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A B S T R A C T   

In this study, machine learning techniques, namely artificial neural network (ANN), support 
vector machine (SVM), and extreme gradient boosting (XGBoost), were used to comprehensively 
evaluate engine performance and exhaust emissions for different fuel blends. To obtain valuable 
insights on optimizing engine performance and emissions for alternative fuel blends and thus 
contribute to the advancement of knowledge in this field, we focused on iso-pentanol ratios while 
maintaining the biodiesel ratios constant. The maximum brake thermal efficiency (BTE) values 
for the diesel (30.13 %), D85B10P5 (29.92 %), D80B10P10 (29.89 %), and D70B10P20 (29.79 %) 
blends were achieved at 1600 rpm. At 1600 rpm, the brake-specific fuel consumption (BSFC) 
values for the diesel, D85B10P5, D80B10P10, and D70B10P20 blends were 189.93, 200.93, 202.93, 
and 203.95 g kWh− 1, respectively. In engine performance prediction, the ANN model exhibited 
superior performance, yielding regression coefficient (R2), root mean square error, and mean 
absolute error values of 0.984, 0.411 %, and 0.112 %, respectively, in BTE prediction, and 0.958 
%, 6.9 %, and 2.95 %, respectively, in BSFC prediction. In exhaust gas temperature prediction, the 
SVM model exhibited the best performance, yielding an R2 value of 0.981. Although all models 
successfully predicted NOx emissions, the ANN model exhibited the best performance, achieving 
an R2 value of 0.959. In CO2 and hydrocarbon estimation, the XGBoost model exhibited the best 
performance, yielding R2 values of 0.956 and 0.973, respectively. Therefore, the ANN model can 
be used to accurately predict engine performance, and the XGBoost model can be used to accu-
rately predict emission parameters.   

1. Introduction 

Diesel engines find widespread use in power generation and heavy-duty transportation due to their notable advantages in terms of 
high efficiency, fuel efficiency, and cost-effectiveness [1]. However, these engines significantly contribute to environmental pollution 
and global warming by emitting greenhouse gases such as CO, CO2, and NOx [2]. To address these concerns, alternative fuels have 
been developed as potential substitutes for traditional fossil fuels [3–5]. 

Depletion of fossil fuel resources, volatile oil prices, and stringent exhaust regulations have fueled the search for alternatives to 
diesel engines [6]. Biodiesel has emerged as a promising substitute due to its comparable fuel properties and reduced emissions of 
greenhouse gases and smoke [1,3,7]. Biodiesel, produced from vegetable and animal fats, has a similar calorific value to traditional 
diesel [8–10]. 

Vegetable and animal fats, with their higher oxygen content, lead to reduced emissions since they lack detrimental substances like 
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sulfur or minerals. However, the abundance of oxygen atoms in biofuels can lead to corrosion, which is not a concern with traditional 
diesel fuels. Diesel fuels [1,11]. Furthermore, biofuels exhibit a higher brake-specific fuel consumption compared to conventional 
diesel fuels. While the presence of inherent oxygen atoms can improve exhaust emissions and combustion characteristics, it can have a 
detrimental impact on thermal efficiency and stability [12]. 

The main drawback of biofuels is increased NOx emissions, which are the most harmful exhaust gas emissions from diesel engines 
[12]. As such, improving the properties of diesel and biodiesel is crucial for promoting the adoption of alternative fuels. According to 
Krishnakumar et al. [13], Nour et al. [14], blending high-carbon-content alcohols with diesel/biodiesel in specific proportions has the 
potential to enhance fuel parameters such as density, cold flow and viscosity. This research avenue can lead to more efficient utilization 
of alternative fuels and aid in achieving sustainable energy objectives. Combining alcohols with diesel fuel represents a promising 
approach to improving the properties of alternative fuels. This strategy ultimately leads to a reduction in greenhouse gas emissions and 
helps mitigate the negative impacts of climate change, signifying noteworthy progress within the alternative fuels domain. 

