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Abstract 
Enhancers, noncoding DNA fragments, play a pivotal role in gene regulation, facilitating gene transcription. Identifying enhancers 
is crucial for understanding genomic regulatory mechanisms, pinpointing key elements and investigating networks governing gene 
expression and disease-related mechanisms. Existing enhancer identification methods exhibit limitations, prompting the development 
of our novel multi-input deep learning framework, termed Enhancer-MDLF. Experimental results illustrate that Enhancer-MDLF 
outperforms the previous method, Enhancer-IF, across eight distinct human cell lines and exhibits superior performance on generic 
enhancer datasets and enhancer–promoter datasets, affirming the robustness of Enhancer-MDLF. Additionally, we introduce transfer 
learning to provide an effective and potential solution to address the prediction challenges posed by enhancer specificity. Furthermore, 
we utilize model interpretation to identify transcription factor binding site motifs that may be associated with enhancer regions, with 
important implications for facilitating the study of enhancer regulatory mechanisms. The source code is openly accessible at https:// 
github.com/HaoWuLab-Bioinformatics/Enhancer-MDLF. 
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INTRODUCTION 
Enhancers, noncoding fragments within DNA sequences, play a 
pivotal role in regulating gene transcription [1, 2]. As a class of 
regulatory elements, enhancers exert control over diverse cellular 
activities, including tissue-specific gene expression [3], cell growth 
and differentiation [4] and cell carcinogenesis [5]. Mutations or 
abnormal expression of enhancers can disrupt gene regulatory 
networks, thereby affecting cellular function, tissue development 
and disease progression [6]. Many recent studies have found 
that the genetic mechanisms of complex diseases can be better 
revealed by understanding the role of enhancers in gene expres-
sion [7–9]. Therefore, the identification of enhancers is crucial for 
advancing the comprehension of gene expression and regulation. 

High-throughput computational and experimental methods 
have been employed to predict enhancers. Several methods for 
identifying enhancers are as follows: (i) Computational Analysis 
Using Conserved Sequences and Transcription Factor Binding 
Site Data [10, 11]. This method effectively predicts the genomic 
locations where known transcription factors (TFs) with binding 
sequence motifs are likely to interact. However, it may yield false 
positives by encompassing regulatory element sequences that 
bind TFs but do not serve as enhancers. (ii) Utilizing ChIP-seq 
Data for Transcription Factors and P300. ChIP-seq data for TFs can 

identify enhancers bound by known TFs [12]. However, it cannot 
distinguish between enhancer and promoter regions because both 
can bind TFs. Furthermore, not all enhancers necessarily bind 
TFs. ChIP-seq data for p300 [13], commonly used for enhancer 
prediction, faces limitations in distinguishing between active 
and inactive enhancers. (iii) Chromatin Accessibility-Related 
Data (e.g. DNase-seq [14], FAIRE-seq [15], ATAC-seq [16]). This 
method relies on data related to chromatin accessibility, However, 
it may yield false positives by including other transcriptional 
regulatory elements, such as promoters, insulators and silencers. 
(iv) Histone Modification Data [17] (e.g. H3K4me1 and H3K27ac). 
Using both H3K4me1, which marks active and poised enhancers, 
and H3K27ac, which marks associated with active regulatory 
regions from both promoters and enhancers to identify activated 
enhancer regions, this method benefits from the widespread 
availability of histone modification data across different species, 
effectively supporting various research needs. However, its 
drawback lies in the broad nature of histone modification data 
across the entire genome, hindering precise enhancer prediction. 
(v) Prediction based on enhancer RNA (eRNA) data [18] (e.g.  RNA-
seq, ChAR-seq, GRO-seq and NET-seq). Enhancers transcribe 
eRNAs, and their locations can be predicted using eRNA data 
obtained through sequencing techniques. However, this method is
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limited in predicting enhancers that are not actively transcribed. 
Despite their individual merits, these experimental methods 
have inherent limitations, and they are both time-consuming 
and expensive. Therefore, it is essential to develop reliable 
computational tools for enhancer identification. 

In recent times, several computational methods for enhancer 
identification have been proposed, including ienhancer-2L [19], 
Enhancerpred [20], ienhancer-EL [21], ienhancer-ECNN [22], BERT-
enhancer [23], ienhancer-EBLSTM [24] and ienhancer-XG [25]. 
Notably, these methods are based on the dataset created by Liu 
et al. [19]. However, two notable issues arise with this dataset. 
Firstly, the enhancers within it are extracted as short sequences 
of a fixed length (200bp), raising questions about the adaptability 
of these methods to unequal-length sequences and their ability 
to maintain optimal performance under such circumstances. 
Secondly, the dataset is a mixed general dataset encompassing 
nine cell lines, notwithstanding the established understanding 
that enhancers exhibit cell-specificity [26, 27]. 

