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Abstract

The significance of flu prediction is that the appropriate preventive and control measures

can be taken by relevant departments after assessing predicted data; thus, morbidity and

mortality can be reduced. In this paper, three flu prediction models, based on twitter and US

Centers for Disease Control’s (CDC’s) Influenza-Like Illness (ILI) data, are proposed (mod-

els 1-3) to verify the factors that affect the spread of the flu. In this work, an Improved Parti-

cle Swarm Optimization algorithm to optimize the parameters of Support Vector Regression

(IPSO-SVR) was proposed. The IPSO-SVR was trained by the independent and dependent

variables of the three models (models 1-3) as input and output. The trained IPSO-SVR

method was used to predict the regional unweighted percentage ILI (%ILI) events in the US.

The prediction results of each model are analyzed and compared. The results show that the

IPSO-SVR method (model 3) demonstrates excellent performance in real-time prediction of

ILIs, and further highlights the benefits of using real-time twitter data, thus providing an

effective means for the prevention and control of flu.

Introduction

Influenza (flu) is a stealthy killer that threatens human health with its widespread contagion [1,

2]. The flu refers to a viral acute respiratory infection caused by the common flu virus. If the

flu is not effectively controlled, it can cause wide-ranging flu outbreaks that pose a threat to

social stability and development. The World Health Organization (WHO) asserts that about 3

to 5 million serious illnesses are reported worldwide each year and about 250,000-650,000 of

those result in death [3]. If we can predict a flu trend in some areas before the outbreak of flu,

and take effective measures to mitigate the contagion ahead of time, we can control the spread

of disease and reduce the loss of life to a certain extent.

To prevent and control flu pandemic, the current worldwide Flu Surveillance System

(FSS) relies on the collaboration of medical institutions (at all levels), e.g., centers for disease
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control and prevention and sentinel hospitals. The worldwide FSS monitors the flu weekly,

via accurate reporting, and releases the information to regional centers [4]. In the US,

the CDC releases weekly health data at the national and state level to determine when and

where flu outbreak reaches the US to measure the impact of the epidemic on the whole coun-

try [5].

With the development of the information technology field, new efficient data sources are

continuously produced by a variety of reporting agencies. In the US, about 90 million adults

search for health information [6], such as disease and medicine, on the internet every year.

When a flu outbreak occurs, people often learn about the outbreak (and how to deal with it)

via search engines like Baidu or Google [7, 8]. Therefore, internet search data has become an

ideal data source for flu surveillance [9–12]. Google analyzed the data from its own search

engine and found that there was a relationship between the number of people who searched

for flu-related subjects and the number of people who had flu symptoms [13]. In 2008, Google

launched the Google Flu Trend (GFT), based on aggregated Google search data that estimated

the current global flu transmission in near real time [14, 15]. Although some success was

achieved, a February 2013 Naturemagazine article pointed out that, compared with data from

CDC, the GFT overestimated the peak number of ILI in the US [16]. Millions of engineers and

users are constantly changing search engine algorithms [17–22], but ultimately, the GFT was

shut down in August 2015.

Many other data sources are actively searching for a precise way to perform correlation

analysis with flu data [23, 24], particularly by companies (sources) who sell over-the-counter

(OTC) medication that reduce the symptoms of the flu such as fever, body ache, coughing

and sneezing [25]. Much of the literature on disease surveillance using social media has

focused on tracking influenza with twitter [26–28]. Twitter is a popular social network.

There are over 600 million users as of January 2014, generating over 780 million tweets

daily [29]. Twitter data is appealing as a data source because the application can access mil-

lions of public short messages instantly every day. The twitter application has become a via-

ble option for disseminating and tracking information. Although twitter, as a social network,

appears to be targeted to a young generation, the demographic breakdown of the social net-

work reveals that users of the twitter application are diverse in terms of age. The social net-

work is not only for young people, but also for middle aged and the technology savvy older

population [30].

Previous work has drawn upon novel web data-based twitter application messaging models

to detect influenza rates in real time, to infer health status or measure the spread of a disease in

a population. For instance, Paul et al. [31] uses ILI data available at the time of the forecast

show that models incorporating data derived from twitter can reduce forecasting error. Kim

et al. [32] proposed an adaptive algorithm for real-time prediction of influenza infection and

actual disease activity using the Hangeul Twitter. Hu et al. [33] proposed an improved artificial

tree algorithm to optimize the parameters of BP neural networks (IAT-BPNN) that can predict

the CDC’s %ILI of US. Signorini et al. [34] applied content analysis and regression models to

measure and monitor public concern about the levels of disease during the H1N1 pandemic in

the US. The CDC used the twitter application to post tips for preventing flu to help slow the

spread of H1N1 influenza in 2009. The twitter’s account grew from 2,500 followers to 370,000

followers during the 2009 outbreak [35]. Lampos [36] analyzed twitter messages using regres-

sion models in the UK and the US, respectively. Broniatowski et al. [37] argued that the twitter

social network produces an open data collection and the interests in flu and the number of real

flu cases are separable in twitter flu data.