The progress of alternative fuels is essential in the effort to decrease greenhouse gas emissions and tackle the issues brought about 
by climate change. To this end, blending alcohols with diesel fuels has emerged as a promising strategy. However, the utilization of 
low-carbon alcohols may influence emissions and engine performance [15–17]. In contrast, pentanol is a high-quality alcohol that can 
be adopted as a substitute for traditional fuels. Although extensive research has been conducted on other derivatives of pentanol, few 
studies have focused on iso-pentanol in diesel–biodiesel blends. As such, further research on the inclusion of iso-pentanol in fuel blends 
can offer valuable insights for the development of more efficient and sustainable alternative fuels. This research holds particular 
relevance in the ongoing pursuit of sustainable energy solutions. 

The costs and time commitments associated with experimental engineering research have led researchers to explore ways to reduce 
the number of experimental trials [18]. Although experimental and numerical tests provide valuable insights into the effect of biodiesel 
fuel blends on engine performance and emissions, these methods often require considerable time and financial resources. Alterna-
tively, modeling simulations provide a more streamlined approach for understanding the performance parameters of fuel blends, their 
effects on engine operation, and exhaust emissions. Among modeling methodologies, machine learning (ML)-based methods stand out 
as the most widely employed approach for simulations. 

The primary objective of ML is to construct computational models with self-learning capabilities and data access, focusing on 
identifying the most effective algorithm for deriving solutions from the provided input [19]. Through autonomous learning and 
experience-driven improvements without explicit programming needs, ML embodies an artificial intelligence (AI) application capable 
of constructing predictive and interpolative models for control outcomes efficiently with increased probability. Engine performance 
and emissions modeling by using AI constitute an adaptable model framework that is inherently resilient to data marked by significant 
observed uncertainty, thus, positioning AI as a valuable tool for predicting and optimizing engine performance and emissions [15, 
20–22]. 

ML algorithms have been employed to analyze engine performance and emissions of different fuels. Yıldırım et al. [23] compared 
the prediction effectiveness of support vector regression (SVR) and artificial neural network (ANN) techniques regarding engine 
response to different hydrogen gas fuels and found that ANN exhibited a lower total mean absolute percentage error (MAPE) than SVR, 
with an average difference of 53.70 %. 

Namar et al. [24] utilized eleven machine learning-based regression models to construct a rapid and accurate model for predicting 
ignition onset in homogeneous charge compression ignition engines fueled by methane. Their findings highlighted the ML-based 
models’ commendable response times, thus indicating their suitability for real-time applications in engines, including electronic 
units. Addressing the urgent requirement to mitigate the adverse impact of emissions from diesel engines on both the environment and 
human health, Dhahad et al. [25] proposed an AI-driven method for forecasting engine efficiency, exhaust emissions, and combustion 
properties of internal combustion diesel engines. 

Aydın et al. [1] utilized artificial neural networks (ANN) to simulate the impact of biodiesel/diesel mixtures on engine performance 
and emissions. They demonstrated the ANN effectiveness in accurately predicting various performance and emission parameters, 
achieving high regression coefficients (R2) ranging from 0.8663 to 0.9858. In addition, the maximum mean relative error remained 
below 10 % when compared with experimental results. Wang and Zhao [26] demonstrated the potential of ML algorithms in predicting 
fuel consumption in mining trucks. They reported that extreme gradient boosting (XGBoost) is suitable for forecasting fuel con-
sumption in the mining sector due to its high computational efficiency and impressive prediction accuracy. 

Numerous studies have explored the impact of various biodiesel blends on engine performance and emissions using machine 
learning (ML) techniques. However, there is a notable lack of research that directly compares the effects of different alcohol blends 
within a consistent biodiesel mixture on engine performance and emissions, specifically utilizing ANN, support vector machine (SVM), 
and XGBoost ML algorithms. 

In this study, I aimed to model and predict engine performance and emissions in a 4-cylinder diesel engine by using ML algorithms. 
We focused on analyzing different iso-pentanol blends, keeping biodiesel blends constant. However, comparative studies on different 
ML algorithms, such as ANN, SVM, and XGBoost, for engine performance and emissions in the context of diesel–biodiesel–iso-pentanol 
blends at different ratios are lacking. In this study, we aimed to bridge the research gap by assessing the effectiveness of different ML 
methods in predicting engine performance and emissions under different fuel blends. 
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2. Materials and methods 

2.1. Biodiesel production 

Biodiesel was produced from safflower oil by using the transesterification method. Safflower (linas variety) oil methyl ester 
(biodiesel) production was performed in a programmable control device (PLC)-supported pilot production plant at Selçuk University, 
Faculty of Agriculture, Department of Agricultural Machinery and Technologies Engineering under the DPT 2004/7 project [27]. 