To further investigate the cell-specific nature of enhancers, 
Enhancer-IF [28], a framework based on integrated machine learn-
ing (ML), was proposed to identify enhancers. This framework 
utilizes eight cell lines with known cell-specific enhancers. Cross-
cell line validation results demonstrate that a significant majority 
of enhancers indeed exhibit cell-type specificity. This underscores 
the importance of considering cell specificity in enhancer identi-
fication, a facet not fully addressed by the earlier methods relying 
on the general dataset approach. 

Despite notable advancements in enhancer identification, 
there exist notable limitations. Firstly, the predictive performance 
of Enhancer-IF for cell-specific enhancers is not ideal, which may 
be due to the conventional feature encoding scheme and the 
relatively simplistic design of the model framework. Secondly, 
Enhancer-IF integrates five commonly used classifiers (Random 
Forest, Extremely Randomized Tree, MultiLayer Perceptron, 
Support Vector Machine and Extreme Gradient Boosting) and 
employs a grid search algorithm to optimize parameters for each 
classifier across every cell line. Undoubtedly, this approach is 
time-consuming when applied to new cell lines. Furthermore, 
there is a lack of in-depth exploration of potential strategies to 
mitigate the impact of cell specificity on the overall performance 
of enhancer prediction. Lastly, Enhancer-IF lacks explanations for 
its prediction models, which is crucial for exploring transcription 
factor binding sites (TFBSs) motifs in enhancer regions. The 
absence of such interpretability hinders a comprehensive under-
standing of the biological insights derived from the predictions. 
Addressing these limitations is crucial for advancing the accuracy, 
efficiency and biological interpretability of enhancer prediction 
models. 

Therefore, we propose Enhancer-MDLF, a Multi-input Deep 
Learning Framework designed to predict cell-specific enhancers 
across multiple human cell lines. Our approach amalgamates 
word vector features derived from the human genome sequence 
and motif features extracted from the position weight matrix 
(PWM) of motifs. Through comprehensive evaluation on cell-
specific datasets and other pertinent datasets, we demonstrate 
the superior performance of enhancer-MDLF. The principal 
contributions of our work include (i) the introduction of a novel 
deep learning framework, employing multi-module inputs for the 
identification of cell-specific enhancers; (ii) the substantiation 
of Enhancer-MDLF’s substantial outperformance relative to 
state-of-the-art predictors, accomplished without the need of 
parameter tuning; (iii) the incorporation of transfer learning into 
our model to address the challenges in cross-cell line predictions 

stemming from enhancer specificity and (iv) a meticulous 
analysis of the conservation and specificity of enhancers at 
the motif level, culminating in the identification of the most 
important TFBS motifs within enhancer regions. The overall 
framework of our study is depicted in Figure 1. 

MATERIALS AND METHODS 
Dataset 
In this study, we utilize the benchmark dataset derived from 
Enhancer-IF [28]. The dataset encompasses eight distinct cell 
lines, namely GM12878, HEK293, HMEC, HSMM, HUVEC, K562, 
NHEK and NHLF. They utilize Enhancer Atlas 2.0 [29] (http://www. 
enhanceratlas.org/indexv2.php) to extract enhancer locations for 
each cell line, and their corresponding sequences are obtained 
through Retailor [30] (http://shiva.rockefeller.edu/SeqTailor/). To 
ensure diversity, the CD-HIT software is applied to eliminate 
paired sequences with a similarity exceeding 60%. The construc-
tion of negative samples follows the methodology introduced by 
Dao et al. [31]. Finally, a training set and an independent test set are 
obtained for each of the eight cell lines. For more details regarding 
the dataset employed in this study, please refer to Table 1. 

DNA sequence encoding schemes 
Enhancer-MDLF is a deep learning model, including a dna2vec 
module and a motif module. The two modules utilize different 
sequence encoding schemes as input, as depicted in the following 
sections. 

dna2vec 
In recent times, word embedding techniques have gained signifi-
cant popularity within the bioinformatics community, offering a 
promising solution to address the challenge posed by the similar-
ity of kmer-based features in different sequences, even when their 
orders are reversed [32, 33]. However, a notable limitation arises 
when employing word vector techniques for sequence coding. 
Typically, the training corpus for learning word vectors encom-
passes only one cell line dataset. This constrained corpus imparts 
a limited amount of information to the learned word vectors, 
thereby restricting their representational capacity. 

To address the above limitation, we utilize the pre-trained 
DNA vectors provided in dna2vec as a sequence encoding index. 
dna2vec, a method grounded in the word2vec word embedding 
model, is employed to compute distributed representations of 
variable-length k-mers within DNA sequences. Earlier investi-
gations have substantiated that the mathematical operations 
applied to dna2vec vectors exhibit similarity to nucleotide con-
catenation [34]. dna2vec employs the human genome sequence as 
a learning corpus for unsupervised training, employing the con-
tinuous skip-gram (Skip-gram) model in word2vec. This process 
results in embedding k-mers into a continuous vector space with 
100 dimensions. 

