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Abstract: Entomopathogenic nematodes are biocontrol agents of invasive insect pests in soil and
cryptic habitats. Nipa palm hispid, Octodonta nipae, is a pest of palm trees in Sothern China. To
address its increasing damage, environmentally friendly control methods are required. This study
aimed to test efficacy of Heterorhabditis bacteriophora and Steinernema carpocapsae on O. nipae and
investigated the influence of secondary metabolites, nematodes, and their isolated cuticles on the
activation of O. nipae’s prophenoloxidase system using qPCR analysis. Our data revealed that O. nipae
were less susceptible to H. bacteriophora than S. carpocapsae and penetrations of infective juveniles
were higher with S. carpocapsae treatment than H. bacteriophora. Moreover, expression levels of the
serine protease P56, prophenoloxidase activation factor 1, PPO and serine protease inhibitor 28 upon
S. carpocapsae and H. bacteriophora infections were generally downregulated at all times. However,
upon heating, the cuticles lost their inhibitory effects and resulted in upregulation of the PPO gene.
Similarly, the addition of arachidonic acid reversed the process and resulted in the upregulation of
the PPO gene compared to the control. Further work is needed to identify toxic substances secreted
by these EPNs to evade O. nipae’s immune system.

Keywords: immune suppression; eicosanoid biosynthesis; entomopathogenic nematodes; prophenoloxidase
activation; Octodonta nipae

1. Introduction

The movement of destructive pest species from one country or region to another is
on the rise. Nipa palm hispid Octodonta nipae (Maulik) is not an exception [1–9]. This pest
is one of the most destructive invasive insects, reportedly causing economic damage to
palm trees in China, mainly in Hainan, Guangdong, Fujian, etc. [9–16]. However, due to
hazard caused by insecticides to the environment, the use of chemical control of this pest
remains elusive. Several attempts were made by different studies to control this beetle
using non-chemical methods [17–19]. One of these was the use of Tetrastichus brontispae
Ferrière (Hymenoptera: Eulophidae) [20–28] entomopathogenic nematode Steinernema
carpocapsae [17–19] and Metarrhizium anisopliae [29–32]. More eco-friendly and cost-effective
methods of control of O. nipae are needed.

Heterorhabditidae and Steinernematidae are families of entomopathogenic nematodes
(EPNs) mainly used for biological control of different economically invasive pests at field
and laboratory levels [33–37]. They have advantages over the conventional chemical control
because they have the ability to actively search for their hosts in cryptic habitats like leaf

Life 2022, 12, 1019. https://doi.org/10.3390/life12071019 https://www.mdpi.com/journal/life

https://doi.org/10.3390/life12071019
https://doi.org/10.3390/life12071019
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/life
https://www.mdpi.com
https://orcid.org/0000-0001-9651-7415
https://orcid.org/0000-0001-7984-9688
https://doi.org/10.3390/life12071019
https://www.mdpi.com/journal/life
https://www.mdpi.com/article/10.3390/life12071019?type=check_update&version=1


Life 2022, 12, 1019 2 of 16

surfaces [38–41]. In addition, EPNs are known to be more effective against the larvae and
other pre-adult stages of insects because they enter the host body easily [42]. EPNs are
reported to be used for the control of leaf-eating caterpillars and other insect pests of many
crops [43]. Many researchers have studied the efficacy of EPNs in controlling the adult
western corn rootworm, Diabrotica virgifera LeConte [37,44], flea beetles, Phyllotreta spp. [45],
and Colorado potato beetle, Leptinotarsa decemlineata (Say) found on leaf surfaces [40].
Similarly, the use of EPN for the control of O. nipae larvae was conducted in our laboratory
using S. carpocapsae and found to be virulent at different concentrations and time points, as
published in Sanda et al. [19]. However, experiments to test the efficacy of Heterorhabditis
bacteriophora on O. nipae larvae have yet to be conducted.

