the total number of LEU+ colonies after transformation with
linearized plasmid. The assay was performed at least three
times for each strain for the determination of averages and
standard deviations, and for all strains the analysis was based
on more than 1000 colonies in total derived from transforma-
tion with linear DNA.

Chromatin immunoprecipitation (ChIP)
and multiplex PCR

In a strain background harboring a galactose-inducible HO
gene, proteins of interest were modified by a C-terminal
9myc-epitope introduced as a sequence tag within the original
genomic context and were found to be active in vivo. Cells
were grown in YP-glycerol medium at 28 or 30�C to an OD600

of�1.7, and galactose was added to a final concentration of 2%
(w/v). At various times after induction, samples of �2 · 109

cells were collected and subjected to ChIP. The method for
formaldehyde-mediated crosslinking and islolation of DNA
was adapted from published protocols (26). The detailed pro-
cedure is available as Supplementary Data. Multiplex PCR
was performed with samples of input and precipitated DNA,
using primer pairs that amplified regions of 298 and 263 bp on
either side of the break (Z region, 50-TTATAGAGTGTGGTC-
GTGGC-30/50-CCCGTATAGCCAATTCGTTC-30 at 0.5 mM;
and Ya region, 50-TGAGCATGTGAGGCCAAGCTG-30/
50-TCAGCGAGCAGAGAAGACAA-30 at 0.26 mM) and a
primer pair that amplified 218 bp of the ACT1 gene
(50-TGGATTCCGGTGATGGTGTT-30/50-TTGTTCGAAGT-
CCAAGGCGA-30 at 0.26 mM). Reactions were run for 30
cycles with an annealing temperature of 52�C, and products
were analyzed by agarose gel electrophoresis.

RESULTS

Polyubiquitylation of PCNA does not require
the ATPase activity of Rad5p

We wished to determine whether the putative function of
Rad5p in DSB repair was genetically separable from the pro-
tein’s involvement in ubiquitin conjugation. In order to assess
the role of its ATPase activity in this process we constructed a
mutant in which the conserved ‘GKT’ sequence (amino acids
537–539) within the ATP-binding motif, the Walker type A
box, was changed to ‘GAA’ (Figure 1A). Mutation of the
conserved lysine within this motif had previously been
shown to abolish all ATP-binding and hydrolytic activity in
related ATPases (27–29). The resulting mutant, rad5(GAA),
exhibited a mild UV sensitivity intermediate between that of
the wt and a rad5 deletion (Figure 1B). Importantly, its sens-
itivity was additive to that of a ubc13 mutant, suggesting a
defect in a repair pathway distinct from the PCNA-mediated
error-free damage tolerance system.
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As shown in Figure 1C, two-hybrid analysis revealed no
defect in the association of the mutant protein with its inter-
action partners relevant for PCNA modification, Rad18p,
Ubc13p, Rad5p itself and PCNA (11,15), suggesting that
the overall structure of the protein is not grossly disturbed
by mutation of its ATP-binding motif. We, therefore, directly
examined whether DNA damage-induced ubiquitylation of
PCNA occurred normally in the rad5(GAA) mutant. Upon
treatment with MMS, PCNA polyubiquitylation was indeed
observable in rad5(GAA) cells (Figure 1D). The lower levels
of modified PCNA in the ATPase mutant may be due to a
reduced in vivo concentration of the mutated protein
(Figure 1E). This effect may also account for part of the
UV sensitivity of the rad5(GAA) mutant; however, the addit-
ive relationship between rad5(GAA) and ubc13 argues that the
observed phenotype is not exclusively due to reduced expres-
sion levels. In addition, the purified ATPase mutant protein
was equally potent in stimulating Ubc13p-dependent ubiquitin
chain synthesis as wild-type Rad5p (J. Parker and H. D. Ulrich,
unpublished data), indicating that an intact ATP-binding motif
is indeed dispensable for ubiquitin ligase activity of Rad5p.