In this study, we conducted experiments within the range of 
[3,8] (see Supplementary Table S1) to determine that the optimal 
value for k is 3. Subsequently, we utilize the pre-trained dna2vec 
model to obtain a 100-dimensional feature vector for each word. 
These feature vectors are obtained by concatenating the vectors 
of short sequences with a step size of 1 in the overall sequence. 
They are then input to the dna2vec module as sequence features. 
Assuming that the sequence length is denoted as L, the input 
dimension of the dna2vec module becomes 100× (L - k + 1). 
It is noteworthy that due to varying feature dimensions for 
unequal sequences in the dataset, adaptive pooling operations are
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Figure 1. The overall f lowchart of Enhancer-MDLF. (A) Sequence encoding: Enhancer-MDLF utilizes two distinct sequence encoding schemes, namely 
dna2vec and Motif frequency. (B) Model construction: Enhancer-MDLF is structured by integrating two pivotal modules: the dna2vec module and the 
motif module. (C) Model evaluation. Enhancer-MDLF undergoes thorough evaluation across multiple dimensions to assess its performance. (D) Motif 
analysis: Utilizing the SHAP framework, we conduct an in-depth analysis of the important features identified by Enhancer-MDLF. 

Table 1: Statistical summary of training and independent datasets for different cell lines 

Cell lines Training Independent 

Positives Negatives Positives Negatives 

GM12878 2187 2187 1187 2356 
HEK293 3756 3756 2662 5324 
HMEC 3333 3333 1795 3590 
HSMM 2821 2821 1520 3040 
HUVEC 4750 4750 2559 5118 
K562 3318 3318 1787 3754 
NHEK 2896 2896 1559 3118 
NHLF 1462 1462 788 1576 

employed to flatten the feature dimensions to 10 000 dimensions. 
This pre-processing step is essential for subsequent input into the 
deep learning model. 

Motif frequency 
In dna2vec, the parameter k in k-mer is set to 3, signifying that 
DNA fragments are divided into short sequences with a nucleotide 
length of 3. Given the relatively brief nature of these sequences, 
addressing this limitation necessitates the utilization of longer 
features for capturing intricate sequence patterns. Notably, TFs 
play an important role in gene transcription by directly binding 
motifs in the genome. A previous study has successfully identified 
some potential TF binding within DNA sequences, particularly 

those inclined to bind in the enhancer regions [35]. Leveraging 
this biological characteristic, we extract the count of TFBS motifs 
within each DNA sequence and convert it into a frequency repre-
sentation for input to the motif module. 

We extract the PWM of motifs from the HOCOMOCO Human 
v11 database [36] for sliding-scale matching to the sequence data 
in this dataset. Assuming that the length of the motif is denoted 
as Lm, the PWM is structured as a matrix with Lm rows and four 
columns, representing the values corresponding to each base (A, 
C, G and T). The process involves dividing each sequence of length 
Ls into subsequences of length Lm with a stride of 1. Consequently, 
we obtain Ls - Lm +1 subsequence segments, each of length Lm. 
For each subsequence segment, we calculate the sum of the
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Figure 2. The model architecture and training procedure of Enhancer-MDLF. (A) Enhancer-MDLF comprises a dna2vec module predominantly 
composed of convolutional layers and a motif module primarily consisting of Dense layers. It takes dna2vec and motif frequency, the two sequence 
encoding results, as inputs. The fused features are derived by concatenating after feature extraction and subsequently passed through a sigmoid 
function for enhancer detection. (B) The training procedure of the Enhancer-MDLF framework. The process involves iterations through the training 
set five times to iteratively refine the predictive model. Subsequently, this model undergoes testing on the test set to yield the final prediction results. 

corresponding value for each base, and this sum serves as the 
final matching score. This score is then compared with the prede-
termined threshold score to determine whether this subsequence 
segment matches a motif. The criteria for subsequence segment 
comparison are defined by the following equation: 

Q = 
l−1∑

i=0 

PWMij, (1)  

where the variable j takes on values 0, 1, 2 and 3, corresponding 
to the nucleotides A, C, G and T in the subsequence segments, 
and Q represents the matching score. Assuming P represents the 
P-value threshold score (set at 10−4) for respective motifs, the 
subsequence segment is deemed to match this motif when Q > P. 

Upon traversing each sequence, we gather information on the 
count of each TFBS motif, resulting in a 401-dimensional feature 
vector denoted as Vcount. Additionally, to accommodate varying 
sequence lengths, we utilize the feature vector Vfrequency as the final 
model input, calculated through the following equation: 

Vfrequency = 
Vcount 

Ls 
, (2)  

where Ls represents the length of each sequence. 

The framework of Enhancer-MDLF 
Model architecture 
The DNA fragments extracted from the dataset undergo encoding 
through two schemes, namely dna2vec and motif. Subsequently, 
these encoded fragments are input into the model to predict 
whether the fragment contains enhancer regions. Through sys-
tematic experimentation involving various combinations of con-
volutional layers, max-pooling layers and dense layers, along with 
meticulous parameter tuning for optimal balance between accu-
racy, efficiency and generalization capabilities, we have defined 
the comprehensive framework of Enhancer-MDLF, as illustrated 
in Figure 2A. The details are elaborated as follows. 