To produce biodiesel, 20 % crude safflower oil was mixed with methyl alcohol (CH3OH) at a ratio of 3.5 g/L of oil to produce 
methoxide. This mixture was heated to 55 ◦C, and methoxide was added. After stirring for 60 min, glycerol in the oil was allowed to 
precipitate for 8 h and then separated. The methyl alcohol remaining in the crude biodiesel was removed by increasing the temperature 
to 75 ◦C. A wash was applied at 55 ◦C, and ash was separated from methyl ester. Finally, the samples were heated to 100 ◦C to obtain 
biodiesel [28]. 

2.2. Test fuels and their properties 

Blended fuels were obtained by mixing safflower biodiesel, diesel, and iso-pentanol, which is a high alcohol. In these fuel blends, 
biodiesel content was maintained at 10 %, and iso-pentanol was blended at concentrations of 5 %, 10 %, and 20 % to produce three fuel 
blends. For convenience, diesel fuel is denoted as “D,” safflower biodiesel as “B,” and iso-pentanol as “P.” The blending ratios are 
represented as subscripts below these symbols. 

In this study, kinematic viscosity, the density, water content, flash point, calorific value, and cold filter plugging point of the 
blended fuels were measured (Table 1). 

2.3. Engine tests 

The performance of engines and the emission parameters of diesel, safflower biodiesel, and blended fuels were evaluated through 
engine testing by using an established test setup in the Department of Agricultural Machinery and Technologies Engineering, Faculty of 
Agriculture, Selçuk University. The engine specifications are presented in Table 2. The engine tests were conducted according to the TS 
1231 specifications (Internal Combustion Engine Test Code). 

Real-time measurements were recorded for speed, torque, power, fuel consumption, oil pressure and temperature, coolant entry 
and exit temperatures, coolant flow speed, and exhaust gas temperature (EGT). The data were automatically transmitted to the 
computer by the test setup. The components of the engine test bench and their connections to the engine are illustrated in Fig. 1. The 
test bench comprises an engine, a hydraulic dynamometer, a magnetic pickup device, a fuel gauge, and a control unit. 

The load and power values of the engine were used to calculate the BSFC and BTE, which were used as the engine performance 
evaluation indicators. A hydraulic dynamometer with a brake torque range of 0–400 Nm was used. BSFC was calculated using Eq. (1) 
[26]: 

BSFC=
ṁf .1000

Pe
, (1)  

where BSFC is the brake-specific fuel consumption (g/kWh), ṁf is the hourly fuel consumption (kg/h), and Pe is the effective engine 
power (kW). 

BTE was calculated using Eq. (2) [26]: 

BTE=
Pe.3600
ṁf . LHV

100, (2)  

where BTE is the thermal efficiency (%), and LHV is the lower heating value (kJ/kg) of the test fuels. 
An exhaust gas emission device by Mobydic was used in this study to measure emissions. This device can measure CO2 emissions in 

the range of 0%–20 %, NOx emissions in the range of 0–5000 ppm, and hydrocarbon (HC) emissions in the range of 0–20000 ppm. 
Calibration accuracy, environmental conditions, inconsistency in recording observations and data processing, and the use of 

multiple testers result in various errors. Therefore, in this study, the uncertainty analysis method proposed by Holman [29] was used. 

Table 1 
Characteristics of fuels.  