The biggest advantage of these methods, compared to traditional methods, is the immediate

feedback: Twitter message and/or query log analyses are available almost immediately. This is
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extremely important to prevent influenza, as early detection can reduce the impact of flu out-

breaks. Although many studies targeting flu prediction using twitter data have been presented,

most of these methods simply use linear regression algorithm to predict %ILI. These methods

do not consider geographical to their models, for example, they do not consider regional corre-

lation in their flu-spread model. In this study, we improve the short-term predictions of flu

activity by using inter-regional ILI correlation, and propose a non-linear methodology based

on machine learning algorithms capable of providing real-time (“nowcast”) and forecast esti-

mates of %ILI by leveraging twitter application and CDC data.

Machine learning (ML) is a type of artificial intelligence method that has reemerged to ana-

lyze large data typically called “big data.” ML applications are becoming increasingly wide-

spread as the amount of available information increases exponentially. For example, we can

apply ML algorithms to improve hospital-based expert systems [38], bibliographic classifica-

tion [39, 40], automatic target tracking algorithms [41], the implementation of computer-

based GO games [42] and the optimization of driverless car algorithms [43]. In fact, we can

apply ML methods to model almost any aspect of human life so that we may develop innova-

tive technological tools that can improve living conditions.

SVR is a type of ML method developed from pattern recognition and computational learn-

ing that stems from statistics; it is a theoretical tool with excellent performance that can 1)

guarantee the global optimum of an algorithm and 2) adopt a kernel function method that

avoids complex operations and solves the problem of high-dimensionality [44]. In the present

study, we propose an improved PSO to optimize the parameters of SVR. The independent and

dependent variables of models 1-3 are used as input and output of IPSO-SVR for predicting

the CDC’s unweighted %ILI of US. The aim of the present study is to evaluate the application

of this ML approach applied to flu prediction. Although these models have not been used for

national or regional %ILI predictions in the past, they can be reference models against which

new methods can be tested.

Important novelty of our work is: the impact of flu transmission between geographical

regions are analyzed and verifies whether the CDC ILI are complementary to the twitter

data; we develop a correction to the existing PSO algorithm that optimizes a penalty parame-

ter C and kernel function parameter σ of an SVR-based model that improves the prediction

for %ILI. The resulting model, in turn, can be employed to forecast influenza epidemics in

the US, which may help to facilitate vaccination-strategy development and antiviral

distribution.

Models

Historical twitter data mapped onto ILI contains a lot of information about flu epidemic from

previous years, which has important significance for future flu trend-based predictions. There-

fore, we develop model 1 by historical twitter data on ILI. The flu is an acute infectious disease

with the ability to spread in physical space. Population regions that are geographically near

each other will likely experience highly correlated patterns of flu cases. Therefore, we construct

an empirical network model (model 2) using twitter data to verify the regional impact of flu

transmission. In traditional flu prediction model development, the data becomes more accu-

rate after rigorous scientific experimentation. Various forecasting methods have their own

advantages and disadvantages. Therefore, we construct a combination model (model 3) by

introducing CDC ILI data to model 2. Model 3 verifies whether the twitter data is complemen-

tary to CDC ILI data. Model 3 also determines whether the twitter data contains new informa-

tion that is not provided by the historical CDC ILI data. The specific formulas of models 1-3

are
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Model 1:

ILIi;t ¼
Xp

k¼1

akXi;t� k þ εt: ð1Þ

Model 2:

ILIi;t ¼
Xp

k¼1

bkXi;t� k þ
XN

j6¼i;j¼1

djoi;jXj;t þ yt: ð2Þ

Model 3:

ILIi;t ¼
Xp

k¼1

gkXi;t� k þ
Xq

l¼1

mlILIi;t� l þ
XN

j6¼i;j¼1

sjoi;jXj;t þ tt: ð3Þ

In all models, the Xi,t−k represents twitter data in the i-th region for week t − k, ωi,j is weight-

ing factor that establishes the relationship between regions i and j the correlation coefficient

of the CDC ILI data in region i and j represents the relationship weight. ILIi,t−l characterizes

the CDC ILI data of the i-th region for the last l weeks, p, q are the lagged order coefficients

(the experimental results show that the prediction effect of the model is best when p = q = 3)

and the coefficients αk, βk, δj, γk, μl and σj are the parameters of the model. The variables εt, θt
and τt are the residual terms for each model, while N is the number of regions (in this case

N = 10).

Methods

Support vector regression

Support Vector Machine (SVM) was first proposed by Vapnik et al. in 1995 [45], and is a ML

method based on Vapnik-Chervonenkis (VC) dimension theory and the principle of structural

risk minimization. It was first applied to classical classification problems and showing promise

in solving nonlinear and high dimensional problems, then the method was applied to common

regression problems [46, 47]. An SVM applied to nonlinear regression is called Support Vector

Regression (SVR). In this paper, the ε-SVR methodology is adopted and its specific form is as

follows [48, 49]:

We are given training data

S ¼ fðx1; y1Þ; ðx2; y2Þ; � � � ; ðxk; ykÞjxi 2 Rn; yi 2 Rg: ð4Þ

where xi 2 Rn is the input vector, yi 2 R is the corresponding output and k is the sample size.

