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Cells residing in living tissues apply forces to their immediate surroundings to promote the
restructuration of the extracellular matrix fibres and to transmit mechanical signals to other
cells. Here we use a minimalist model to study how these forces, applied locally by cell
contraction, propagate through the fibrous network in the extracellular matrix. In particular,
we characterize how the transmission of forces is influenced by the connectivity of the
network and by the bending rigidity of the fibers. For highly connected fiber networks the
stresses spread out isotropically around the cell over a distance that first increases with
increasing contraction of the cell and then saturates at a characteristic length. For lower
connectivity, however, the stress pattern is highly asymmetric and is characterised by force
chains that can transmit stresses over very long distances. We hope that our analysis of
force transmission in fibrous networks can provide a new avenue for future studies on how
the mechanical feedback between the cell and the ECM is coupled with the microscopic
environment around the cells.
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1 INTRODUCTION

Living tissues are constituted by the extracellular matrix (ECM), a complex network of proteins and
polysaccharides that gives structural support to surrounding cells. In animal tissues, the main
component of the ECM is collagen, which forms a crosslinked network of stiff fibres that provides the
ECM with its elasticity and mechanical strength (Mouw et al., 2014; Burla et al., 2019a). Cells are
embedded within this network and are linked to the matrix by focal adhesion complexes (FAs),
which act as physical anchors via which cells can mechanically interact with their environment
(Totsukawa et al., 2004; Lecuit et al., 2011). Indeed, many cellular processes are regulated by
mechanical feedback between cells and the ECM. Cells actively exert forces on the surrounding
matrix, leading to structural reorganisations in the surrounding network, like fibre alignment, plastic
rearrangements, and densification around the cell (Vader et al., 2009; Kim et al., 2017; Sopher et al.,
2018; Goren et al., 2020). Cells also sense the mechanical properties of the surrounding medium. For
example, cancer cells exhibit a preferential migration to regions with higher stiffness (durotaxis) (Lo
et al., 2000; DuChez et al., 2019; Rens andMerks, 2020), and can adapt their shape as a function of the
matrix stiffness (Koch et al., 2012). Likewise, wound healing requires contractile forces applied by
myofibroblasts around the injured zone (Li and Wang, 2011). Cells also use mechanical signals to
communicate with other cells; they actively exert forces on the surrounding matrix, transmitted
through the ECM to distant cells (Reinhart-King et al., 2008;Winer et al., 2009; Han et al., 2018). This
mechanical signalling is believed to play an essential role in tissue development, as well as in the
development of cancer and other diseases (Bates et al., 2007; Hinz et al., 2012). Therefore,
understanding how forces propagate in the extracellular matrix is relevant for obtaining
fundamental knowledge about biological processes in both healthy and pathological tissue.
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Likewise, this insight can be revealing in tissue engineering, where
tailoring the mechanical properties and cell-matrix interactions
are crucial for the successful development of artificial tissues and
organs (Chen et al., 2004; Causa et al., 2007; Wegst et al., 2015).

The challenge in describing mechanical signal propagation
through the ECM is that the ECM is a very heterogeneous fibre
network, with a typical mesh size that is comparable to the size of
the cell. This means that continuum theories cannot be used
(Notbohm et al., 2015; Ronceray et al., 2016; Han et al., 2018). The
heterogeneity of the fibre network is regulated by the network
connectivity z and the bending rigidity of the fibres, which
thereby influence the mechanical response of the ECM. It is
well-known that networks with only central-force interactions
become mechanically stable only when the connectivity exceeds a
critical threshold known as the isostatic point, which has been
shown by Maxwell to be equal to zc = 2d, with d the spatial
dimensionality (Maxwell, 1864). However, the extracellular fibre
networks surrounding cells have a lower connectivity, ranging
from z = 3 for branched networks to z = 4 for cross-linked fibres.
In particular, collagen networks exhibit an average connectivity
〈z〉 ≈ 3.4, making them sub-isostatic (Jansen et al., 2018). For
such networks, the bending rigidity of the fibres κ emerges as an
additional mechanism to induce network stability (Broedersz
et al., 2011). The bending rigidity is related to the persistence
length lp of the fibres as lp � κ/(kBT), which describes the length
scale of undulations of a polymer driven by thermal energy kBT.
For collagen fibres the persistence length is typically much larger
than the contour length of the fibres, which means that collagen
fibres are stiff and entropic effects due to fluctuations can be
neglected. The interplay between connectivity and fibre bending
leads to a strongly nonlinear mechanical response to applied
stresses (Licup et al., 2015; Sharma et al., 2016a; Jansen et al.,
2018). At low strains, the network is soft with a response governed
by fibre bending and non-affine network reorganisations. At
higher strains, alignment of the fibres in the strain direction
leads to fibre stretching, making the network much more rigid
(Narmoneva et al., 1999; Vader et al., 2009; Broedersz et al., 2011;
Licup et al., 2015). It has been shown that this nonlinearity has a
pronounced impact on how forces propagate in the network
(Baker and Chen, 2012; Jones et al., 2015; Han et al., 2018).