Fuel Characteristic Diesel D85B10P5 D80B10P10 D70B10P20 Standard 

Density (kg m− 3) 
(15 ◦C) 

830 832.2 831.5 829.2 EN ISO 3675 EN ISO 12185 

Kinematic viscosity (mm2 s− 1) (40 ◦C) 3.02 2.97 2.93 2.8 EN ISO 3104 
Flash point (◦C) 68 50 49 48 EN ISO 2719 EN ISO 3679 
Water content (mg kg− 1) 40.05 142 305 318 EN ISO 12937 
Calori value (MJ kg− 1) 10806 10578 10441 10161 DIN 51900 
Cold filter plugging point (◦C)  − 16 − 15 − 14 EN ISO 3015 EN ISO 3016  
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The uncertainty analysis results are presented in Table 3. The overall uncertainty of the experimental setup is ±4.29, which is 
acceptable for the testing process, and the total uncertainty of the system is within acceptable limits. 

2.4. ML 

We performed an in-depth analysis of three ML algorithms: ANN, XGBoost, and SVM. RStudio version 2022.02.0 was used to run all 
three algorithms, and the models’ parameters were tuned using a grid search approach. These ML algorithms were employed to predict 
engine response variables, namely brake-specific fuel consumption (BSFC), brake thermal efficiency (BTE), EGT, HC emission, ni-
trogen oxides (NOx) emission, and carbon dioxide (CO2) emission. Two inputs were used in the training process: engine speed 
(1100–2400 rpm at intervals of 100 rpm) and test fuels (diesel, D85B10P5, D80B10P10, and D70B10P20). The study dataset comprised 336 
data points (84 × 4 pixels), which were divided into training (70 %) and testing sets (30 %). The subsequent paragraphs in this 
subsection provide brief descriptions of the three ML algorithms used in this study. 

Table 2 
Technical specifications of the diesel engine used in this study.  

Brand and model Tümosan 4DT-39T-185C 

Rated Power @2300 rpm 85 HP 
Maximum torque 340 Nm 
Total Engine Capacity 3908 cm3 

Diameter Stroke 104 mm × 115 mm 
Number of Cylinders 4 
Minimum Specific Fuel Consumption 160-g HPh− 1 

Aspiration Turbocharger 
Number of Valves Per Cylinder 2 
Compression Ratio 17:01 
Combustion System Direct Injection 
Cooling system Water -Cooled  

Fig. 1. Schematic of the engine test setup.  

Table 3 
Uncertainty analysis results for the measurement devices used in this study.  

Calculated value Unit Uncertainty (%) 

Engine torque Nm ±1.05 
Engine Power kW ±1.2 
Fuel consumption gs− 1 ±1.2 
Specific fuel consumption g kWh− 1 ±1.5 
Dynamometer N ±1.2 
Speed sensor rpm ±2 
CO2 % ±1.2 
HC ppm ±1.6 
NOx ppm ±1.6 
Exhaust gas temperature ◦C ±1.5  
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2.4.1. ANN 
An ANN is a multilayer perceptron structure comprising an input layer, one or more hidden layers, and an output layer. ANNs 

employ various learning algorithms, such as radial basis networks, perceptron algorithms, backpropagation, and elastic back-
propagation, to update the weights between nodes and learn the relationship between input and output variables [30,31]. ANNs can 
differ structurally and mathematically, with differences in the number of layers and node connections. Typically, ANNs comprise an 
input layer, one or more hidden layers, and an output layer [31]. The weights assigned to each node reflect the importance of the 
signals it carries, and the information processed by each node is calculated using a specific equation [31]. An example of the structure 
of an ANN is depicted in Fig. 2. 

In this study, a neural network structure comprising four neurons in the first hidden layer and three neurons in the second hidden 
layer yielded the best prediction results for all output parameters except HC. For HC predictions, a neural network structure comprising 
three neurons in the first hidden layer and two neurons in the second hidden layer yielded the best prediction results. The optimal 
neural network structure was determined using a grid search approach, where different combinations of network structures and 
parameters were tested, and the network structure that yielded the highest prediction accuracy on the testing dataset was selected. 

First, the data for the ANN model were normalized. Different types of data normalization methods have been presented in the 
literature: minimum, maximum, median, sigmoid, and Z-score normalization [32]. The Z-score method creates a statistically normal 
distribution and shows the position of each piece of data within the standard deviation. The standard deviation shows how far the data 
are from the mean: a negative value indicates that the value is below the mean and vice versa [33]. The Z-score method was used in this 
study to standardize the data in the ANN models. 