Insects employ both humeral and cellular immune reactions in response to attacks
by pathogens such as bacteria, fungi, and nematodes. These innate immune mechanisms
include nodulation, phagocytosis, encapsulations, production of antimicrobial peptides,
and activation of PPO system, which leads to melanization and subsequent pathogen death
by septicemia [46,47]. Insect PPO activation system is one of the immune reactions against
nematodes and bacteria that involves several proteinases, which are regulated by specific
inhibitors. When pathogens like nematodes or bacteria attack insects, the hemolymph
pattern-recognition proteins such as Peptidoglycan recognition proteins (PGRP) and C-type
lectin bind the pathogens’ surface polysaccharides, thereby inducing the activation of
initiator protease(s). In addition, enzymes released by the pathogens, as well as tissue
damage due to the infection, may activate the proPO system [48,49]. These proteases trigger
a protease cascade, activating a series of terminal serine proteases such as proPO-activating
enzymes (PPAE), proPO-activating proteinase (PAP), or proPO-activating factors (PPAF)
to cleave PPO and form active phenoloxidase (PO). However, the excessive production of
these proteases is regulated by serine proteinase inhibitors (serpins) that limit the reaction
speed and avoid excessive melanization [49,50]. In O. nipae, three full-length cDNAs of
PPAFs (OnPPAFs) were cloned, namely OnPPAF3, OnPPAF1, and OnPPAF2. They were
highly expressed in hemolymph except OnPPAF2, which shows low transcript abundance.
However, knockdown of OnPPAF1 and OnPPAF3 showed a reduction in hemolymph
phenoloxidase activity and inhibition of hemolymph melanization [51–54].

Moreover, different insect hosts responded differently to EPNs infections depending
on the species and strain. Each nematode species uses different strategies to evade and
suppress melanization and escape cellular encapsulation. Our previous study showed that
EPNs of the family Steinernematids, S. carpocapsae use their body surface cuticle to escape
host hemocyte encapsulation and at the same time inhibit its proPO system activity [19].
These are believed to be triggered by the body surface of the Steinernematids due to the
presence of some lipid compounds on its body cuticle. Additionally, pathogenicity of
nematodes is believed to be essentially modulated by the nematode’s excreted and secreted
products (ESPs), which are proteases and protease inhibitors that act against effectors of
the host’s immune system [55]. These ESPs have been detected in S. carpocapsae and are
involved in host immune modulation [23,56,57].

Eicosanoids are other insect cellular and humoral immune mediators against several
microbial infections [58,59]. They are mainly synthesized from arachidonic acid (AA)
(5,8,11,14-eicosatetraenoic acid). AA is linked to phospholipids at the sn2 position and
subsequently released upon microbial challenge by the catalytic activity of phospholipase
A2 (PLA2) [60]. Biosynthesis of eicosanoids could also be inhibited by a nematode–bacteria
complex [61]. Inhibition of PLA2 due to suppression of eicosanoids results in subsequent
inhibition of phenoloxidase activation [62]. The symbiotic bacteria produce secondary
metabolites such as Oxindole, Dexamethasone (DEX), and Benzylideneacetone (BZA) that
suppress the activity of PLA2, thereby inhibiting the host immune responses [63,64]. These
metabolites also restrict the spread of hemocytes and inhibit nodulation, antimicrobial
peptides (AMPs) expression, and phenoloxidase activity [65–67]. However, the molecular
nature of how H. bacteriophora and S. carpocapsae interact with O. nipae humoral immune
system remains unknown. The present study, therefore, was conducted to determine the
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survival rates of O. nipae larvae at different concentrations of H. bacteriophora. Similarly, we
evaluated the penetration abilities of both H. bacteriophora and S. carpocapsae against the
third instar larvae of O. nipae. Further, we tested the differences in expression levels of four
selected genes involved in proPO activation in O. nipae larvae. Finally, the effects of some
selected secondary metabolites and isolated cuticles from nematodes on O. nipae proPO
gene expression were investigated.