The Rad5p ATP-binding domain, but not the RING
finger, is required for DSB repair

Whereas the rad5(GAA) mutant was only partially sensitive to
UV irradiation, its sensitivity toward ionizing radiation was
comparable to that of a rad5 deletion (Figure 2A and B). In
contrast, a previously characterized mutation in the RING
domain, rad5(I916A), which abolishes E2 interaction and
causes a UV sensitivity comparable and epistatic to ubc13
(22), did not render the cells sensitive toward gamma irradi-
ation (Figure 2A). This indicates that an intact RING finger,
the prerequisite for E3 activity, is not required for Rad5p
function in DSB repair. Similarly, deletion of UBC13 or muta-
tion of the ubiquitylation site of PCNA, K164, did not result in

significant sensitivity toward gamma irradiation, suggesting
that ubiquitylation of PCNA is not important for efficient DSB
repair (Figure 2B). Conversely, introduction of DSBs into the
yeast genome by means of overexpression of the restriction
endonuclease EcoRI did not result in detectable PCNA ubi-
quitylation, although it induced a complete growth arrest
(Figure 2C). Taken together, these results demonstrate that
RING-dependent polyubiquitylation of PCNA in cooperation
with Ubc13p on the one hand and the ATP-dependent con-
tribution to DSB repair on the other hand are distinct and
separable functions of Rad5p.

RAD5 contributes to a DSB repair pathway
dependent on the MRX complex

Whereas in the context of DNA damage tolerance the activity
of Rad5p is strictly dependent on the presence of the ubiquitin
ligase Rad18p, which catalyzes the attachment of the first
ubiquitin moiety to PCNA, the two proteins appear to fulfill
separate roles in DSB repair, judging by the additive effects of
rad5 and rad18 mutants on gamma sensitivity shown in
Figure 3A and observed previously (16). Based on the pheno-
type of rad5 mutants, it had been suggested that Rad5p may act
as a positive regulator of recombination (20,21). In this case,
an epistatic relationship would be expected between rad5 and
mutants in recombination genes such as rad52 and rad51 with
respect to their sensitivity toward ionizing radiation. However,
we found instead that the effect of rad5 on gamma sensitivity
was additive to that of both rad51 and rad52, suggesting that
RAD5 contributes to a pathway of DSB repair distinct from
RAD52-dependent HR (Figure 3B). A similar relationship was
observed between HR mutants and rad18 (Figure 3C).

We next examined the effect of the repair genes MRE11,
RAD50 and XRS2, which appear to be involved in both HR and
NHEJ (5–7). Deletion of RAD5 in an mre11 mutant did not
result in an increased gamma sensitivity compared with the

Figure 2. Consequences of DSBs for aspects of Rad5p function. (A) The rad5(GAA) mutation, but not the rad5(I916A) RING finger mutation, confers sensitivity to
ionizing radiation. Survival was determined after gamma irradiation of the indicated strains in four independent experiments. Error bars indicate standard deviations.
Symbols: closed squares, wt; open squares, rad5; open circles, rad5(I916A); open triangles, rad5(GAA). (B) Defects in PCNA ubiquitylation do not lead to gamma
sensitivity. Assays were performed as in (A), using a different strain background (see Supplementary methods and table). Symbols: closed squares, wt; closed
triangles, ubc13; closed circles, pol30(K164R); open squares, rad5; open circles, rad5(GAA). (C) Induction of a DSB in the yeast genome by means of the
endonuclease EcoRI does not result in ubiquitylation of PCNA. Yeast cells harboring His-tagged yeast PCNA (P) were grown in glycerol medium, transferred to
either glucose (D) or galactose (G) medium and treated with 0.02% MMS as indicated. Where indicated, cells carried a plasmid encoding a galactose-inducible EcoRI
endonuclease gene (YCpGal-RIb). Isolation and detection of His-tagged PCNA and its modified forms was performed as shown in Figure 1D. DNA contents were
analyzed by flow cytometry to confirm cell cycle arrest upon treatment with MMS or induction of the nuclease.

Nucleic Acids Research, 2005, Vol. 33, No. 18 5881



mre11 single mutant, indicating that the function of RAD5 in
DSB repair depends on the presence of MRE11 (Figure 3D).
Consistent with the action of Mre11p in a complex with
Rad50p and Xrs2p, the same epistatic relationship was
found between rad5 and rad50 or xrs2, respectively
(Figure 3E and F). In contrast, a rad18 deletion had an additive
effect on mutants of both mre11 and rad50 (Figure 3G and H),

again indicating that RAD18 acts independently of RAD5 in
DSB repair.