The nonlinear SVR maps the input (data) vectors into a high-dimensional feature spaceH
via a nonlinear mapping F and then performs linear regression in this space. The specific

function can be expressed as

f ðxÞ ¼ oT � FðxÞ þ b;F : Rn ! H;o! Rn: ð5Þ

where ω is the weight vector of the hyperplane and b is the bias term.
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In fact, SVR solves optimization problem (6) under constraint conditions (7).

min
o;b;xi ;x�i

1

2
oToþ C

Xk

i¼1

ðxi þ x
�

i Þ: ð6Þ

with constraint

yi � ½oT � FðxÞ þ b� � εþ xi

½oT � FðxÞ þ b� � yi � εþ xi�

xi; xi
� � 0; i ¼ 1; 2; � � � ; k

8
>>><

>>>:

ð7Þ

where ξi and ξi� are the relaxation variables, which represents the upper and lower limits of the

training error under the error constraint (jyi − [ωT � F(x) + b] j< ε). The error term ε is the

maximum error allowed by the regression step, limits the number of support vector solutions

and prevents over-generalization. Larger ε values imply less support vectors. The constant

C> 0 controls the penalty for any sample that exceeds the error ε.

Expressions (6) and (7) represent a Convex Quadratic Optimization (CQO) problem. To

solve the CQO problem, we express a Lagrange function

L ¼
1

2
oToþ C

Xk

i¼1

ðxi þ x
�

i Þ �
Xk

i¼1

aiðxi þ ε � yi þ f ðxiÞÞ

�
Xk

i¼1

a�i ðx
�

i þ εþ yi � f ðxiÞÞ �
Xk

i¼1

ðZixi þ Z
�

i x
�

i Þ:

ð8Þ

where ai; a
�
i � 0, Zi; Z

�
i � 0 are the Lagrange multipliers. Then, we find the minimization of

function L with respect to ω, b, ξi and x
�

i ; the maximization of L with respect to ai; a
�
i ; Zi and Z�i ;

the maximization function of the dual form is obtained by substituting it into the Lagrange

function:

max
ai ;a
�
i

Wðai; a
�

i Þ ¼ �
1

2

Xk

i;j¼1

ðai � a
�

i Þðaj � a
�

j ÞKðxi; xjÞ

� ε
Xk

i¼1

ðai þ a
�

i Þ þ
Xk

i¼1

yiðai � a
�

i Þ:

ð9Þ

According to the KKT conditions, the following equations and constraints can be estab-

lished

Xk

i¼1

ðai � a
�

i Þ ¼ 0

0 � ai; a
�
i � C; i ¼ 1; 2; � � � ; k

o ¼
Xk

i¼1

ðai � a
�

i ÞFðxiÞ:

8
>>>>>>>>><

>>>>>>>>>:

ð10Þ

where the kernel function K(xi, xj) = F(xi)TF(xj). This formulation describes the inner product

of the high dimensional eigenspace. In this paper, we select the Radial Basis Kernel Function
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(RBKF) as a kernel function that is characterized by

Kðx; xiÞ ¼ expð�
kx � xik

2

2s2
Þ; s > 0: ð11Þ

After solving, αi and a�i are substituted into (10). Finally, the regression function is

expressed by:

f ðxÞ ¼
Xk

i¼1

ðai � a
�

i ÞKðx; xiÞ þ b: ð12Þ

The influence of parameters

The performance of SVR is associated with the appropriate choice of parameter values.

The parameter size has a considerable influence on SVR algorithm learning and generaliza-

tion ability [50]. Therefore, determining the optimal support vector parameters is an impor-

tant problem. The main parameters of the SVR model based on RBKF are penalty parameter

C and kernel function parameter σ. The penalty parameter C is a trade-off parameter

between the control error minimization and confidence interval maximization. The larger

the C, the greater the penalty for the training error, which results in over-fitting; the smaller

the C, the smaller the penalty for the empirical error, leading to a learning machine that

is simpler but with higher (experience-based) risk. The kernel function parameter σ is

related to the input space range and width of the learning sample; the larger the sample

input space is, the greater the value. Conversely, the smaller the sample input space is, the

smaller the value. Because the parameter search scope is sizable, and the parameter numbers

are large, the optimal parameter is difficult to find. Thus, we optimized the parameters of

SVR.

Improved support vector regression

Support vector regression based on K-fold cross validation algorithm. Cross Validation

(CV) is a random grouping of original data to some degree. One group is used as the test set

and the others as the training set. Firstly, the training set is used to train the model, and the

model is verified via the test set [51, 52]. The common CV methods are the Hold-Out Method,

K-fold Cross Validation (K-CV) and Leave-One-Out Cross Validation (LOO-CV). In this

paper, C and σ are optimized by the K-CV method under the training set. The SVR algorithm,

after the K-CV parameter-optimization step is complete, is called K-CV-SVR. Its basic six

steps are delineated in the pseudo-code that follows.

Step 1: Data preprocessing step. Reads in the sample set and preprocesses it.