2. Materials and Methods
2.1. Experimental Samples

H. bacteriophora H06 (Poinar) and S. carpocapsae All (Weiser) were obtained from
the Guangdong Institute of Applied Biological Resources, China [68]. Nematodes were
cultured using larvae of greater wax moth, Galleria mellonella [69]. Infective Juveniles (IJs)
were stored in distilled water at 15 ◦C and were used in all experiments within 15 days
of emergence from the host. Before the experiments, nematodes were kept at 25 ◦C for
60 min [70]. O. nipae adults were collected from Hainan Island, China, and reared with
small pieces of fortunes windmill palm, Trachycarpus fortunei (Hook) in the laboratory for
many generations, after which healthy third instar larvae were selected and used for this
study. The insects were maintained at 25 ± 1 ◦C, relative humidity of 80 ± 5%, and a
photoperiod of 12 light: 12 dark hours, as previously described by Sanda et al. [18].

2.2. Reagents

The phospholipase A2 inhibitor, dexamethasone (DEX: (11β,16α)-9-fluoro-11,17,21-
trihydroxy-16-methylpregna-1,4-diene-3), the eicosanoid precursor, arachidonic acid (AA:
5,8,11,14-eicosatetraenoic acid), serine proteases inhibitor, phenylmethanesulfonyl (PMSF)
fluoride, and dimethyl sulfoxide (DMSO) were purchased from Sigma Aldrich (Shang-
hai, China) Trading Co., Ltd. (Sigma Aldrich Research Biochemicals, Pudong District,
Shanghai, China).

2.3. Virulence of Entomopathogenic Nematodes on O. nipae Larvae

Here, the effects of EPN concentrations on mortality of O. nipae larvae were explored.
In addition, the ability of the IJs to penetrate the O. nipae larvae at 0, 25, 50 and 100 IJs/larva
concentrations was also experimented, and complete randomized design (CRD) was used
as experimental design. Bioassay was conducted to determine the survival of O. nipae larvae
at different concentrations of H. bacteriophora as fully described in our previous experiment
using S. carpocapsae [18]. In the same vein, bioassay was conducted to determine the
IJs penetration of both H. bacteriophora and S. carpocapsae. After 72 h of inoculation, ten
dead larvae (cadavers) were picked from the well plates, rinsed with distilled water, and
dissected under dissecting stereo-microscope (Nikon SMZ745T Stereo, Camera; Nikon
DS-fi2)-Nikon company, Japan. The number of penetrated IJs were counted and recorded.
Distilled water was used as control and each treatment contained 30 larvae, replicated three
times to confirm the results.

2.4. Expression of Four Selected Prophenoloxidase Activation Genes in O. nipae
Post-Nematodes Infections

We intended to determine the effects of EPN infections on the mRNA expression
level of four selected genes involved in the activation of the proPO system of O. nipae
larvae infected with the two nematode species. These include Serine Protease P56 (SPP56),
prophenoloxidase activation factor 1 (PPAF1), PPO, and serine protease inhibitor 28 (SPI28)
genes (Table 1). Third instar larvae of O. nipae were infected with H. bacteriophora and
S. carpocapsae at 100 IJS per larva, as described above. Larvae samples were collected from
each treatment at 8, 16, and 24 h after inoculation. Total RNA isolation, cDNA Synthesis,
and qRT-PCR analysis and calculations were performed as described in Sanda et al. [19].
Ribosomal protein S3 (rpS3) was use as a reference gene, and qRT-PCR analysis was
performed in triplicate for each biological replicate.
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Table 1. Prophenoloxidase activation genes Primers used for the qRT-PCR analysis.