Feature Extraction: We employ a combination of three 1D 
convolutional layers with corresponding 1D max-pooling layers 
in the dna2vec module, and three dense layers in the motif 

module. The convolutional layers are instrumental in capturing 
complex features from the inputs through convolutional com-
putations. Simultaneously, the max-pooling layers implement a 
down-sampling approach, selecting the maximum value for each 
sub-region. This not only improves the robustness of the model 
but also mitigates the risk of overfitting. Specifically, we define 
three convolutional layers with 64 filters, a kernel size of 7 and a 
stride of 3. Additionally, three max-pooling layers are constructed 
with a pool size of 2, respectively. 

To further enhance the model’s generalization and prevent 
overfitting, we introduce a dropout layer with a probability of 0.6. 
This layer randomly removes certain neural network units during 
the training phase, contributing to the model’s overall robustness 
and preventing excessive adaptation to the training data. 

Prediction: The dna2vec module undergoes computation 
through a dense layer comprising 500 neurons after flattening. 
Simultaneously, the motif module is designed to culminate in 16 
neurons, with a choice of the ‘relu’ activation function for both 
modules. Within the motif module, we incorporate a dropout layer 
with a probability of 0.6 following the three dense layers. Finally, 
Enhancer-MDLF combines the results from the dna2vec and motif 
modules and generates predictive values using a dense layer with 
a single neuron and a ‘sigmoid’ activation function. To further 
enhance model generalization, a dropout layer with a probability 
of 0.5 is applied after concatenating the two sets of results. The 
classification criterion is set such that a sample is considered 
positive if the predicted value exceeds 0.5; otherwise, it is deemed 
negative. 

Hyperparameters: The hyperparameters of Enhancer-MDLF 
include learning rate, batch size and maximum epoch. Following 
a comprehensive comparison of performance across multiple 
hyperparameter combinations through the grid search method, 
we establish the optimal settings as follows: learning rate = 0.0001, 
batch size = 100 and max epoch = 200. The specific details of the 
grid search method and the details of the search ranges for hyper-
parameters can be found in the Supplementary Information. 

Loss function 
The dataset we utilize exhibits an imbalance, a characteristic 
that poses challenges for traditional loss functions. Traditional 
approaches tend to disproportionately penalize dominant classes,
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often neglecting the informative contributions of minority classes 
in imbalanced datasets, thereby resulting in suboptimal predic-
tion performance. Recognizing this, the focal loss [37] initially 
employed in computer vision [38, 39] has emerged as a solution. 
Consequently, we use the focal loss as the primary loss function 
for Enhancer-MDLF, aiming to mitigate the drawbacks associ-
ated with the traditional cross-entropy loss function in manag-
ing imbalanced datasets. The focal loss is formally defined as 
follows: 

FL(Pt) = −α(1 − Pt)
γ log(Pt), (3)  

where Pt represents the predicted probability, α denotes the bal-
ance parameter and γ is the focus parameter. To determine the 
optimal configuration for Enhancer-MDLF, we conduct a thorough 
performance evaluation using the grid search method over a 
range of α values [0.25, 0.5, 0.75] and γ values [1, 2, 3]. Our findings 
reveal that the model achieves optimal performance when α=0.5 
and γ =3. 

Training procedure 
We utilize a novel training strategy for Enhancer-MDLF to enhance 
its capacity to effectively learn information from the input feature 
vectors of the dna2vec and motif modules. First, we implement 
a 5-fold cross-validation algorithm, randomly partitioning the 
training set into five folds with a 4:1 ratio between the training 
and validation sets. To prevent overfitting, an early stopping 
mechanism is applied to the validation set. The model undergoes 
training five times, with the initial training parameters being the 
model’s starting parameters, determined by TensorFlow’s default 
network initialization methods [40]. Xavier initialization is fre-
quently used in TensorFlow for a variety of neural network layers, 
such as dense and convolutional layers. This method initializes 
weights randomly from a uniform or normal distribution, and 
the calculation of the standard deviation depends on the number 
of input and output units in the layer. Subsequent trainings 
build upon the most recent model, utilizing different folds of 
the training and validation sets. Following the completion of the 
five training sessions, the model is applied to the testing set for 
prediction. 

As shown in Figure 2B, the workflow of Enhancer-MDLF is as 
follows: 

(i) Divide the training dataset Dtrain into five folds: D1, D2, D3, 
D4 and D5 utilizing a 5-fold cross-validation strategy. For the first 
training iteration, choose Dtrain - D1 (The remaining samples after 
removing D1 in Dtrain) as the current training set, utilizing ‘D1’ as 
the validation set to train the model and obtain model1. 