Step 2: The sample set S is divided (equally) into K disjoint subsets, denoted as {S1, S2, � � �, SK}.

Step 3: Take an element of the sample set (Si) as a test set without repetition. The remaining

K−1 elements are used as the training set. The following subroutine is performed.

for C = 2−8: 28, σ = 2−8: 28

for i = 1: K
Let Si be the test sample Stest
Let S1

S
� � �
S
Si−1

S
Si+1

S
� � �
S
SK be the training sample Strain

Use Strain to train SVR

Input the Stest into the trained SVR model to determine the test error

Regional level influenza estimated
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Step 4: After the previous step, for each parameter pair {C, σ}, the K test errors and Kmodels

can be obtained. The average of the squared error sum of the Kmodel test set is called the

MSE.

Step 5: When all possible parameter {C, σ} are traversed, we select the parameters that mini-

mize the MSE to be the optimal parameter {Cbest, σbest}.

Step 6: Using the training sample set, the SVR model with parameters {Cbest, σbest} is estab-

lished, and the network is trained to complete the prediction.

The specific process of the GA-SVR algorithm is shown in Fig 1.

Support vector regression based on genetic algorithm. The Genetic Algorithms (GA)

were proposed and developed by professor Holland of the University of Michigan in 1962. It is

a search algorithm that is based on the biological evolutionary process of the survival of the fit-

test in nature [53]. The basic process is as follows: First, we randomly generate a population of

a certain size for the problem to be solved, the adaptive value of each individual is calculated

and the fitness assessment was performed for all individuals in the group. Second, by selecting,

crossing, and mutating a group of individuals, a set of individuals more adaptable to the envi-

ronment is produced. Finally, based on the new generation, the three operations that select,

cross and mutate are carried out. After several generations of evolution, until the set termina-

tion conditions are satisfied, the optimal solution to the problem is found [54]. The nine basic

steps of the genetic algorithm applied to SVR parameter optimization (GA-SVR) are delin-

eated in the steps that follow.

Step 1: Data preprocessing. To avoid a large magnitude difference between the various factors,

the input sample is normalized.

Step 2: Initialization of the population. The penalty parameter C and the kernel function

parameter σ are initialized and binary coding is performed. The initial population P(t) of

the genetic algorithm is constructed. The parameters of the GA are set, such as the initial

population size of the GA, the maximum genetic algebra T, crossover rate and mutation

rate. A set of chromosomes that represent the SVR parameter values are randomly gener-

ated and each chromosome is composed of {C, σ}.

Step 3: Individual evaluation. Regression training was performed for each individual generated

by the population. The reciprocal of the mean square error (found during training) is used

as the objective function value, i.e., the individual fitness. The fitness function value of each

individual is calculated, and the calculation formula is:

F ¼
1

m

Xm

i¼1

ðyi � yiÞ
2

ð13Þ

wherem is the number of network output nodes, yi is the expected output of the i-th node

of the SVR and yi is the prediction output of the i-th node.

Fig 1. Flow chart of SVR algorithm based on K-CV.

https://doi.org/10.1371/journal.pone.0215600.g001
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Step 4: Select operation. Individual fitness is based on roulette method, the chromosomes with

higher fitness values were selected from the current population to replicate.

Step 5: Cross operation. Two individuals in the population were selected as the parent body, a

new generation of chromosomes were obtained via a cross operation associated with some

probability. A single point-cross method is used here.

Step 6: Mutation operation. Randomly select individuals in a population and change some

genes in individuals with certain probabilities. This results in a new set of individuals.

Step 7: Termination conditions. If t� T, then go to step. If t> T or if the optimal individual

continues to be less than a constant, then the algorithm is automatically terminated and the

output is the optimal value.

Step 8: Optimal decoding. This step outputs the optimal parameter {Cbest, σbest} of the SVR.

Step 9: Using the training set, the SVR model with parameters {Cbest, σbest} are established. The

network is now trained and the test sample is placed back into the training set. Thus, SVR

achieves the predicted results.

The specific process of the GA-SVR algorithm is shown in Fig 2.

Support vector regression based on improved particle swarm optimization. Particle

Swarm Optimization (PSO) algorithm is an optimization algorithm based on swarm intelli-

gence theory, which was first proposed by Kennedy and Eberhart in 1995 [55]. It is a global

optimization algorithm that simulates bird-predator behavior and achieves the goal of optimi-

zation via a collective cooperation among birds. The solution of each optimization problem in

the PSO is considered a bird in the search space called the “particle”. Each particle is associated

with its own position and speed, which is dynamically adjusted according to its “flight experi-

ence” and the influence of other particles in the set [56, 57]. The PSO is an optimal solution

search method for a particle that follows the current optimal method to find (determine) a par-

ticle in the solution space. To measure the superiority of each particle solution, a fitness value

function is defined. In this paper, the mean square error is taken as the fitness function, which

can directly reflect the performance of SVR regression.

The basic principle of the PSO algorithm is described using mathematical terminology.