Gene Name Forward Primer (5′→3′) Reverse Primer (5′→3′)

qSPP56 CGGTTGGTGGAAAGTGTCAG CCCTCGTTGTCCAGCTTCTA
qSPI28 TCGCCTTAGTGATAGCGTGT ACAGGGCTAGGGAAAACTCC
qPPAF1 GATCACCGGCGACAAAGAAA CAGCTTGTTGGGATTGCCTT
qPPO GTATCTTGTCACCCAATAGAGC AAACGATTCAAGATGCCTGT

q-RPS3-F GACGGTGTCTTCAAAGCTGA ATTTCTGTACGTGTCGGGGT

2.5. Influence of Nematodes Isolated Cuticle on the Expression Analysis of PPO Gene

To determine whether nematode body cuticle have an influence on immune expression
of O. nipae PPO gene, H. bacteriophora and S. carpocapsae body cuticles were isolated and
purified as described in our previous study [19]. The O. nipae larvae were injected with
112 nL of purified isolated cuticles from H. bacteriophora and S. carpocapsae and the same
amount of phosphate buffered saline (PBS) as control. Another set of the cuticles were
subjected to heat treatment at 100 ◦C for 20 min. The heat-treated cuticles were injected
in the same way as mentioned above. Total RNA isolation and qRT-PCR analysis were
performed in triplicate for each biological replicate according to Sanda et al. [19] to check
the PPO gene expression levels due to the untreated cuticle, heat-treated cuticle, and
control treatments.

2.6. Influence of Dexamethasone (DEX) and Arachidonic Acid (AA) on PO Activity in O. nipae

We determined the inhibition effects of Dexamethasone’s presence on the phenoloxi-
dase activity in an in vitro assay with hemolymph of O. nipae larvae, as described in our
previous study [19]. Secondly, AA was added on inhibitors’ treatments to reverse the
inhibition effects caused by dexamethasone. All the kinetics were performed as described
in Sanda et al. [19]. For control treatment, only 20 µL of distilled water was added in
place of various treatments. The relative activity of phenoloxidase was measured with a
spectrophotometer (SpectraMax, Molecular Devices Corporation, San Jose, CA, USA) at
490 nm 5 min−1, and at 20 ◦C. The experiments were run in triplicate to confirm the results.

2.7. Combine Effects of Dexamethasone (DEX), Arachidonic Acid (AA), and Nematodes Treatments
on the Expression Level of PPO Gene

We injected the O. nipae larvae with eicosanoid biosynthesis inhibitor, dexamethasone
(DEX) and precursor, arachidonic acid (AA) individually and in combination with H. bac-
teriophora and S. carpocapsae to ascertain their roles on the expression of PPO gene. The
inhibitor, DEX, was dissolved in 100% dimethyl sulfoxide (DMSO) at an initial concentra-
tion of 1 M and subsequently diluted to 5 mM concentration. Three treatment groups were
prepared for injection into the O. nipae larvae at 112 nL using a Nanoliter 2010 injection
system (World Precision Instruments, Sarasota, FL, USA). The first group was injected with
DEX only to test its inhibitory effects on O. nipae proPO activation system, and PBS was
used as control. The second group of the larvae was initially infected with nematodes and
then injected with DEX after 8 h post-infection. The last group was infected with nema-
todes + AA to recover the effects of nematode inhibition. Samples were taken at 24 h after
treatment for RNA isolation. Total RNA isolation and qRT-PCR analysis were performed in
triplicate for each biological replicate according to Sanda et al. [19] to investigate the PPO
gene expression levels of each group.

2.8. Statistical Analyses

All statistical analyses were performed using IBM SPSS Statistics version 22 (IBM
Corporation, New York, USA) (SPSS, RRID: SCR_002865). Data were corrected for control
mortality using Abbott formula [34] and percentage data were square-root transformed
to meet the assumptions of normality and homogeneity of variances. The percentage-
corrected cumulative mortality data, penetration data, were analyzed by one way analysis
of variance (ANOVA). When ANOVA showed a significance effect (p < 0.05), means were
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compared or separated using least significance differences (LSD). The level of mRNA
expression of some selected genes in proPO activation system of O. nipae was transformed
by Logarithmic function and analyzed using the Student’s t-test. Differences between mean
values were analyzed and considered significant when p < 0.05 or considered extremely
significant when p < 0.0001 concerned the control values.