To understand mechanical signalling between cells in the
ECM, it is thus necessary to develop a model for force
propagation that incorporates the disordered network
structure and its mechanical nonlinearity. To do this, we
employ a minimalist model based on two-dimensional
triangular athermal networks, where the disorder is induced
by controlling the connectivity. Such network models have
been shown to give a very accurate description of the
mechanics of collagen networks (Licup et al., 2015; Sharma
et al., 2016a; Burla et al., 2020). To model an embedded cell,
we incorporate a rigid circular body, which shrinks in area,
generating local compression. We then examine how forces
propagate from the contracting cell through the network,
using concepts from network theory. Our findings reveal that
the propagation in the case of high connectivity is isotropic and
limited when the surrounding network around the cell is highly
stressed. By contrast, asymmetry emerges at low connectivity, and

the transmission achieves larger distances. The bending rigidity in
this regime has a more pronounced role in controlling the force
transmission.

2 MODELING

We perform numerical simulations on 2D diluted triangular
networks of N × N nodes, with N = 100, and with spacing l0.
Periodic boundary conditions are applied in all directions. We
dilute the lattice by randomly removing bonds with probability 1
− p, and remove all dangling ends. This leads to an average
network connectivity of 〈z〉 � pzmax, with zmax = 6 for our
triangular lattice.

We model fibrous biopolymers such as collagen by
considering stretching and bending rigidity. Thus, we consider
every bond in the diluted network as a Hookean spring with
stretching modulus μ, while sequences of contiguous colinear
bonds have an associated bending rigidity κ. The Hamiltonian
H � Hstretch +Hbend that quantifies the network energy is
expressed as

H � μ

2
∑
〈ij〉

lij − lij,0( )2
lij,0

+ κ

2
∑
〈ijk〉

θijk − θijk,0( )2
lijk,0

, (1)

where, in the first term, the sum runs over the bonded pairs 〈ij〉,
lij denotes the distance between the two nodes, and lij,0 indicates
the rest length. The second term accounts for the bending energy
and takes the bonded triplets 〈ijk〉, with θijk the angle between
the triplet and θijk,0 the rest angle, and lijk,0 = (lij,0 + ljk,0)/2. We fix
μ = 1 and l0 = 1, and define a reduced bending rigidity ~κ � κ/(μl20)
to specify the relative importance of bending stiffness compared
to stretching stiffness. Since biological fibres are typically much
softer with respect to bending than to stretching, we will consider
only cases with ~κ≪ 1.