Suppose that in an n-dimensional solution space, the population X = (X1, X2, � � �, Xm) is com-

posed ofm particles, where Xi = (xi1, xi2, � � �, xin) is the current coordinate position of the i-th

particle, Vi = (vi1, vi2, � � �, vin) is the current velocity of the i-th particle, Pibest is the current best

position of i-th particle and Pgbest is the best location of the whole particle swarm. According to

the basic principle of the optimal particle, each particle Xi, i = 1, 2, � � �,mwill update its velocity

and position according to velocity adjustment Eq (14) and position adjustment Eq (15).

Viðt þ 1Þ ¼ oViðtÞ þ c1r1ðPibest � XiðtÞÞ þ c2r2ðPgbest � XiðtÞÞ: ð14Þ

Xiðt þ 1Þ ¼ XiðtÞ þ Viðt þ 1Þ: ð15Þ

where ω is the inertia weight, t is the current evolutionary algebra, r1 and r2 are random num-

bers distributed between [0, 1]; c1 and c2 are the accelerated constants that are usually evalu-

ated between (0, 2]; Vi(t) is the original velocity of the particle and Vi(t + 1) is the new velocity

of the particle.
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To reduce the possibility of particles leaving the search space during evolution, the flight

velocity Vi of a particle is usually limited to a certain range, namely Vi 2 [−Vmax, Vmax].

Vi ¼ Vmax; if Vi > Vmax

Vi ¼ � Vmax; if Vi < � Vmax:

(

ð16Þ

Fig 2. SVR parameter optimization based on GA.

https://doi.org/10.1371/journal.pone.0215600.g002
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The adjustment of equation Pibest and Pgbest are show in Eqs (17) and (18), where f(x) is the

fitness function.

Pibestðt þ 1Þ ¼
Pibest if f ðXiðt þ 1ÞÞ � f ðPibestÞ

Xiðt þ 1Þ if f ðXiðt þ 1ÞÞ < f ðPibestÞ:

(

ð17Þ

fPgbestðtÞ 2 fP1bestðtÞ; � � � ; PmbestðtÞgjf ðPgbestðtÞÞ ¼ minff ðP1bestðtÞÞ; � � � ; f ðPmbestðtÞÞgg: ð18Þ

f ðXiÞ ¼
1

m

Xm

i¼1

ðyi � yiÞ
2
: ð19Þ

wherem is the number of particles, yi is the actual value and yi is the predictive value.

The inertia weight ω is mainly used to balance the global search capability and local devel-

opment capability of particles in Eq (14). A larger inertia weight results in overly rapid particle

velocity and deviation from the search area of the optimal solution. A smaller inertia weight

gives the particle stronger local search ability, but takes a longer time to find the global optimal

solution. Therefore, careful selection of inertia weight is important to obtain good perfor-

mance. In this paper, the inertia weight ω is taken as

oðtÞ ¼ omax �
omin
omax

� �1þ t
Tmax

: ð20Þ

where ωmax is the maximum inertia weight; ωmin is the minimum inertia weight; t is the cur-

rent iteration number; Tmax is the maximum iteration number. In order to be distinguished

from PSO, PSO with the inertia weight (20) is named as IPSO.

The algorithm for the IPSO-optimized SVR parameter is called IPSO-SVR and its basic

steps are as follows

Step 1: Data preprocessing. Read in the sample set and preprocess it.

Step 2: PSO initialization. A particle is composed of a penalty parameter C and a kernel func-

tion parameter σ. We initialize the particle swarm {C, σ}, determine the population size of

PSO, randomly generate the initial position and velocity of the particle, set the maximum

number iterations Tmax of the algorithm and the range of velocity [−Vmax, Vmax].

Step 3: We calculate the fitness function value of each particle. The prediction error of the cur-

rent position of each particle is obtained by using the SVR corresponding to each particle

vector to predict the learning sample. The fitness function value of each particle is calcu-

lated by using Eq (19).

Step 4: Update the personal best Pibest of particle. The fitness of each particle is evaluated. If the

fitness value of the current iteration is better than the personal best Pibest, then Pibest is
replaced by the current fitness value; otherwise, the original value is retained.

Step 5: We update the global best of the population. If the fitness value of a particle is better

than the current global best Pgbest, then Pgbest is updated; otherwise, the original value is

retained.

Step 6: We update the velocity, position and inertia weight of the particle according to Eqs

(14), (15), and (20).

Step 7: Termination conditions. Either the current number of iterations t = Tmax or fitness val-

ues is less than (the provided) precision ε. If ε is satisfied, then the optimization step is
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complete, the optimal parameter {Cbest, σbest} is obtained and the algorithm moves on to

step 8. Otherwise, let t = t + 1, and the algorithm returns to step 3.

Step 8: We implement the training sample set, the SVR model with parameters {Cbest, σbest} are

determined. The network is trained and the test sample is placed back into the trained SVR

to get the predicted results.

The specific process of the IPSO-SVR algorithm is shown in Fig 3.