Various algorithms have been proposed in the literature for training a network and adjusting its weights. A multilayer feed-forward 
ANN, along with the backpropagation algorithm, was used in this study because of its ability to model problems that cannot be linearly 
separated [26]. 

2.4.2. XGBoost 
XGBoost is an ML method based on the gradient boosting decision tree (GBDT) algorithm [34]. XGBoost can be applied to su-

pervised problems, whereas the GBDT algorithm is limited to regression and classification problems. The fast and efficient imple-
mentation of XGBoost enables more agile model exploration due to its parallel and distributed processing capability. XGBoost 
integrates multiple sequential secondary predictors (e.g., decision trees (DTs)) to enhance the reliability of predictions regarding the 
analyzed system. Additional trees are created, trained, and adjusted to minimize the cumulative residual error. The ultimate prediction 
results from summing the forecasts generated by the XGBoost algorithm, achieved by aggregating the residual predictions calculated 
by each individual tree [35]. In this study, all XGBoost models were run using the xgbTree method. In the optimal models, the nrounds 
parameter was set as 500 for BTE, BSFC, EGT, HC, and NOx and as 1500 for CO2. In the models, the maximum depth was set as 2 for 
BTE and HC, 4 for BSFC and NOx, and 6 for EGT and CO2. All models were assigned an eta value of 0.3 and a gamma value of 0. 

2.4.3. SVM 
SVMs are widely used to model data properties and classify data by using information related to these properties [31]. SVMs 

employ a binary classifier for constructing a linear-separation hyperplane to classify data. The SVM algorithm family includes various 
techniques, including SVR, least-squares SVM, and successive projection algorithm SVM [36]. The ε-insensitive function and kernel 
function constitute the core of SVR and are used to transform data into a higher-dimensional feature space to realize nonlinear learning 
in the original low-dimensional space [37,38]. In this study, radial basis functions were employed for all output parameters. Conse-
quently, the following parameters were used: gamma = 0.5 and cost = 4 for BTE and BSFC, gamma = 1 and cost = 4 for EGT, gamma =
2 and cost = 10 for CO2, and gamma = 0.25 and cost = 2 for HC. 

2.4.4. Model evaluation metrics 
The models were evaluated using R2, root mean square error (RMSE), and mean absolute error (MAE). R2, RMSE, and MAE values 

Fig. 2. Artificial neural network structure.  
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were calculated using Eqs. (3)–(5), respectively. The R2 value was used for measuring model performance because it indicates the 
percentage of variation in the response variable that can be accounted for by the independent variables [39]. A higher R2 value in-
dicates a stronger predictive relationship. Conversely, the RMSE and MAE serve as measures of error, where lower values indicate 
better model performance [20,40]. 

R2 = 1 −
∑n

i=1

((
oei-opi

)2

(
om-opi

)2

)

, (3)  

RMSE=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n
∑n

i=1

(
oei-opi

)2

√

, (4)  

MAE=
1
n
∑n

i=1

⃒
⃒oei-opi

⃒
⃒, (5)  

where n is the number of experimental data points, opi is the predicted output value, oei is the experimental output value, and om is the 
mean experimental output value. 

3. Results and discussion 

3.1. Engine performance 

3.1.1. BTE 
An illustration of the correlation between engine velocity and Brake Thermal Efficiency (BTE) is depicted in Fig. 3. The BTE of the 

test engine first increased from 2400 to 1500 rpm but subsequently decreased due to incomplete combustion caused by fuel accu-
mulation in the cylinder at lower revolutions and higher engine loads [41,42]. The BTE values for all tested fuel blends ranged between 
19.61 % and 30.13 %, with diesel fuel exhibiting the highest BTE. Between 1200 and 2200 rpm, all fuel blends exhibited similar trends 
for BTE values. At 1600 rpm, the peak brake thermal efficiency (BTE) levels achieved for diesel engines, D85B10P5, D80B10P10, and 
D70B10P20 blends were 30.13 %, 29.92 %, 29.89 %, and 29.79 %, respectively. The addition of pentanol did not significantly affect the 
BTE of the safflower oil–biodiesel–diesel fuel blend at lower speeds (higher engine loads). According to Campos-Fernandez et al. [43], 
the inclusion of pentanol in diesel fuel blends did not result in any statistically significant alteration in BTE. Yesilyurt et al. [41] re-
ported that incorporating pentanol into diesel and biodiesel fuel mixtures under high engine loads did not yield any substantial impact 
on BTE. Wei et al. [44] reported that increasing the proportion of pentanol in fuel blends at all engine loads resulted in a minor 
variation in BTE. 