According to Maxwell’s rigidity criterion, the isostatic point
(i.e., the connectivity below which the rigidity of the network
vanishes) for these networks in the absence of bending stiffness
(so for ~κ � 0) is equal to 0.65, while for non-zero ~κ the rigidity
threshold is lower, at p = 0.442 (Maxwell, 1864; Broedersz et al.,
2011). It has been shown that for p > 0.65, the mechanical
properties of these networks are dominated by stretching of
the fibres, while for 0.45 < p < 0.65 non-affine fibre bending
modes govern the mechanics (Ronceray et al., 2016; Broedersz
et al., 2011), Here, we compare four different connectivities,
namely p = 0.85, 0.75, 0.65, and 0.55, which translates into
〈z〉 � 5.1, 4.5, 3.9, and 3.3, respectively. In Figure 1A we
show an example of the final network for p = 0.55. We choose
these parameter values to explore a range that includes the
connectivity of in-vitro reconstituted collagen networks,
reported to be in the range 0.5 − 0.65 (Jansen et al., 2018;
Burla et al., 2020). The normalized bending rigidity of collagen
fibres has been reported to be on the order of 10−4, but it can reach
higher values for strongly bundled fibres (Jansen et al., 2018;
Burla et al., 2020). We therefore explore ~κ � 10−4, 10−3, and 10−2.
We furthermore emphasise that the network model that we use
here has been shown previously to accurately describe the
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mechanical properties and fracture of real collagen networks
(Broedersz and MacKintosh, 2014; Burla et al., 2020; Tauber
et al., 2022).

We then introduce a circular rigid body with radius R0 = 3l0
that mimics an embedded cell in the center of the network, as we
show in Figure 1B, and we place nodes on the intersection points
between the network and the surface of the cell, while adjusting
the corresponding equilibrium bond lengths, see Figure 1C.
Nodes at the interior of the cell are removed.

Finally, we induce an isotropic contraction of the cell body by
applying affine deformation on nodes on the cell surface towards
the cell center, as we schematically represent in Figure 1D. This
local deformation is quantified by the strain ϵ � −(R − R0)/R0,
where R is the cell’s radius after contraction. After each strain
step, fixed to be Δϵ = 0.001, the network is equilibrated by a
minimization of energy using the FIRE algorithm (Bitzek et al.,
2006) on the remaining nodes of the network, and with a
tolerance FRMS = 10−8. Hence, thermal fluctuations are ignored
and the fibre network is modelled as an athermal elastic network.
Previous work has shown that this is a good assumption for
collagen networks Broedersz et al. (2011), Licup et al. (2015),

Rens et al. (2016), Arzash et al. (2020), Burla et al. (2020). The
different observables discussed below are averaged over 20
independent simulations for p = 0.85 and 0.75, and over 50
for p = 0.65 and 0.55, for every ~κ.

3 RESULTS

3.1 Local Deformation in the Network
Cell contraction leads to mechanical stresses in the surrounding
network. To investigate how these stresses propagate for different
contractile strains, we identify the nodes in the network that have
at least one stretched or compressed bond. Here we define a bond
to be stretched or compressed when the corresponding force fij is
equal to or greater than a threshold f(th), which we take to be the
maximum localized force in the network when the energy exceeds
the numerical error. Figure 2 shows snapshots of the stressed
bonds in the network for four different connectivities,
highlighting a dense, stressed region in the vicinity of the cell
at high connectivity, which becomes more irregular in sparse
networks with lower p. To investigate in more detail how the

FIGURE 1 | (A) Diluted triangular network with p = 0.55. (B) A circular model cell with radius R0 = 3l0 is placed in the center of the network (C) All bonds inside the
cell are removed, while bonds that cross the cell surface are adjusted by moving the connected nodes at the cell interior to the cell surface, and adjusting the
corresponding bond length lij,0. (D) Schematic showing the affine compression of the cell, by moving the nodes on the cell surface inward.

FIGURE 2 | Snapshots for networks with (A) p = 0.85, (B) p = 0.75, (C) p = 0.65 and (D) p = 0.55, showing all compressed (fij < − f(th), blue) and stretched (fij > f(th),
red) bonds for ~κ � 10−4 at ϵ = 0.50. Here, the black circle has a radius r* ~ 10l0, corresponding to the boundary between the dense and diffuse region observed by
computing ϕ(r). The radial stress in the inner region decays as σrr(r)∝ r−2. Bond thickness is proportional to force magnitude.
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stress propagation depends on the cell contraction and network
connectivity, we compute the fraction of nodes with at least one
out-of-equilibrium bond as a function of the distance r to the cell
centre, ϕ(r):