(ii) Subsequent to model1, for the second training iteration, 
employ Dtrain - D2 as the current training set and D2 as the 
validation set to continue training model1, obtaining model2. By  
analogy, repeat the training process five times to obtain the final 
model, denoted as model5. 

(iii) Evaluate the performance of the final model on the test set 
Dtest. 

Evaluation metrics 
We utilize seven evaluation metrics to assess the performance 
of Enhancer-MDLF and compare it with that of other methods. 
These metrics encompass accuracy (ACC), balanced accuracy 
(BACC), area under the receiver operating characteristics (AUROC), 
Matthews correlation coefficient (MCC), sensitivity (Sn), speci-
ficity (Sp) and F1 score. The details of these evaluation metrics are 

provided in the Supplementary Information. In general, a higher 
value for these metrics indicates superior model performance. 

RESULTS 
Performance evaluation of combinatorial module 
in comparison with individual modules 
Recent studies have underscored the superiority of leveraging 
multiple features over individual ones in sequence-based 
prediction tasks [41–44]. Consequently, Enhancer-MDLF, proposed 
in this study, incorporates a dna2vec module and a motif 
module to comprehensively extract information on enhancer 
sequences. To assess the effectiveness of this combinatorial 
module in improving the model’s performance for predicting cell-
specific enhancers, we individually train the dna2vec module 
and the motif module utilizing training sets for each cell line. 
Subsequently, we evaluate the performance of these modules 
on independent test sets and draw comparisons with the 
performance of the combinatorial module. 

Given that the datasets used in this study are imbalanced, we 
utilize the BACC metric rather than ACC to evaluate the perfor-
mance of models. What surprised us is that Enhancer-MDLF can 
effectively improve the performance of the model by fusing the 
two modules while maintaining a reasonable computational cost 
(refer to Figure 3, Supplementary Tables S2 and S3). All six metrics 
exhibit improvement across the eight cell lines. Especially, the 
performance of two individual modules on the HMEC cell line is 
unsatisfactory, while the combinatorial module greatly improves 
the prediction performance. Furthermore, the training time for 
the combined module is shorter than that for the dna2vec module 
alone in the HSMM and NHEK cell lines (Supplementary Table S3), 
potentially due to an accelerated convergence speed facilitated 
by our early stopping strategy. Overall, these results indicate that 
leveraging multiple features indeed improves prediction perfor-
mance, establishing Enhancer-MDLF as a powerful and robust tool 
for predicting cell-specific enhancers. 

Performance comparison with state-of-the-art 
method 
To comprehensively assess the predictive capabilities of Enhancer-
MDLF for cell-specific enhancers, we conduct a thorough 
comparison with Enhancer-IF, a model dedicated to cell-specific 
enhancer prediction, across eight cell lines. As mentioned in 
the introduction section, existing enhancer prediction methods 
predominantly rely on generic datasets, neglecting the crucial 
aspect of enhancer’s cell specificity. To validate the robustness 
of our model, we conduct performance comparisons for both 
methods on independent test sets and through 10-fold cross-
validation (refer to Supplementary Information). 

As can be seen in Figure 4 and detailed in Supplementary 
Table S5, Enhancer-MDLF consistently outperforms Enhancer-IF 
across all five metrics and all cell lines, demonstrating its signifi-
cant superiority. The robust predictive performance of Enhancer-
MDLF could be attributed to its unique multi-module fusion 
approach and a novel training strategy that incorporates com-
prehensive and in-depth sequence information. It is crucial to 
highlight that, in contrast to the training strategy of Enhancer-
IF, we design a unique training strategy for Enhancer-MDLF. This 
strategy involves learning more distributions iteratively within a 
limited dataset. Our approach and Enhancer-IF employ identical 
input data and generate results on the same test dataset, ensuring 
a fair and meaningful comparison within the training process 
from an end-to-end perspective.

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae083#supplementary-data
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Figure 3. Performance evaluation of combinatorial module in comparison with individual modules. Panels (A–F) depict the evaluation of model 
performance across eight cell lines using metrics such as AUROC, BACC, F1 score, MCC, SN and SP. 

Figure 4. Performance comparison between Enhance-MDLF and Enhancer-IF on independent test sets. Panels (A–D) present the evaluation of model  
performance across eight cell lines using metrics such as AUROC, BACC, MCC and SN. Panels (E–H) present the evaluation of model performance across 
eight cell lines using metrics such as AUROC, BACC, MCC and SN. 

Notably, a pronounced performance gap is observed between 
the 10-fold cross-validation and independent test sets for 
Enhancer-MDLF on the HMEC cell line. This discrepancy may 
arise from the distinct data distributions between the training 
and test sets, posing a challenge for the model to effectively 
generalize information learned from the training set to the 
test set. However, even under these challenging conditions, our 
method outperforms Enhancer-IF by 9.54% on the independent 
test set in terms of BACC. 