Fig 3. The SVR algorithm based on IPSO.

https://doi.org/10.1371/journal.pone.0215600.g003
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Experimental

The data source

Influenza-like cases are a main indicator for the condition monitoring of flu, both domestically

and overseas. These cases refer to a specific set of symptoms provided by specific outpatient

cases of sentinel hospitals. The symptoms are fever with a temperature equal to or greater than

38 ˚C, a cough or a sore throat. These cases often lack diagnosis based on laboratory findings.

The source of flu data in this article mainly consists of official data from the 10 regional flu out-

breaks in the US and the twitter data for the same period. In [58], the 10 regions defined by

Health and Human Services (HHS) can be easily identified. The software used to simulate the

prediction model is MATLAB (R2014a). The official data used in this study was acquired from

the historical ILI weekly (https://gis.cdc.gov/grasp/fluview/fluportaldashboard.html) data set

which was published by the Center for Disease Control and Prevention S1 Table. Twitter data

refers to data in [33], it is derived from flu data provided by the prototype of flu-surveillance

system that was established by Wang et al. [26]. In this paper, we collected 55 weeks of data in

10 regions of the US from the 41st week of 2016 to the 43rd week of 2017. ILI data from the

41st week of 2016 to the 38th week of 2017 was selected as the training set to use for model

building. ILI data from the 39th week to 43rd week of 2017 was selected as the test set to use

for model validation.

The data processing

The vectors in the original data sample use various orders of magnitude and the order of mag-

nitude varies from sample to sample. To avoid the outliers based on data ranges, the data was

normalized. The Mapminmax MATLAB function was used to normalize the sample to be con-

strained within the [0, 1] interval. The disadvantage of dimensional inconsistency to model

was eliminated and the operation efficiency of the model was improved. The normalized for-

mula is

X0t ¼
Xt � Xmin
Xmax � Xmin

: ð21Þ

where X0t is the normalized data, Xt is the original input data and Xmax,Xmin are the largest and

smallest value in the historical data, respectively.

After predicting the output, a reverse normalization process is performed and the actual

predicted ILI were obtained. The reverse normalization formula is

Xt ¼ ðXmax � XminÞX0t þ Xmin: ð22Þ

Experimental results and analysis

In this study, the twitter data for regions 1-10 misses the 16th, 25th-26th, and 46th-49th data.

We use the SVR for prediction to revise these missing data. We perform twenty times and

take the corresponding prediction of the missing data with the minimum MAPE. For example,

the twitter data of regions 5 and 8 are shown in Fig 4. The red dots in Fig 4 represent our

predictions.

To evaluate the prediction performance of the various prediction models, each model was

evaluated by the Mean Square Error (MSE), Relative-Mean-Square Error (RMSE), Mean
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Absolute Percentage Error (MAPE) and calculation time.

MSE ¼
1

n

Xn

i¼1

ðyi � yiÞ
2
: ð23Þ

MAPE ¼
1

n

Xn

i¼1

j
yi � yi
yi
j �100%: ð24Þ

RMSE ¼
1

n

Xn

i¼1

ð
yi � yi
yi
Þ

2
: ð25Þ

In these evaluation methods, n is the number of samples; yt is the actual value of period t; and

yt is the predicted value of period t.
In this work, we predict %ILI using CV-SVR, GA-SVR, PSO-SVR, and IPSO-SVR methods.

The independent variable of models 1-3 were used as feature inputs of these ML methods and

the dependent variable was used as the output. We compared the prediction results generated

by the IPSO-SVR with CV-SVR, GA-SVR, and PSO-SVR methods (which are based on models

1-3). The prediction results are shown in Tables 1–3, and calculation times are shown in

Table 4.

The actual value and predicted value of models 1-3 on the trained and tested samples of ten

regions are shown in Figs 5–7, where the red line perpendicular to the horizontal axis in every

subfigure divides the whole plate into two parts: the left part is the actual outputs and predicted

outputs of the training samples on models 1-3, and right part is the actual outputs and the pre-

dicted outputs of the test samples on models 1-3. From Figs 5–7, we can see that the output of

model 3 are the closest to the actual output in the training samples and test samples. The out-

put of model 2 are close to the actual output in the training samples, but there are differences

between the predicted output of model 2 and the actual output in the test samples. There are

many discrepancies between the estimates using model 1 and the actual CDC values in the

training samples and test samples.

Tables 1–3 shows the MSE, RMSE, and MAPE on the test samples of ten regions for models

1-3, respectively. By comparing the MSE, RMSE, and MAPE results of models 1 and 2, we find

that model 2 has higher ILI prediction capabilities for most regions; this is because the MSE,

RMSE and MAPE values are smaller. These results suggest that the flu epidemic other regions

has an impact on the current region, which means that the spread of flu is also affected by an

inter-regional spread of flu. Therefore, the %ILI prediction should not only consider the role

Fig 4. The twitter data of regions 5 and 8.

https://doi.org/10.1371/journal.pone.0215600.g004
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of the current regional flu data, but should also consider the impact of flu transmission in

extended regional areas. Similarly, compared to the MSE, RMSE, and MAPE results of model

2 with model 3, we found that the prediction effect of the model 3 was better than the model 2

over all 10 regions. The results show that the twitter data complements with CDC ILI data,

that is, the twitter data may contain new information that CDC data does not have. This infor-

mation reflects the variation trend of the previous period of the flu that typically lasts 1-2

weeks.