ϕ r( ) �〈Nd r( )
N r( )〉, (2)

where the brackets 〈 · 〉 indicate ensemble averaging,Nd(r) is the
number of nodes at distance r that has a stretched or compressed
bond (as specified above), andN(r) is the total number of bonds at
distance r. These results are reported in Figure 3A for different
strains ϵ and the four connectivities studied here at ~κ � 10−4. For
the highest connectivity, p = 0.85, we observe a region close to the
cell where all bonds carry stress (i.e., ϕ(r) ≈ 1), which extends over
larger distances as the strain increases. For larger distances, ϕ(r)
decays, indicating that the stress pattern becomes more diffuse far
away from the cell. The boundary between the dense and diffuse
region is also indicated in the snapshot in Figure 2A. When the
network connectivity decreases to p = 0.75, the fully stressed
region shrinks and at p ≤ 0.65 it disappears completely.
Remarkably, however, ϕ(r) develops a long tail, which decays
over longer distances as the connectivity is reduced. This

indicates that, while the stress pattern is more diffuse in
sparsely connected networks, the mechanical perturbation can
be perceived over greater distances as p decreases (Figure 3A).
We also study how the bending rigidity ~κ of the fibres influences
the force propagation. For p ≥ 0.75, we do not find any significant
difference in the behaviour of ϕ(r) (not shown for clarity). This is
expected, because these networks are above the isostatic point,
where the mechanical response is completely governed by fibre
stretching (Broedersz et al., 2011). However, significant changes
are observed at lower p, where bending modes become important.
In particular, for p = 0.65 we see that increasing the bending
rigidity leads to a higher fraction of stressed bonds close to the
cell, while the decay at larger distances becomes steeper. From
these results, we can conclude that stresses tend to concentrate in
a region around the contractile cell in rigid fibre networks, while
for sparser, softer networks, the stresses branch out over a large
but very diffuse area.

We further characterize the propagation of forces generated by
the cell by computing the local stress tensor at each bond
connecting nodes i and j (Ronceray et al., 2016), defined as

σ
ij( )

αβ � −f ij( )
α r

j( )
β − r i( )

α[ ], (3)

FIGURE 3 | (A) Fraction of nodes at a distance r, that is, stretched or compressed, ϕ(r), in semi-log scale, for ~κ � 10−4 and for different strains ϵ. For p = 0.65 and
p = 0.55 we also show ϕ for two different ~κ at ϵ = 0.50. (B) Radial stress σrr(r) for different bending rigidity ~κ at ϵ = 0.50. Blue solid lines indicate a quadratic decay
(σrr(r)∝ r−2) with the distance to the cell center, and black solid lines indicate (σ rr(r)∝ r−1).
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where f(ij)
α is the α-component of the force supported by the

bond between nodes i and j, and r(j)β is the β-component of the
position of bond j. In particular, we compute the radial
component σrr and average this for each radial distance r,
using circular bins of thickness Δr. In Figure 3B we show
σrr(r) (averaged over many independent network realizations)
as a function of ~κ for all connectivities discussed here, at a
strain ϵ = 0.50. For p = 0.85, we find that σrr(r)∝ r−2 up to a
distance r ≤ r*, which corresponds to the transition from the
fully stressed inner region to the more diffuse outer region.
This decay is consistent with the stress profile expected for
continuous, linearly elastic media in two dimensions
(Ronceray et al., 2016). For p = 0.75, the stress exhibits a
more complex behaviour, emphasised by the presence of a
slower decay as σrr(r)∝ r−1 in the vicinity of the cell, to later
recover the linearly elastic decay σrr(r)∝ r−2. As discussed
previously (Ronceray et al., 2016), this cross-over is related to
the non-linear response of the fibre network and, in particular,
to collective buckling modes in the inner region, which
prevents the network from sustaining compressive stresses
in this region. We also see that for p ≥ 0.75, the bending
rigidity does not influence the stress profile, in agreement with
our observations for ϕ(r). However, for p ≤ 0.65, the bending

rigidity does play an important role. Indeed, for p = 0.65 we
find a transition from σrr(r)∝ r−2 at high ~κ (most rigid
networks) to a slower decay σrr(r)∝ r−1 at low ~κ (softest
networks), while for p = 0.55 the linear elasticity decay
disappears completely and the stress decays as r−1 for all ~κ.
This slow decay is related to the formation of so-called force
chains, linear chains of stretched bonds that radiate outward.
As we will see below, compressive stresses are irrelevant in this
regime, while the tension in the force chains leads to a radial
stress that decreases proportionally to the local density of force
chains, which goes as 1/r.