3.1.2. BSFC 
As can be observed from the results shown in Fig. 4, the BSFC values for all test data were in the range of 189.4–291.8 g/kWh. The 

incorporation of iso-pentanol into the fuel blends led to an elevation in the BSFC. Ternary blends displayed a 3.9%–4.2 % rise in BSFC 
when compared to pure diesel. This can be ascribed to the decrease in the calorific value resulting from the heightened oxygen content 
in the fuel blend. As the pentanol content increases, the oxygen content in the fuel blend increases, leading to a decrease in the calorific 
value of the blend Yesilyurt et al. [41]. Furthermore, the aforementioned authors suggested that additional fuel must be injected to 
attain the same engine power when using alcohol blends. Yesilyurt et al. [41], Kumar et al. [45], Yilmaz and Vigil [46] also reported 
similar findings. Similarly, Campos-Fernandez et al. [43], Wei et al. [44] found that an increase in the pentanol ratio increased the 

Fig. 3. Changes in BTE value for diesel and fuel blends at different engine speeds.  
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BSFC values of pentanol–diesel fuel blends, consistent with the current study. Moreover, Yilmaz and Atmanli [47] observed an increase 
of 5.27%–8.61 % in BSFC values when pentanol was added to biodiesel–diesel fuel blends when compared to pure diesel. 

3.2. Exhaust emissions 

3.2.1. EGT 
The alterations in EGT for diesel fuel and triple blends of biodiesel, pentanol, and diesel are illustrated in Fig. 5a. The increase in 

EGT is due to a reduction in engine speed and a corresponding increase in engine load, which in turn leads to an increased amount of 
fuel injected into the combustion chamber, ultimately increasing the in-cylinder temperature Ong et al. [48]. The average EGT values 
for the diesel fuel and its blends, namely D85B10P5, D80B10P10, and D70B10P20, were 568 ◦C, 553 ◦C, 552 ◦C, and 530 ◦C, respectively. 
The slightly elevated volatility and enhanced air mixture in diesel fuel result in a slightly greater peak rate of heat release compared to 
biodiesel blends [49]. Another contributing factor to the increased exhaust emissions from diesel fuel is the higher ignition delay 
encountered in diesel combustion. This prolonged ignition delay brings results in a higher quantity of fuel accumulation within the 
combustion chamber, ultimately increasing the peak heat release rate [49]. 

When the amount of iso-pentanol in the fuel blends was increased, a reduction in EGT was observed. This can be attributed owing to 

Fig. 4. Changes in the BSFC value of diesel and fuel blends at different engine speeds.  

Fig. 5. Changes in (a) EGT, (b) HC, (c) NOx, and (d) CO2 values for diesel and fuel blends at different engine speeds.  
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alcohol’s low calorific value, high oxygen content, and greater heat of vaporization [48,50]. Researchers such as Yilmaz and Atmanli 
[47], Atmanli [51], Yasin et al. [52] reported similar results, highlighting the role of high oxygen content in alcohol in reducing EGT. 
Furthermore, Cheung et al. [53] stated that the low calorific and high latent heat of vaporization of alcohol contribute to the reduction 
of EGT in alcohol blends. 

3.2.2. HC emission 
The HC emission variations for diesel fuel and ternary blends are shown in Fig. 5b. HC emissions there was an increase in the 

ternary blends as iso-pentanol content increased. This can be attributed to the alcohols characterized by a low cetane number and a 
high heat of evaporation, which compromise the auto-ignition characteristics of the blends. Consequently, the HC emissions increase 
due to the quenching effect occurring in the lean-blend region of the cylinder. This observation is in line with that presented in a 
previous study [54] and is consistent with previous investigations by Kumar and Saravanan [55], Nanthagopal et al. [56], Rajasekar 
[57], who recommended the use of high-carbon alcohols at lower blends to mitigate emissions. 