By comparing the IPSO-SVR, PSO-SVR, GA-SVR, and CV-SVR prediction results of

model 1, we find that the prediction effect of the IPSO-SVR, in most regions (1-2 and 5-9)

showed more robustness than the other three methods. By comparing the IPSO-SVR,

PSO-SVR, GA-SVR, and CV-SVR prediction results of model 2, we find that the prediction

effect of the IPSO-SVR was better than other three methods in most regions (1 and 4-7). By

comparing the IPSO-SVR, PSO-SVR, GA-SVR, and CV-SVR prediction results of model 3, we

find that the prediction effect of the IPSO-SVR, in most regions (1-5 and 8-9) showed more

robustness than the other three methods. By comparing the IPSO-SVR, PSO-SVR, GA-SVR

Table 1. Evaluation index results of model 1 for 10 regions of US.

Region Error CV-SVR GA-SVR PSO-SVR IPSO-SVR

1 MSE 1.2247 1.1309 0.8836 0.8075

RMSE 1.7433 1.6070 1.3214 1.2458

MAPE 1.0936 1.0626 1.0069 0.8252

2 MSE 0.5515 0.7651 0.5810 0.5447

RMSE 0.1952 0.2730 0.1904 0.1794

MAPE 0.3949 0.4827 0.3181 0.3215

3 MSE 2.7369 2.7564 0.7368 0.7378

RMSE 1.8162 1.8549 0.5134 0.5139

MAPE 1.1778 1.1505 0.5987 0.5989

4 MSE 7.2071 9.4694 11.1045 11.7234

RMSE 2.7272 3.5422 4.2457 4.6025

MAPE 1.5791 1.8344 2.0160 2.0881

5 MSE 1.6050 1.7586 0.2454 0.2272

RMSE 1.2276 1.3436 0.1861 0.1724

MAPE 0.9989 1.0861 0.3537 0.3425

6 MSE 0.0759 2.1083 0.0638 0.0582

RMSE 0.0172 0.5241 0.0132 0.0118

MAPE 0.1164 0.6709 0.0983 0.0883

7 MSE 2.4362 2.5517 2.0060 1.6671

RMSE 2.4432 2.4943 2.0476 1.6982

MAPE 1.4827 1.4981 1.3379 1.2257

8 MSE 0.2397 0.2608 0.1347 0.1330

RMSE 1.0788 1.0961 0.5915 0.5821

MAPE 0.8556 0.8319 0.5967 0.5833

9 MSE 0.0367 0.0806 0.0249 0.0248

RMSE 0.0147 0.0332 0.0100 0.0099

MAPE 0.1041 0.1609 0.0814 0.0812

10 MSE 0.8944 0.8979 0.8503 0.8401

RMSE 0.8648 0.8689 0.8350 0.8225

MAPE 0.7786 0.7806 0.7175 0.7082

https://doi.org/10.1371/journal.pone.0215600.t001

Regional level influenza estimated

PLOS ONE | https://doi.org/10.1371/journal.pone.0215600 April 23, 2019 14 / 23

https://doi.org/10.1371/journal.pone.0215600.t001
https://doi.org/10.1371/journal.pone.0215600


and CV-SVR, the calculation time to find a result (based on models 1-3), we find that

IPSO-SVR has the shortest calculation time than the other three algorithms.

Several comparison can be made to illustrate that the IPSO-SVR prediction results of

model 3 are the best of the three models since its MSE, RMSE and MAPE values are the small-

est, and the run-time of the IPSO-SVR method is the shortest. Meanwhile, the prediction

results were compared to the results of the BP neural network influenza prediction model

based on improved artificial tree algorithm in reference [33]. We can show that the IPSO-SVR

prediction results of model 3 are better than the prediction results of the IAT-BPNN model in

most regions (1-3, 5-6, and 8-10) under review. The precision is higher, better and more

reflects the ground truth of flu transmission. Results show that in flu prediction, the IPSO-SVR

algorithm can predict %ILI more effectively, while showing that the method of using IPSO to

optimize the SVR parameters is feasible and effective, and that the techniques not only provide

new methods to further the development of flu prediction, but also have important reference

value for the further applications of SVR.

Table 2. Evaluation index results of model 2 for 10 regions of US.