However, to the best of our knowledge, there is no specific 
pattern observed in Enhancer-IF for the HMEC dataset. This lack 
of observation could be attributed to Enhancer-IF consistently 
performing within the range of 70–80% across multiple cell lines, 
which may imply limited knowledge acquisition, possibly conceal-
ing specific characteristics within the HMEC dataset. It is pre-
cisely due to the robust predictive capabilities of Enhancer-MDLF 
that these discrepant results may indicate that the enhancers 
within the HMEC cell line have more complex gene regulatory
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mechanisms. This suggests an intriguing direction for further 
exploration to help uncover the reasons behind enhancer cell 
specificity. Overall, these results demonstrate the robustness and 
effectiveness of Enhancer-MDLF in accurately predicting cell-
specific enhancers. 

Performance evaluation across cell lines 
Previous studies have established that enhancers exhibit cell-
specific functionalities [27, 45]. To explore the potential relation-
ships among enhancers across different cell lines, we conduct a 
comprehensive cross-cell line performance evaluation to inves-
tigate the transferability of cell-specific models. Our approach 
involves training models on one cell line and evaluating the 
performance of Enhancer-MDLF and Enhancer-IF on the test sets 
of seven other cell lines. The results demonstrate that Enhancer-
MDLF achieves optimal performance in terms of average BACC 
across all eight cell lines (Figure 5A, Supplementary Tables S6 
and S7). Notably, the HEK293 model achieves an average BACC of 
86.18% when predicting outcomes in other cell lines, indicating 
its capacity to transfer to other cell lines. Despite the prevalence 
of cell-specific enhancers observed in most instances, such as 
those identified in NHLF cell lines, it is important to acknowledge 
the existence of enhancers that exhibit significant similarities 
across certain cell lines. For instance, Enhancer-MDLF demon-
strates satisfactory mutual predictive performance on the HUVEC 
and K562 cell lines, as well as on the NHEK and HMEC cell lines 
(Figure 5B). These results highlight a commonality of enhancers 
between some cell lines. Overall, enhancers generally display 
specificity among most cell lines, but there exist similarities 
between enhancers across specific cell lines. Therefore, investi-
gating both cell-specific and non-cell-specific enhancers emerges 
as a critical avenue for unveiling insights into cell specificity and 
differentiation. 

Performance evaluation across cell lines with 
transfer learning 
The challenge of predicting enhancers across different cell lines, 
attributed to the inherent cell specificity of enhancers, signifi-
cantly hinders the exploration of gene regulatory mechanisms. To 
overcome this obstacle and advance the field, we further explore 
potential approaches. An emerging ML technique, transfer learn-
ing, proves promising as it leverages knowledge acquired from 
a source domain to enhance learning performance in a target 
domain. Notably, this technique has demonstrated success in 
predicting cell-specific enhancer–promoter interactions [46, 47]. 
To comprehensively evaluate the potential of transfer learning 
in the context of enhancer prediction, we adopt three strategies: 
transfer_1, transfer_2 and transfer_3. These strategies align with 
both traditional transfer learning methods and those previously 
utilized in a relevant study [48]. Detailed descriptions of these 
strategies are provided in the Supplementary Information, aiming 
to shed light on their effectiveness in mitigating the challenges 
posed by the cell specificity of enhancers. 

We apply these three distinct transfer strategies separately 
to Enhancer-MDLF to validate their effectiveness and explore 
their practical applicability (Figure 5C). The results, as detailed in 
Supplementary Tables S8, S9 and S10 across eight cell lines, illus-
trate significant insights. Enhancer-MDLF with transfer_1 demon-
strates notable improvement in prediction performance, albeit 
falling short compared with predicting enhancers in the same 
cell line. However, this outcome underscores the effectiveness 
of transfer learning. In contrast, Enhancer-MDLF with transfer_2, 
leveraging additional enhancer information from multiple cell 

lines during the model pre-training, exhibits exceptional perfor-
mance. Compared with the model directly trained with random 
initial weights (Supplementary Table S11, Supplementary Fig-
ure S2), the results indicate that pre-training the model with 
enhancers from diverse cell lines yields more effective predictions 
in new cell lines. This is attributed to the more representative 
initial weights acquired from the pre-trained model, highlight-
ing its potential for accurately labeling other unannotated data, 
especially under the constraint of limited annotated data size. 
Particularly noteworthy is the observation that Enhancer-MDLF 
with transfer_3 exhibits optimal performance across the eight cell 
lines. 

These findings present a practical scenario for addressing 
enhancer-specific prediction challenges. If Enhancer-MDLF is pre-
trained using as many (or even all) cell line enhancers following 
our transfer learning strategies, a comprehensive pre-trained 
model may be obtained, serving as an effective initial model 
for enhancer prediction tasks in various cell lines. Even with 
potential cost constraints in obtaining enhancers from numerous 
cell lines, Enhancer-MDLF with transfer_2 demonstrates robust 
performance with only a few cell lines’ enhancers. Overall, 
the utilization of transfer learning provides an effective and 
promising solution to overcome prediction challenges arising 
from enhancer specificity in practical applications. We have 
provided the pre-trained model, utilizing enhancers from these 
eight cell lines, available on GitHub for further exploration and 
utilization. 