3.2 Pattern of Force Transmission
Next, we study the pattern of the forces in more detail. We treat
compressed and stretched bonds separately, as shown in
Supplementary Figures S1A,B. Likewise, we only consider
nodes connected to the cell surface via other deformed bonds.
For each resulting cluster of deformed bonds, we compute the
gyration tensor as

Sαβ � 1
NG

∑NG

i

ri,αri,β, (4)

FIGURE 4 | (A) Average radius of gyration Rg, and (B) asphericity a as a function of ϵ and bending rigidity ~κ for the cluster of compressed (blue) and stretched (red)
bonds, and (C) the corresponding snapshots for stretched bonds at ϵ = 0.50 and ~κ � 10−4 for (i) p = 0.85, (ii) p = 0.75, (iii) p = 0.65 and (iv) p = 0.55. For p = 0.65, we
also show a snapshot of stretched bonds for ~κ � 10−2, highlighting that a more symmetric pattern can be recovered by increasing the bending rigidity. The bond
thickness is proportional to force magnitude. Solid gray line in (a.iv) indicates the evolution of the cell radius Rc during contraction.
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where ri,α is the α − coordinate of particle i and where the sum
runs over all NG nodes that are part of the deformed cluster. We
diagonalize the tensor obtaining the principal moments, λ1 and λ2
and from this we compute the radius of gyration Rg � ������

λ1 + λ2
√

and the asphericity a � (λ1−λ2)2
(λ1+λ2)2, which takes values between 0 and

1 to indicate deviations from circular symmetry. The behaviour of
Rg and a are shown as a function of strain in Figures 4A,B,
respectively, for different values of ~κ, while Figure 4C shows
corresponding snapshots for the stretched bonds.

We first discuss the pattern of stretched bonds. For p ≥ 0.75 we
find that Rg increases continuously with ϵ, preserving the
spherical symmetry, as indicated by the low value of a. The
growth of Rg with ϵ obviously is related to the growth of the
stressed region seen in Figure 3A, and indicates how the stresses
propagate further out as the cell contracts more. Again, the
bending rigidity is unimportant in this stretching-dominated
regime. When the connectivity is reduced to p = 0.65, we
observe that Rg becomes dependent on ~κ. In particular, for low
~κ the growth of Rg as a function of strain becomes erratic, which is
due to large buckling-type rearrangements of nodes. The pattern
is also highly asymmetric in these cases, as indicated by the
relatively large value of a. When ~κ increases and the network
rigidity increases, the erratic behaviour of Rg disappears and the
pattern becomes more isotropic, similar to the patterns at higher
connectivity. This is also illustrated by the snapshots in Figure 4C
for p = 0.65 and two different ~κ. For the lowest connectivity, p =
0.55 the pattern remains highly anisotropic for all values of the
bending rigidity. For such diluted networks, we also observe large
variations between different network configurations, so that the
ensemble average shown in Figures 4A,B gives a somewhat
distorted view. As shown in Supplementary Figure S2, for
individual network realization Rg grows erratically, with
significant jumps that mark a sudden transition from floppy to
rigid structures locally. This erratic behaviour also leads to very
large differences between different network realizations for p =
0.55, in particular for low values of ~κ, which highlights that force
transmission is less robust and reliable in sparse networks than in
denser networks.

Repeating this analysis for the compressed bonds, we see that
for all p values Rg is significantly smaller than for the stretched
bonds; for p = 0.55, Rg even decreases with increasing strain, as the
cell pulls the nodes inwards. Hence, compression forces do not
propagate far away from the cell surface, especially for low p and
the transmission of forces over long distances is dominated by
stretched bonds.