3. Results
3.1. Survival of O. nipae Larvae Infected with H. bacteriophora and S. carpocapsae

We previously evaluated the pathogenicity of S. carpocapsae at different concentrations
by plotting the survival curve at different time points [19]. Significant differences in
survival of O. nipae larvae at different concentrations were reported and at 24 and 48 h
post-treatments [19]. In this study, the pathogenicity of H. bacteriophora on the survival of
O. nipae larvae was evaluated. The results showed that the survival ability of O. nipae larvae
was significant at different time points and H. bacteriophora IJs concentrations (χ2 = 42.170,
df = 4, p = 0.001, Log-Rank Test). The O. nipae larvae survived for 140 h longer at lower
concentrations of 25 and 50 IJs/larva than at 100 IJs/larvae, as shown in Figure 1.
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Figure 1. Survival curve of O. nipae larvae infected with H. bacteriophora at different concentrations
are significantly different, (p < 0.0001, log-rank test).

Similarly, the results for the penetration assay revealed that the IJs of S. carpocapsae and
H. bacteriophora penetrated the hemocoel of the larvae of O. nipae at the concentration of 25,
50, and 100 IJs/larva (Figure 2). However, the mean penetration potential of S. carpocapsae
was significantly higher (F2,6 = 60.84, p < 0.01) than that of H. bacteriophora (F2,6 = 23.99,
p = 0.01) in O. nipae larvae, as shown in Figure 2. The mean penetration of IJs increased
with increasing IJs concentration, in both S. carpocapsae and H. bacteriophora.

3.2. S. carpocapsae and H. bacteriophora Infection Suppress the Activation of O. nipae PPO System

Here we investigated and compared the expression levels of four O. nipae prophenolox-
idase enzymes (including the Serine Protease P56, SPP56; prophenoloxidase activation
factor 1, PPAF1; PPO; and serine protease inhibitor 28, SPI28) between H. bacteriophora- and
S. carpocapsae-treated larvae at three distinct time intervals. Our qRT-PCR results reveals that
SPP56 was significantly upregulated (t4 = 1.346, p = 0.022) after H. bacteriophora challenge
and insignificantly upregulated (t4 = 2.93, p = 0.383) upon S. carpocapsae treatment at 8 h
post-infection (Figure 3A,B). At 16 and 24 h post-treatment, however, SPP56 was downreg-
ulated upon a challenge with both nematodes (Figure 3A,B). These translate to differences
in the invasion strategies between the two nematodes. PPAF1 was downregulated at all
time points following treatment with both nematodes, except at 16 h where H. bacteriophora
infection results in significant upregulation (t4 = 1.88, p = 0.047) of the gene (Figure 4A,B).
Similarly, the mRNA expression levels of PPO gene were completely downregulated at 8,
16, and 24 h post-S. carpocapsae and H. bacteriophora treatments (Figure 5A,B). As expected,
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the serine protease inhibitor SIP28 was downregulated in all nematodes treatments at 8 and
24 h time points, except at 16 h where it appeared upregulated for S. carpocapsae (t4 = 1.31,
p = 0.032) and H. bacteriophora (t4 = 1.58, p = 0.040) treatments (Figure 6A,B). To sum it up,
the S. carpocapsae and H. bacteriophora treatments successfully inhibit the PPO activation
system of O. nipae, except at a few time-points where it shows upregulation.
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Figure 3. Transcription of Serine Protease P56 (SPP56) gene in O. nipae larvae infected with
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Figure 5. Transcription of prophenoloxidase (PPO) gene in O. nipae larvae infected with (A) S. car-
pocapsae and (B) H. bacteriophora at 8, 16, and 24 h after treatments. Error bars labeled with different
letters are significantly different (one-way ANOVA followed by LSD test, p < 0.05). The asterisks
*** (p < 0.0001); ** (p < 0.001); * (p < 0.01) indicate different significant levels between the control and
nematode treatments at the indicated time period, while “ns” indicates no significant difference.
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Figure 6. Transcription of serine protease inhibitor 28 (SPI28) gene in O. nipae larvae infected with
(A) S. carpocapsae and (B) H. bacteriophora at 8, 16, and 24 h after treatments. Error bars labeled
with different letters are significantly different (one-way ANOVA followed by LSD test, p < 0.05).
The asterisks; ** (p < 0.001); * (p < 0.01) indicate different significant levels between the control and
nematode treatments at the indicated time period, while “ns” indicates no significant difference.