Performance evaluation on other datasets 
To demonstrate the superiority of our approach comprehensively, 
we subject Enhancer-MDLF to evaluation using the generic 
dataset created by Liu et al. [21], a widely used benchmark in 
enhancer identification tasks. To maintain comparability with 
prior studies, we utilize the same training set, test set and 
evaluation metrics. The outcomes reveal that Enhancer-MDLF 
achieves optimal performance on the independent test set, 
with MCC, SN and ACC of 0.6067, 0.84 and 0.8025, respectively 
(Figure 5D, Supplementary Table S12). These results highlight the 
robustness and generality of Enhancer-MDLF, demonstrating its 
efficacy and versatility as a powerful tool for predicting enhancers 
in human cell lines. 

Besides, existing studies have demonstrated that enhancers 
and promoters exhibit similar sequence structures [49, 50]. 
Leveraging datasets derived from iPro-WAEL [33], we conduct 
an investigation to assess whether Enhancer-MDLF effectively 
distinguishes between enhancers and promoters. Given the 
limitations of some enhancer prediction methods for this dataset, 
as detailed in the Supplementary Information, we restrict our 
comparison to Enhancer-MDLF, ienhancer-2L and enhancer-IF. 
The results unequivocally showcase Enhancer-MDLF’s robust 
capacity to discriminate between promoters and enhancers, 
effectively capturing the distinct information associated with 
these two regulatory elements despite their similar sequence 
structures (Figure 5E–H and Supplementary Table S14). 

Exploration of TFBS motifs in enhancer regions 
Investigating TFBS motifs within enhancer regions is crucial for 
understanding the regulatory mechanisms of TFs. TFs typically 
exert their transcriptional influence by recognizing specific TFBS 
motifs and binding to the regulatory regions of genes. Enhancers, 
along with the associated TFs, play a significant role in human 
diseases and biological processes [35, 51, 52]. To identify key 
motifs associated with enhancers, we utilize the Shapley Additive

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae083#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae083#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae083#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae083#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae083#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae083#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae083#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae083#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae083#supplementary-data
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Figure 5. Comprehensive performance evaluation across multiple aspects. (A) Average BACC for cross-cell line prediction on eight cell lines. (B) Heat  
map of BACC in cross-cell line evaluation. Columns represent pre-trained models trained on different training sets, and rows represent testing on their 
own or other cell lines’ test sets. (C) Exploration of Transfer Learning Strategies: Three transfer learning strategies are presented to address the challenge 
of poor direct prediction performance in cross-cell line evaluation. (D) Performance comparison of Enhancer-MDLF with other methods on a universal 
dataset. (E–H) Performance comparison of Enhancer-MDLF with other methods on enhancer–promoter datasets. 
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Figure 6. Analysis of top 50 important motif features across eight cell lines. (A–H) This study analyzes the top 50 motifs on eight cell lines that impact 
the model’s output utilizing the SHAP framework. The x-axis represents the SHAP values that impact the model’s output. Each point on the graph 
represents a sample, and the color of each sample point ranges from blue to red, representing the corresponding feature values of each sample. The 
color transition reflects the variation in feature values from low (blue) to high (red). 

exPlanations (SHAP) framework [ 53, 54] to interpret the input 
features of the motif module in Enhancer-MDLF. The details of the 
SHAP framework are provided in the Supplementary Information. 

Figure 6 displays the top 50 motifs with the most significant 
impact on the model’s output across eight cell lines. The x-axis 

represents the SHAP value, where a positive value indicates a 
positive effect on the model’s output, while a negative value 
indicates a negative effect. Taking SP2 in Figure 6A as an example, 
higher feature values predominantly cluster in the region where 
SHAP values >0, indicating that SP2 has a positive effect on
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predicting the samples as enhancers. It can be seen from Figure 6 
that the contributions of different motifs to the model’s output 
vary across different cell lines, providing further insight into the 
cell specificity of enhancers at the motif level. 

Besides, we find that certain important motifs identified in our 
study align well with findings from previous studies. For instance, 
the BACH1 motif emerges exclusively among the top 50 important 
features in the HUVEC cell line. Previous studies have shown 
that the heme-binding factor BACH1 can bind to multiple Maf 
recognition elements in the heme oxygenase 1 (HO-1) enhancer, 
thereby inhibiting its activity and participating in gene regulation 
[55]. Similarly, the GATA1 motif is uniquely present among the top 
50 important features solely in the K562 cell line. Previous studies 
have revealed that the GATA1 protein binds to the GATA-A site in 
the intronic WT1 enhancer in vitro in K562 cells, transactivating 
the enhancer and markedly increasing the CAT reporter activity 
10–15-fold [56]. 