Region Error CV-SVR GA-SVR PSO-SVR IPSO-SVR

1 MSE 0.3803 0.3811 0.5575 0.3612

RMSE 0.6677 0.6683 0.9634 0.6356

MAPE 0.6940 0.6884 0.8843 0.6841

2 MSE 1.4038 0.8164 2.0968 1.9606

RMSE 0.5899 0.3746 1.0149 0.8310

MAPE 0.6131 0.5070 0.7272 0.7451

3 MSE 1.8137 1.7965 1.6740 1.6977

RMSE 1.3737 1.3615 1.2818 1.3016

MAPE 0.9777 0.9760 0.9518 0.9526

4 MSE 1.8745 1.9831 1.7528 1.3208

RMSE 0.6592 0.7418 0.6787 0.4623

MAPE 0.7639 0.7279 0.7023 0.5795

5 MSE 0.8477 0.8379 1.1876 0.8092

RMSE 0.6482 0.6413 0.9080 0.6207

MAPE 0.7482 0.7528 0.9035 0.7327

6 MSE 0.8563 0.8644 0.8550 0.8459

RMSE 0.2144 0.2213 0.2128 0.1884

MAPE 0.4013 0.3915 0.4032 0.3781

7 MSE 0.4899 0.4960 0.6058 0.4313

RMSE 0.5341 0.5409 0.5221 0.4841

MAPE 0.6587 0.6853 0.6517 0.6073

8 MSE 0.7583 0.3963 0.7538 0.6458

RMSE 2.1670 1.1701 2.3610 1.7764

MAPE 1.1702 0.8843 1.1066 1.0388

9 MSE 0.2956 0.1221 0.3401 0.3395

RMSE 0.1200 0.0588 0.1387 0.1369

MAPE 0.2853 0.2198 0.3271 0.3035

10 MSE 0.1334 0.1097 0.7560 0.2935

RMSE 0.1074 0.1554 0.8328 0.3150

MAPE 0.2836 0.3134 0.6261 0.5104

https://doi.org/10.1371/journal.pone.0215600.t002
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Conclusions

In this paper, we proposed three flu prediction models that use US-based twitter and CDC

data. Then, we proposed an improved PSO to optimize the parameters of SVR. The indepen-

dent and dependent variables of models 1-3 are used as input and output of the IPSO-SVR for

predicting the CDC’ unweighted %ILI of US. Comparing the prediction results of IPSO-SVR,

PSO-SVR, GA-SVR, and CV-SVR for models 1-3. The experimental results show that 1) flu

outbreaks in adjacent areas also have an impact on the current spread of flu in a region; 2) the

Table 3. Evaluation index results of model 3 for 10 regions of US.

Region Error CV-SVR GA-SVR PSO-SVR IPSO-SVR

1 MSE 0.0127 0.0217 0.0211 0.0123

RMSE 0.0225 0.0419 0.0388 0.0221

MAPE 0.1329 0.1880 0.1659 0.1203

2 MSE 0.0125 0.0132 0.0126 0.0111

RMSE 0.0044 0.0051 0.0046 0.0042

MAPE 0.0596 0.0617 0.0580 0.0575

3 MSE 0.0285 0.0279 0.0238 0.0163

RMSE 0.0225 0.0220 0.0189 0.0130

MAPE 0.1489 0.1473 0.1361 0.1124

4 MSE 0.0314 0.0355 0.0315 0.0205

RMSE 0.0098 0.0111 0.0098 0.0076

MAPE 0.0795 0.0797 0.0726 0.0724

5 MSE 0.0106 0.0108 0.0086 0.0082

RMSE 0.0086 0.0087 0.0068 0.0065

MAPE 0.0666 0.0664 0.0603 0.0583

6 MSE 0.0212 0.0204 0.0225 0.0237

RMSE 0.0050 0.0049 0.0055 0.0058

MAPE 0.0578 0.0577 0.0610 0.0622

7 MSE 0.0143 0.0270 0.0598 0.0598

RMSE 0.0200 0.0314 0.0645 0.0645

MAPE 0.0979 0.1444 0.1969 0.1971

8 MSE 0.0381 0.0314 0.0523 0.0248

RMSE 0.0692 0.0562 0.0976 0.0458

MAPE 0.2460 0.2177 0.2910 0.1893

9 MSE 0.0498 0.0504 0.0472 0.0426

RMSE 0.0194 0.0199 0.0185 0.0164

MAPE 0.1159 0.1226 0.1155 0.0987

10 MSE 0.0433 0.0432 0.0464 0.0421

RMSE 0.0485 0.0484 0.0508 0.0406

MAPE 0.1495 0.1697 0.1596 0.1463

https://doi.org/10.1371/journal.pone.0215600.t003

Table 4. Comparison of the calculation time for each algorithm (in models 1-3).

Model CV-SVR GA-SVR PSO-SVR IPSO-SVR

Model 1 242s 31s 25s 20s

Model 2 244s 32s 27s 26s

Model 3 213s 54s 26s 25s

https://doi.org/10.1371/journal.pone.0215600.t004
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Fig 5. The trained and tested results of model 1 for 10 regions.

https://doi.org/10.1371/journal.pone.0215600.g005
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Fig 6. The trained and tested results of model 2 for 10 regions.

https://doi.org/10.1371/journal.pone.0215600.g006
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Fig 7. The trained and tested results of model 3 for 10 regions.

https://doi.org/10.1371/journal.pone.0215600.g007
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twitter data complements with CDC ILI data; 3) the IPSO-SVR prediction results of model 3

was better than the prediction results of IAT-BPNN model; 4) the IPSO-SVR prediction results

of model 3 for %ILI are not only suitable for ten regions defined by HHS, but also generates an

optimization algorithm that can be applied to optimize the SVR parameters, which used to

solve the other predict problem.
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