3.3. The Heat-Treated Cuticles Positively Expresses the PPO Gene in O. nipae

The expression level of O. nipae PPO gene challenged with nematodes isolated cuticles
was generally low compared to the control treatment. The mRNA level of the PPO gene
was insignificantly regulated at 16 h (t2 = 1.28, p = 0.272 ns) but significantly downregulated
at 24 h (t2 = 1.817, p = 0.001) after injection of the isolated cuticles from the two nematodes
(Figure 7). To further confirm this, we subjected the isolated cuticles to heat treatment at
100 ◦C for 20 min and injected them into the larvae as described above. The results establish
that the expression levels of PPO gene are higher than the controls, especially at late hours
after injection in both treatments. A significant increase in mRNA level of PPO gene was
obtained at 24 h post-H. bacteriophora (t2 = 2.93, p = 0.030) and S. carpocapsae (t2 = 1.31,
p = 0.001) heat-treated cuticles injections. At 16 h after injection of S. carpocapsae cuticle,
insignificance (t2 = 1.27, p = 0.152) upregulation of PPO gene was recorded (Figure 7A,B).

3.4. Addition of Arachidonic Acid Reverses the Inhibitions of Phenoloxidase Activity Caused
by Dexamethasone

In this study, phenoloxidase-inhibitory activities of eicosanoid biosynthesis inhibitors
and DEX treatments compared to controls were observed. There were significant decreases
in phenoloxidase enzyme activities in hemolymph of O. nipae larvae treated with DEX
(F2,6 = 42.13, p = 0.002). However, the addition of AA rescued the phenoloxidase-inhibitory
activities caused by DEX treatments (Figure 8). There were significant increases in phe-
noloxidase activities in hemolymph of O. nipae larvae treated with DEX +AA (F2,6 = 43.13,
p = 0.001).
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Figure 7. Transcription of prophenoloxidase (PPO) gene in O. nipae larvae injected with (A) H. bac-
teriophora purified cuticle (B) S. carpocapsae purified cuticle. Treatments with heat-killed cuticles
reversed the influence of untreated cuticles on the PPO expressions. H.b.—H. bacteriophora and S.c.—
S. carpocapsae. The asterisks *** (p < 0.0001); ** (p < 0.001); * (p < 0.01) indicates different significant
levels between the control and nematode treatments at the indicated time period, while “ns” indicates
no significant difference.
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3.5. Treatment with DEX Suppresses the Expression of the PPO Gene in O. nipae

To further ascertain the role of this eicosanoid biosynthesis inhibitor DEX, we deter-
mined the expression level of PPO gene in treated larvae samples. Our results revealed
that the expression level of PPO gene was downregulated significantly upon treatment of
DEX (t4 = 4.20, p = 0.001) compared with control (Figure 9).
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between the control and nematode treatments at the indicated time period.

Secondly, injections of DEX to nematodes-treated larvae further suppressed the ex-
pression level of PPO gene. There were significant further downregulations of PPO gene
in H. bacteriophora plus DEX (t4 = 2.928, p = 0.001) and S. carpocapsae plus DEX (t4 = 1.91,
p = 0.002) treatments at 24 h. Interestingly, injection of AA (precursor of eicosanoid biosyn-
thesis) to nematode-treated larvae reverses the inhibition effects of both DEX and nematode
plus DEX-treated larvae on the PPO gene expression. The mRNA level of PPO gene in
H. bacteriophora plus AA (t4 = 1.346, p = 0.024) and S. carpocapsae plus AA (t4 = 2.93, p = 0.030)
treatment were highly significant at 24 h after treatments.