To visualize the impact of these features on the model’s output, 
force plots of SHAP are employed, and specific details are available 
in Supplementary Figure S1. Additionally, to enhance the user’s 
interactive experience, we have provided HTML files on GitHub 
(https://github.com/HaoWuLab-Bioinformatics/Enhancer-MDLF). 
These files showcase the contributions of each feature to the 
model’s output on the test sets of eight cell lines. Users can 
interactively select various features and samples on the graph, 
facilitating a dynamic exploration of their influence on the 
model’s output. 

Furthermore, the SP1 motif significantly contributes to 
enhancer predictions across numerous cell lines, as it has been 
shown to regulate chromatin loops between enhancers and 
distal promoters, thereby influencing transcriptional activity 
[57]. Additionally, our analysis reveals certain key motifs, such 
as RUNX and MAX, which have not been extensively studied but 
are highlighted in TargetFinder [58], These results underscore 
that enhancers can exert their effects through the involvement 
of certain proteins in specific cells, emphasizing the complexity 
of gene regulation involving enhancers. 

DISCUSSION AND CONCLUSION 
The identification of cell-specific enhancers is of significant 
importance for understanding cell-specific gene regulation 
and deciphering tissue development. In this study, we develop 
Enhancer-MDLF, a deep learning framework with multi-inputs, 
designed for accurate identification of cell-specific enhancers by 
integrating the dna2vec module and motif module. Experimental 
analyses demonstrate that Enhancer-MDLF outperforms existing 
methods across multiple cell-specific enhancer datasets, and 
significantly outperforms previous studies on general datasets 
and enhancer–promoter datasets, highlighting the robustness 
and versatility of Enhancer-MDLF. While our evaluations are 
constrained by the scale of the annotated dataset to specific 
cell lines, various experimental results instill confidence in the 
generalization ability of our model to extend to broader datasets. 
In summary, our proposed Enhancer-MDLF emerges as a superior 
and efficient tool for identifying enhancers. 

Additionally, in the course of cross-cell-line evaluation, we 
observe a notable challenge wherein models trained on one cell 
line often exhibit unsatisfactory performance when applied to 
predict enhancers on other cell lines. This limitation stems from 
the inherent cell specificity of enhancers, suggesting that a model 
trained on a specific cell line achieves optimal prediction perfor-
mance solely within that context, posing a substantial limitation 

in practical applications. To overcome this limitation, we endeavor 
to mitigate it through the implementation of transfer learning. 
The pre-trained model with transfer_2 achieves remarkably pre-
cise predictions with only a modest amount of annotated data (e.g. 
292 samples, constituting 10% of the training set, in the NHLF cell 
line). In practical scenarios, the scarcity of annotated data in pri-
vate datasets may face challenges for the effective application of 
supervised learning. While unsupervised learning methods, such 
as clustering, can partially emulate similar functionality, their 
accuracy often falls significantly below the standards required for 
practical applications. Consequently, we assert that this approach 
substantiates an effective strategy for addressing the challenges 
posed by the cell-specific nature of enhancers. Among the three 
transfer learning strategies employed, transfer_3, a pre-trained 
model trained on all cell lines, demonstrates the most promis-
ing performance. This outcome suggests that with a sufficiently 
extensive dataset encompassing a diverse range of cell lines as 
input to our model, the development of a universal pre-trained 
model for identifying human enhancers becomes a plausible 
avenue of exploration—a prospect that holds significant interest 
and potential in research endeavors. 

Moreover, we employ a computational approach to analyze 
potentially important TFBS motifs associated with enhancers. Our 
analysis reveals several motifs that have undergone extensive 
study in previous research, such as BACH1, GATA1, SP1, RUNX 
and MAX. Additionally, we identify motifs like FOXJ3 and SP2, 
which significantly contribute to enhancer predictions across 
numerous cell lines but have received limited attention in prior 
studies. We infer that these less-explored motifs may play roles 
in gene regulation through intricate and as-yet-unidentified pro-
cesses. While our current research conditions constrain further 
validation and exploration of the relationships between these new 
motifs and enhancer function, we believe these findings open 
new avenues for future enhancer-related research in the field of 
biology. Notably, Whalen et al. [58] extensively explored the critical 
role of YY1 in enhancer–promoter interactions by interpreting ML 
models. Later on, it was further confirmed that YY1 regulates 
enhancer–promoter chromatin loops [59]. 

Key Points 
• We propose a novel deep learning framework, called 

Enhancer-MDLF, employing multi-module inputs to 
identify the cell-specific enhancers. 

• We confirm that Enhancer-MDLF substantially outper-
forms state-of-the-art predictors without the need for 
parameter tuning. 

• We incorporate three transfer learning strategies into 
our model to address the challenges posed by enhancer 
specificity for cross-cell lineage prediction. 

• We analyze the conservation and specificity of 
enhancers at the motif level, exploring the most 
important TFBS motifs within enhancer regions utilizing 
the SHAP framework. 
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