Finally, an involvement of RAD5 in Ku-dependent NHEJ
was deemed unlikely because deletion of YKU70 enhanced
the radiation sensitivity of a rad5 mutant (Figure 3I). The
same effect had previously been observed for rad52 (30).
Again, a RAD18-independent function is suggested by these

Figure 3. Genetic analysis of the gamma sensitivities of rad5 and rad18 mutants. Survival after exposure to ionizing radiation was determined in the indicated strains
as in Figure 2A. (A) Closed squares, wt; open squares, rad5; closed circles, rad18; open circles, rad5 rad18. (B) Closed squares, wt; open squares, rad5; closed circles,
rad51; open circles, rad5 rad51; closed triangles, rad52; open triangles, rad5 rad52. (C) Closed squares, wt; open squares, rad18; closed circles, rad51; open circles,
rad18 rad51; closed triangles, rad52; open triangles, rad18 rad52. (D) Closed squares, wt; open squares, rad5; closed circles, mre11; open circles, rad5 mre11.
(E) Closed squares, wt; open squares, rad5; closed circles, rad50; open circles, rad5 rad50. (F) Closed squares, wt; open squares, rad5; closed circles, xrs2; open
circles, rad5 xrs2. (G) Closed squares, wt; open squares, rad18; closed circles, mre11; open circles, rad18 mre11. (H) Closed squares, wt; open squares, rad18; closed
circles, rad50; open circles, rad18 rad50. (I) Closed squares, wt; open squares, yku70; closed circles, rad5; open circles, rad5 yku70; closed triangles, rad18; open
triangles, rad18 yku70.
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observations, as deletion of YKU70 did not have an obvious
effect on a rad18 mutant (Figure 3I). Thus, our data indicate
that RAD5 cooperates with MRE11, RAD50 and XRS2 in
an aspect of their function that is independent of RAD52-
dependent HR and Ku-mediated NHEJ.

RAD5 contributes to the ligation of compatible
cohesive DNA termini in vivo

As the MRX complex is implicated not only in Ku-dependent
NHEJ, but also in a Ku-independent pathway, we used a plas-
mid repair assay to examine a possible contribution of RAD5
to NHEJ. Although Ku-independent activity of MRE11 as well
as RAD5-dependent effects on HR and NHEJ were previously
demonstrated with non-compatible ends (20,31), we chose an
assay based on the recircularization of a linearized plasmid
with compatible, cohesive 30 overhangs without homology to
genomic sequences (Figure 4A), because similar systems have
been well characterized with respect to the effects of both
RAD52 and Ku (32), which allows the establishment of
their genetic relationships with RAD5 by epistasis analysis.
In this system, comparison between transformation frequen-
cies of linear versus uncleaved plasmid DNA allows an
estimation of relative repair efficiencies (Figure 4B), and
the accuracy of the process can be determined by a colony
color assay based on the expression of active b-galactosidase
only upon accurate rejoining of the termini (Figure 4C).

Deletion of RAD52 and YKU70 reproduced the expected
defects in ligation efficiency and accuracy that had been
observed previously (32). We also found a marked reduction
in transformation efficiency and a significant increase in the
percentage of incorrectly joined plasmids in an mre11 mutant,
indicating that MRE11 contributes to accurate joining of com-
patible ends. Moreover, the deletion of MRE11 in a rad52 or
yku70 background strongly exacerbated the effects of the sin-
gle mutants, suggesting that MRE11 indeed functions at least
in part independently of RAD52 and Ku. In fact, the triple
mutant mre11 rad52 yku70 proved inviable, indicating an
essential function to which all three genes contribute inde-
pendently.

RAD5 was previously found to have no significant effect on
ligation of compatible ends (21,33), and although the reduc-
tion in transformation efficiency that we observed in a rad5
mutant was indeed small (comparable to rad52), the propor-
tion of incorrect ligation products was reproducibly enhanced
in our system. Specifically, in yku70 and rad52 yku70 mutants
deletion of RAD5 significantly reduced ligation efficiency and
accuracy in a pattern similar to the mre11 mutant, suggesting
that RAD5 contributes to Ku-independent end-joining. Again,
the rad5(GAA) mutant behaved very similar to the rad5
deletion, implying that the function of the protein in this path-
way is mediated by its ATPase activity. Moreover, rad5 or
rad5(GAA) did not significantly affect the phenotype of an
mre11 mutant, indicating that the genes cooperate in a