4. Discussion

Entomopathogenic nematodes modulate their hosts differently, depending on the
strategies used to escape the host defense mechanisms. For example, Zang and Maizels [55]
described the pathogenicity of insect pathogenic nematodes against their target hosts
as resulting from an “arms race” between the insect and the nematodes. The findings
from this study suggested that O. nipae larvae were more susceptible to H. bacteriophora.
Compared to our previous results, the virulence of S. carpocapsae [19] over H. bacteriophora
can be attributed to their differences in host-searching strategies, as reported by Grewal
et al. [38] and Koppenhöfer et al. [71]. Additionally, insect cellular immune responses differ
among species and depend on the invading species. For instance, G. mellonella hemocytes
can recognize H. bacteriophora IJs, but not S. carpocapsae and S. glaseri nematodes [72].
This is similar to our previous experiment where S. carpocapsae efficiently resists being
encapsulated and melanized within the O. nipae’s hemolymph and most of the nematodes
were observed moving freely in the hemolymph even at 24 h post-incubation, whereas
H. bacteriophora was identified, encapsulated and subsequently melanized by O. nipae’s
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hemolymph [19]. Moreover, Memari et al. [73] reported that H. bacteriophora was less
virulent to carob moth Ectomyelois ceratoniae Zeller (LC50 = 426.9 IJs larva−1) when compared
to both S. carpocapsae and S. feltiae (LC50 = 2 IJs/larva) at concentrations similar to this study.
Additionally, Sharifi et al. [74] have reported that S. carpocapsae caused higher mortality
of Osphranteria coerulescens than H. bacteriophora, as evident by their LC50 of 2.7 and 9.0 IJs
larva−1, respectively. This is consistent with quite a number of reports for different insect
pest control [75–80].

In any successful biological control program using EPNs as control agents, the nema-
todes should have the ability to not only penetrate their hosts but also reproduce inside
them. The routes of entry of IJs into the host body cavity differ among nematode species
and insect hosts. These require some mechanical processes by the nematodes to bypass
the insects’ natural barriers, such as hairs [81]. According to Sharifi et al. [74], different
hosts and EPN species have different penetration rates. In this study, we reported that
differences exist between concentrations of S. carpocapsae and H. bacteriophora with regards
to the mean penetration potential within the host larvae. This is also similar to a report by
Susurluk et al. [82], which established higher penetration rates of S. carpocapsae into turf
pest, Dorcadion pseudopreissi, and lower in H. bacteriophora treatments. Similarly, higher pen-
etration rates were also reported for Steinernematids in previous works by Phan et al. [83],
Salari et al. [34], Salem et al. [84], Koppenhöfer et al. [71], and Caroli et al. [85].

During host infection, nematodes contend the humoral and cellular host immune
responses through passive and active strategies, in which nematodes avoid triggering an
immune response by being recognised as ‘self ’ as in S. carpocapsae. They also suppress the
hosts’ immune responses after being recognised as ‘non-self ’ [86,87]. In addition, nematodes
modulate their hosts’ immune responses by releasing toxic molecules (such as proteases
and inhibitors) during infection [88–90]. Activation of proPO results in the synthesis of
phenoloxidase (PO), which serves as a reactive intermediate for melanin biosynthesis,
an important component of insect’s innate immunity which can be activated by serine
proteinases [55]. However, some EPNs have developed some means of preventing proPO
activation by producing serpin-type inhibitors or other factors specifically interfering with
the proteolytic activation of proPO or its upstream components. Here, we dissected the
expression levels of four proPO activation enzymes of O. nipae infected with S. carpocapsae
and H. bacteriophora. From our results, we found that nearly all the genes involved were
downregulated in both nematodes and at all time points, except in a few cases. Initially,
when the serine protease SPP56 was majorly downregulated, the whole enzymes involved
in the activation of proPO cascades are shut down. This is consistent with our previous
study where O. nipae’s phenoloxidase activity was found to be slightly suppressed due to
infection of both H. bacteriophora and S. carpocapsae at early stages of infection [19].