We note, finally, that our previous observation that forces can
propagate over longer distances in more sparsely connected
networks (Figure 3) does not lead to a larger radius of
gyration of the force patterns. This is because the stress
propagation in the more distant regions for low connectivity is
governed by a small number of force chains, which contribute less
to Rg than the dense zone of stressed bonds at higher connectivity.

3.3 Force Chains in the Network
As is clear from the snapshots in Figures 2, 4C, the pattern of the
local forces differs greatly between networks of high and low
connectivity. While the forces radiate outwards more or less

isotropically at high p, the pattern at lower p is characterized by
so-called force chains, sequences of stretched bonds that can
transmit forces over long distances in certain directions (Grill
et al., 2021). To analyze the pattern of these force chains in more
detail, we follow previous work that explored force transmission
in granular systems using concepts of graph theory (Bassett et al.,
2015; Newman, 2018). It is well-established that a granular
material (i.e., a material consisting of jammed granular
particles) can be mapped on an athermal network, with
contact forces between neighbouring particles represented as
bonds between nodes. The mechanical properties of such
granular materials are characterized by discrete force chains
that are very similar to the force chains observed in our
simulations. Mechanical forces are transmitted along these
force chains, while regions between the force chains are
shielded from mechanical stresses (Tordesillas, 2007; Somfai
et al., 2005; Owens and Daniels, 2011).

To analyze the network of force chains, we start from the
cluster of stretched bonds, as shown in Figure 4C, and we first
identify the nodes at the end of each force chain, i.e., the nodes at
the periphery of the cluster after which the force propagates no
further (see also Supplementary Figure S1C). We then construct
all simple paths, i.e., all non-repeating sequences of nodes
(Newman, 2018), that connect each of the nodes at the
periphery to the cell surface, obtaining thus a distribution of
all force chains. In Figure 5 we show the distribution of the
topological lengths of these force chains, for different strains and
different connectivities. The top row shows only the shortest
paths between each periphery node and the cell surface, as a
measure for the typical distance over which the force propagates,
while the bottom row shows the distribution of all simple paths. A
difference between the distribution of shortest paths and all paths
indicates the presence of many secondary paths due to cross-
connections between force chains. Such cross-connections make
the propagation of forces more robust, since the mechanical
transmission does not rely on one single path, but multiple
paths can transmit the force.

For p = 0.85 (Figure 5A) we see that at low strains, the
distribution of path lengths decays monotonically, indicating that
most of the force chains are short. However, when ϵ increases, the
distribution acquires a clear optimum. This reveals that there is a
characteristic length Lps,t over which forces propagate. This
characteristic length is in agreement with our previous
observation that the force pattern is rather isotropic for this
connectivity (Figure 4), so that force chains reach the same
distance in any direction. As the strain induced by the
contracting cell increases, the characteristic length for force
propagation increases, until at larger strains (ϵ → 0.5) it
appears to saturate (see also Supplementary Figure S3A). The
distribution for all simple paths follows a similar trend as that for
the shortest paths, but the maximum in the distribution, Lt′ lies at
larger lengths. With increasing strain the two distributions start
to deviate more (see also Supplementary Figure S3A), indicating
that there are many interconnected force paths, in agreement
with the formation of a dense, fully stressed region near the cell
shown in Figures 2, 3. For p = 0.75 (Figure 5) we find a similar
behaviour, although the peaks associated with the characteristic
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lengths Lps,t and Lpt are wider, indicating that for lower
connectivity there is a larger variation in the typical distance
for force transmission. For p ≤ 0.65, the situation is completely
different. As shown in Figures 5C,D, for both p = 0.65 and p =
0.55, the length distribution decays monotonically for all strains,
and follows a power law decay n(Lt)∝ L−αt with α ≈ 1 over a large
range of lengths. Hence, there is no characteristic length of force
propagation in these dilute networks. Most force chains are very
short, but a small number of force chains can reach out far. Again,
this is in agreement with the large apshericity and the anisotropic
force patterns shown in Figure 4. For these low connectivities, we
also find that the distribution of all simple paths is nearly the same
as that of only the shortest paths (Supplementary Figure S3B),
indicating that there are few interconnections between force
chains, so that long-range force transmission relies on one or
a few force chains only. We also explore the influence that ~κ has

on the force chains. As expected, for p ≥ 0.75 the bending rigidity
does not modify the path length distributions, but for p = 0.65 an
increase in bending rigidity promotes a characteristic distance,
making the force chain network more similar to that for higher
connectivities (see Supplementary Figure S3A).