Figure 4. Contribution of DNA repair factors to ligation of compatible cohesive plasmid termini. (A) The shuttle vector YCp111-lacZ::HIS3 harbors the
b-galactosidase ORF, interrupted by the HIS3 marker, under the control of the yeast MET3 promoter and a transcriptional terminator (TT). Digestion with SacI
removes the HIS3 marker, and transformation of the linear plasmid into yeast cells followed by selection on leucine-free medium allows the quantification of repair
events. X-gal staining gives rise to blue colonies only when the HIS3 marker has been removed and the SacI sites have been joined accurately. White colonies arising
from transformation with incompletely digested vector can be distinguished from those arising from inaccurate repair by selection on histidine-free medium.
(B) Transformation efficiencies were calculated as the ratio of colonies arising from SacI-digested versus circular plasmid. Numbers greater than 100% result from
the higher uptake efficiency of linear versus circular DNA. Averages and standard deviations were calculated from at least three independent sets of transformations.
(C) The percentage of incorrect repair products after transformation with linearized plasmid was determined as the ratio of white to the total number of LEU+ colonies.
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common pathway. A rad18 deletion by itself did not show
measurable defects in end-joining, and its effect on other end-
joining mutants did not resemble that of rad5 mutants (data not
shown). Finally, ubc13 and pol30(K164R) showed no defects
in the end-joining assay, emphasizing once more that ubiquit-
ination of PCNA plays no role in this process.

Rad5p associates with the ssDNA regions
adjacent to a DSB

In order to assess whether the effect of RAD5 on end-joining
was due to an indirect influence on other repair factors or
whether Rad5p was directly involved at the site of a break,
we monitored the in vivo association of the protein with the
regions adjacent to a DSB by means of ChIP (34) and mul-
tiplex PCR. Similar to previous set-ups (35,36) a galactose-
inducible HO endonuclease was used to introduce a single,
sequence-specific DSB into the MAT locus of a strain in which
repair by HR is impossible. In this well-defined situation, long
stretches of ssDNA with free 30 termini accumulate adjacent to
the DSB over a period of several hours (36,37). According to
their respective preferences for double-stranded DNA termini
or ssDNA, Ku and Rad52p were found to associate with the
DSB region at different times (Figure 5A and B). Consistent
with the ssDNA-binding activity described previously for
Rad5p (24), the protein was detected adjacent to the DSB
with a kinetics similar to that of Rad52p. In contrast,
Rad18p, which had also been characterized as an ssDNA-
binding protein (38), was not found enriched at the DSB
under these conditions, suggesting that the presence of
Rad5p may indeed reflect a physiological relevance rather
than merely a non-specific affinity for ssDNA. Moreover,
association of Rad5p with the break region was dependent
on the presence of Mre11p, but not of Ku, in support of the
genetic interactions established above (data not shown).

DISCUSSION

Rad5p cooperates with the MRX complex in DSB repair

The phenotype of rad5 mutants had long suggested an involve-
ment of the gene in DSB repair (16,17,20,21). We have now
demonstrated that this function of RAD5 is independent of
RAD52-mediated HR or Ku-mediated NHEJ, but instead
depends on the presence of the MRX complex, whose role
in DSB repair is mechanistically not fully understood, despite

the manifold DNA-processing activities reported (5–7). Apart
from its contributions to HR and Ku-mediated NHEJ, the
MRX complex has been implicated in an end-joining pathway
distinct from Ku-dependent ligation (21,31), and our observa-
tion that the activity of RAD5 in the repair of radiation damage
depends on MRE11, RAD50 and XRS2, but is independent
of RAD52, RAD51 and YKU70, provides further support for
an independent role of the MRX complex. Similar genetic
relationships are observed with respect to the rejoining of
compatible cohesive ends, although the effects of RAD5 in
this context are minor and best visible in the absence of the
Ku-dependent end-joining pathway.