Additionally, the S. carpocapsae isolated cuticles escaped being melanized by O. nipae’s
hemolymph in vitro and were found to be completely melanized, however, when isolated
cuticles were heat-killed before treatment. This is in line with some previous reports
that show success in parasitization of Steinernematids is aided by their body surface
cuticles [89–93]. Similarly, S. feltiae was shown to prevent the antibacterial immune response
in G. mellonella by their body surface [94]. Akhurst and Boemare [40] suggest that cuticles of
parasitic nematodes in addition to secreted molecules are involved in immune-evasion and
suppression of host’s defences during the invasion. It was also reported to depress the host
immune system, such as the proPO system, when injected into the hemocoel. Therefore, it
was hypothesized that the nematode disguises as ‘self’ with the hemolymph proteins of the
invading host by coating its body surface [94]. Yi et al. [59] showed that the involvement
of S. carpocapsae or H. bacteriophora cuticles caused suppressions of humoral and cellular
immune processes, such as phenoloxidase activity, haemocytes vitality, phagocytosis and
antimicrobial activity. In this study, we confirm that the purified, isolated cuticles suppress
the expression level of PPO gene in both nematodes’ treatments. However, upon heating,
the cuticles lost their inhibitory effects on O. nipae’s immune responses and resulted in the
upregulation of the PPO gene at both 16 and 24 h after treatment.



Life 2022, 12, 1019 12 of 16

Furthermore, eicosanoids mediate basic humoral and cellular immune response mech-
anisms in insects [89]. These include nodulation, phagocytosis, encapsulation, and phe-
noloxidase activation systems. The results of the present experiment revealed that the
eicosanoid biosynthesis inhibitor DEX suppresses the expression of the PPO gene in O. ni-
pae, similar to that caused by treatment with H. bacteriophora and S. carpocapsae. In contrast,
the addition of AA reversed the process and resulted in the upregulation of the PPO gene
compared to the control treatment. In a study by Yi et al. [59], injection of the eicosanoid
biosynthesis inhibitors dexamethasone and indomethacin induced similar depression in
the key innate immune parameters, such as PO activity, compared to the nematode cuticles
treatment in G. mellonella. However, injection of larvae with AA reverses the inhibitory
effects of these inhibitors. Similarly, benzaldehyde and its derivative treatments resulted
in the inhibition of PO activity in Pieris rapae larvae [95]. This is supported by the study
of Ullah et al. [96] in which, in addition to the inhibition of nodule formation, the PO
activity was also inhibited at different concentrations of benzaldehyde in G. mellonella
larvae. Similarly, treatments with BZA (benzylideneacetone) in another study resulted
in the immunosuppression of PO activities in Plutella xylostella and S. exigua [97–99]. We
conclude that various eicosanoid inhibitors play a crucial role in the death of target insects.

5. Conclusions

Overall, this study provides the first data on the use of H. bacteriophora and S. carpocap-
sae for biological control of O. nipae larvae at different concentrations in the laboratory. We
further dissected the expression levels of four selected proPO activation enzymes infected
with H. bacteriophora and S. carpocapsae and found out that all of the genes were downreg-
ulated from both nematodes’ treatments. These were further confirmed by the counter
experiments of heat-treated cuticles and AA treatment, which reversed the inhibitory effects
caused by the nematodes and the eicosanoid inhibitor. Therefore, we speculated that these
nematodes devised some means to evade and suppress the immune system of O. nipae,
either by secretion of toxins or by manipulation of the host system. Future work will focus
on the identification and functional analysis of the secretions used by S. carpocapsae and H.
bacteriophora against O. nipae immune system.
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