To analyze the morphology of the force chain network in more
detail, we plot the topological length of each force chain in the
network Lt as a function of the Euclidean distance LE between the
end of the force chain and the cell surface, see Figure 6 for p =
0.85 and 0.55, and Supplementary Figure S4 for p = 0.75 and
0.65. Here, Lt = LE corresponds to a straight force chain, while Lt >
LE corresponds to a curved or irregular force chain Ref. (Bassett
et al., 2015) (note that Lt cannot be smaller than LE, so that the
grey area in Figure 6 is unphysical). For small strains (ϵ ≤ 0.10),
we observe that Lt ≃ LE for all p. However, as ϵ increases, we find
significant deviations from straight force chains for p = 0.85 and

FIGURE 5 | Topological length distribution of force chains that connect the periphery of the cluster to the cell surface for different strains (as indicated by the black
arrow), and for (A) p = 0.85, (B) p = 0.75, (C) p = 0.65 and (D) p = 0.55. Top: Length distribution of the shortest paths, and bottom: length distribution of all simple paths.
The vertical orange line indicates the characteristic shortest path Ls,t* and the vertical green line the characteristic mean path length Lpt . Here, ~κ � 10−4.

FIGURE 6 | (A) The topological length Lt of the force chains as a function of the Euclidean distance that the force chain reaches LE, for different strains ϵ and bending
rigidity ~κ � 10−4 (top), and ϵ = 0.50 and different ~κ (bottom) for p = 0.85 and p = 0.55. (B)Connectivity distribution P(z) of nodes in the force network as a function of p for ϵ
= 0.10 and 0.50. (C) Probability distribution function of the node betweenness centrality P(CB) for different p and for ϵ = 0.50 in semi-log scale. In (B,C), ~κ � 10−4.
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0.75 (see Figure 6A and Supplementary Figure S3B,
respectively), especially in the dense inner region, due to
alternative paths that link the periphery of the force network
to the cell surface. By contrast, for p = 0.65 and 0.55 and for larger
~κ, the difference between Lt and LE remains smaller as a result of
the reduced number of interconnections between force chains,
indicating that most force chains follow a more or less straight
path outward.

The complex structure of all simple force paths that emerges
can be further analyzed by computing the distribution degree
P(z) of the nodes in the cluster of stretched bonds, where z
indicates the number of stretched bonds connected to a node in
the cluster: z = 1 corresponds to the end nodes of the force chains,
z = 2 denotes linear sections of the force chains, and z ≥ 3
represents branches. In Figure 6B, we show P(z) for different p
and for ϵ = 0.10 and 0.50. For high connectivities, we observe that
P(z) develops a peak at z = 2 as the strain increases, with a
significant number of nodes with z ≥ 3, as expected for a network
of highly interconnected force chains. As the connectivity
decreases, the number of such interconnections decreases as
well. For p = 0.55, P(z) decreases monotonically with z,
implying that most of the force chains extend only over one
bond in this case, with only a few longer force chains. The number
of nodes with z ≥ 3 is very small for this connectivity, indicating
few branches and interconnections between force chains.

Another way to characterize the force transmission in the
networks is by analyzing the node betweenness centrality CB for
each node in the network. This is a measure often used in graph
theory to denote the importance of a certain node for
transmission within a network, and is defined as (Brandes, 2001):

CB j( ) � ∑
i,k∈NG

nji,k
ni,k

(5)

where ni,k is the number of shortest paths between nodes i and k,
and where nji,k is the number of these paths that goes through
node j. Nodes with a high CB are crossed by many shortest paths,
which indicates that they have a greater influence on the
transmission of forces. We show the distribution of the
betweenness centrality P(CB) for the different p and for ϵ =
0.50 in Figure 6C. For the highest connectivities, there are almost
no nodes with a high CB, because there are many shortest paths in
the highly connected network of force chains. For p ≤ 0.65,
however, the fraction of nodes with a high CB is much larger, as
indicated by the long tail in the distribution. In these networks,
force transmission occurs by long linear force chains, where all
bonds in the chain are essential for ensuring proper force
propagation. Clearly, the removal of one node in the network
for p ≤ 0.65 has a much more dramatic effect on the propagation
of forces than at higher connectivities.