Although the association of Rad5p with the regions adjacent
to a DSB suggests an involvement of the protein at the site of
the lesion, its physiological role in repair remains to be determ-
ined. Interestingly, as the MRX complex plays a critical role in
the prevention or repair of replication-associated DSBs even in
the absence of exogenous damage (39,40), the MRX-
dependent function of Rad5p might similarly be relevant dur-
ing DNA replication. Considering the protein’s role in DNA
damage tolerance at replication forks, it is attractive to specu-
late that Rad5p might act not only toward the bypass of a
replication-blocking DNA adduct, but also when a nick in
the template strand threatens to cause a DSB. Rad5p might
thus react to different types of lesions with distinct actions
inherent in its domain structure: in cooperation with Rad18p it
induces a template switch of the replication fork by polyubi-
quitylation of PCNA in the context of error-free damage
avoidance, whereas in the presence of a DSB it might facilitate
Mre11p-dependent rejoining, independent of Rad18p. Based
on this scenario, the RAD6 pathway could be viewed as a
general surveillance system for the replication fork that mon-
itors its progression and initiates the appropriate reaction when
an obstacle is encountered.

Ubiquitin ligase and ATPase activities are
separable aspects of Rad5p function

Importantly, the function of RAD5 in DSB repair can be gen-
etically separated from the protein’s involvement in mediating
DNA damage tolerance by ubiquitylation of PCNA. We have
shown that neither mutation of the PCNA modification site nor
deletion of Rad5p’s cognate E2, Ubc13p, significantly reduce
the performance of the cell in DSB repair. From the notions
that no other yeast E2 is known to cooperate with Rad5p
(H. D. Ulrich, unpublished data) and that a mutant in the

Figure 5. Association of repair factors with regions adjacent to a DSB. (A–D) ChIP assays were used to visualize the binding of the indicated proteins in a time course
of up to 5 h after HO-mediated introduction of a DSB into the MAT locus. After formaldehyde-mediated crosslinking, proteins of interest were precipitated by means
of their C-terminal 9myc-epitope integrated into the genomic locus. After reversal of the crosslinks and isolation of the associated DNA, multiplex PCR was
performed on samples prepared from total cell extracts (input) and from material precipitated with the myc-specific antibody (IP). Precipitations without antibody
(�Ab) served as negative controls. Z and Ya represent regions on either side of the DSB; amplification of a region within the ACT1 gene was used as a control for DNA
unrelated to the DSB.
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E2-binding surface of the Rad5p RING finger, I916A, displays
no hypersensitivity to gamma irradiation either, we conclude
that the protein’s activity in DSB repair is in fact not dependent
on ubiquitin ligation at all. Instead, we were able to attribute
the DSB repair function of Rad5p to the presence of a con-
served nucleotide binding motif within the protein’s helicase-
like domain. Structural and biochemical studies of related
DNA-dependent ATPases have revealed that movement of
these proteins along the DNA is driven by the ATP-
hydrolytic activity inherent in the helicase-like domain,
whereas other domains serve more specialized purposes
such as the unwinding of DNA or RNA or the removal of
nucleosomes (41,42). By analogy, it is likely that the contribu-
tion of Rad5p to DSB repair requires its ATP-driven move-
ment on ssDNA.

Significance of the Rad5p domain structure

Finally, our observations raise the intriguing question of why
two apparently unrelated activities, ubiquitin-dependent dam-
age tolerance and ATP-dependent DSB repair, are combined
in a single polypeptide. Interestingly, RAD5 is the only mem-
ber of the RAD6 pathway for which no convincing mammalian
homolog has yet been identified, which might indicate that a
separation of functions into E3 and ATPase may have occurred
in higher organisms. However, numerous proteins with a sim-
ilar arrangement of RING and SWI/SNF domains can be found
both in yeast and in higher eukaryotes, usually involved in
transcription or chromatin remodeling (43). Whereas the rel-
evance of the RING domain is unresolved in various mam-
malian transcription factors, such as HIP116/Zbu1, RUSH-1a
and the matrix-associated actin-dependent regulators of chro-
matin (SMARCA) proteins (43), a function in ubiquitin-
dependent proteolysis has been suggested in the case of the
nucleotide excision repair factor Rad16p from yeast, where
mutation of the RING domain resulted in a stabilization of the
damage recognition protein Rad4p (44). Again, the signific-
ance of the SWI/SNF domain is not fully understood, but a
possible function could be the generation of superhelical tor-
sion to facilitate extrusion of the excised oligonucleotide dur-
ing repair (45). In summary, although the mechanistic details
of their function remain obscure for most of the RING finger
ATPases, their peculiar domain arrangement suggests that a
combination of E3 and DNA translocation activities might be a
widely used link between the ubiquitin system and chromatin
metabolism.
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