4 CONCLUDING REMARKS

Mechanical communication between cells relies on force
transmission over large distances through the extracellular
matrix (Janmey and Miller, 2011). The disordered structure of

the matrix, its large mesh size and its mechanical non-
linearity make this a highly non-trivial process. Our results
highlight how the connectivity of the fibre network and the
bending rigidity of the collagen fibrils influence the local force
transmission. On the one hand, for highly connected (and
therefore relatively stiff) networks, the forces propagate
isotropically in all directions over a characteristic distance
that can be controlled by the contraction of the cell. On the
other hand, in dilute (and soft) networks, forces propagate
along a few force chains that can transmit forces over very
long distances, but only in a few directions. This
communication is less reliable and robust than for more
rigid networks, which may be one of the reasons for the
large variability and heterogeneity in cell behaviour in such
matrices. In particular, networks close to the rigidity
threshold (p = 0.65 in our case) are very sensitive to
bending rigidity. These findings may be relevant for cell
and tissue morphology and collective cell migration in
environments of different rigidity. Indeed, our results are
consistent with various experimental studies, which have
reported that the distance over which cells can
communicate mechanically appears to depend on the
stiffness of the matrix (Guo et al., 2006; Reinhart-King
et al., 2008; Winer et al., 2009; Janmey and Miller, 2011;
Koorman et al., 2022). Furthermore, we speculate that the
appearance of a characteristic transmission length that
emerges around the cell when local stiffness increases may
be related to the observation that cells in a colony organise at a
typical distance from each other (Reinhardt-King et al., 2008).

We hope that this paper will provide an incentive for future
research on force transmission in disordered networks, as
many questions remain open. For example, we have
considered only uniform cell contraction, but previous work
has suggested that cells often contract anisotropically to
influence the direction of stress propagation (Baker and
Chen, 2012; Koch et al., 2012; Ahmadzadeh et al., 2017).
Furthermore, we have here used a rigid contractile body to
model the cell. It would be interesting to study how mechanical
feedback between the matrix and the cell emerges when the cell
is itself modelled as a soft deformable object, for example, by
treating the perimeter of the cell as a ring of springs that can
stretch and bend (Gandikota et al., 2020). In such cases the
anisotropic force chains may lead to spontaneous polarization
of the cell. Cells can also actively restructure the matrix around
them by inducing plastic deformations and thus influencing
the propagation of mechanical signals (Vader et al., 2009; Kim
et al., 2017). In addition, mechanical signalling may be affected
by the hydrodynamic coupling between the collagen fibrils and
the embedding fluid (Yucht et al., 2013; Head and Storm,
2019), as well as by the complex network composed of
polysaccharides and glycosylated proteins in which collagen
fibrils are embedded (Mouw et al., 2014; Burla et al., 2019b).
Finally, we emphasise that the networks that we have studied
here are 2D. While such networks have been shown previously
to be excellently suited for characterising the mechanical
properties of experimental collagen networks experimentally
(Sharma et al., 2016a; Sharma et al., 2016b), it would be
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interesting to observe how force transmission occurs in 3D
networks, introducing thus an additional degree of freedom to
relax the local deformation in the network.

Finally, we suggest the possibility of using graph theory to
characterize the mechanical propagation and the local distortion
generated by cells on the ECM. In addition to the characteristics
used here, many additional descriptors can be used to
characterize the network’s topology, also experimentally. These
parameters may be used to train neural networks, for example, to
develop a machine learning-based approach to identify cell-
matrix and cell-cell interactions. This could eventually be used
as a diagnostic tool or help to design synthetic matrices with
optimal mechanical characteristics for mechanical feedback.
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