3.2.3. NOx emission 
The formation of nitrogen oxides (NOx) is primarily due to high in-cylinder temperatures and pressures [58,59]. The NOx emission 

variations for diesel and ternary fuel blends are shown in Fig. 5c. The average NOx concentrations for the diesel fuel and ternary blends 
with D85B10P5, D80B10P10, and D70B10P20 compositions were measured at 856, 923, 757, and 561 ppm, respectively. The 
reduction in NOx emissions in fuel mixtures was found to be directly proportional to the increase in the iso-pentanol ratio. This can be 
attributed to the increased oxygen content and decreased calorific value caused by the incremental ratio of iso-pentanol. Çelik et al. 
[60] reported that alcohols in fuel blends lead to a decrease in the combustion temperature in the cylinder, resulting in a substantial 
reduction in NOx emissions. In addition, Mahalingam et al. [61] concluded that the addition of different proportions of pentanol to 
biodiesel fuel blends results in decreased NOx emissions. Similarly, Yesilyurt et al. [41] reported that incorporating pentanol into a 
blend of biodiesel and diesel fuel leads to reduced NOx emissions. 

3.2.4. CO2 emission 
The average CO2 values for the diesel, D85B10P5, D80B10P10, and D70B10P20 fuels were 9.28 %, 9.57 %, 9.11 %, and 8.94 %, 

respectively. CO2 emissions decreased with increasing alcohol content in the fuel blends (Fig. 5d). This reduction can be attributed to 
the lower number of carbon atoms in the molecular structure of higher alcohols compared to diesel fuels. Alcohols prevent homog-
enization of the fuel mixture in the cylinder, reducing the combustion rate and the time it takes for carbon and oxygen atoms to react. 
As a result, less CO2 is produced in the post-combustion exhaust gas [62]. 

3.3. Prediction stage 

We compared the performance of three ML algorithms, namely ANN, SVM, and XGBoost, in engine performance and emission 
predictions for different diesel and fuel blends. 

3.3.1. Engine performance 
A comparison of the three algorithms for BTE is shown in Fig. 6. The R2 values of ANN, XGBoost, and SVM were 0.984, 0.973, and 

0.676, respectively (Fig. 6a); the RMSE values were 0.411 %, 0.606 %, and 1.878 %, respectively, and the MAE values were 0.112 %, 
0.291 %, and 0.975 %, respectively. The ANN algorithm exhibited the best performance, and the SVM algorithm exhibited the worst 
performance. The poor performance of SVM is evident in the comparison with the experimental observation (Fig. 6b). All three al-
gorithms exhibited unsatisfactory performance in predicting the BTE value in the 1st first observation. ANN outperformed XGBoost by 
1.13 % and SVM by 45.56 % in terms of R2. 

The statistical metrics comparing the three algorithms for BSFC are shown in Fig. 7. The R2 values of ANN, XGBoost, and SVM were 
0.958, 0.926, and 0.445, respectively (Fig. 7a); the RMSE values were 6.90, 7.26, and 19.97 g kWh− 1, respectively; and the MAE values 

Fig. 6. a) Statistical metrics of BTE; b) Comparison of actual results and algorithm results.  
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were 2.95 %, 3.21 %, and 10.25 %, respectively. The algorithms exhibited inferior performance in BSFC prediction than in BTE 
prediction. In BSFC prediction, ANN exhibited the best performance, whereas SVM exhibited the worst performance. As can be seen in 
Fig. 7b, the results of the SVM algorithm differed greatly from the experimental observations. In BTE prediction, the algorithms 
exhibited poor performance in predicting the first observed value in BSFC. 

3.3.2. Emission performance 
The R2 values of the ANN, XGBoost, and SVM models for EGT prediction were 0.979, 0.971, and 0.981, respectively; the RMSE 

values were 16.68 ◦C, 18.5 ◦C, and 12.92 ◦C, respectively; and MAE values were 12.25 %, 14.42 %, and 9.18 %, respectively (Fig. 8a). 
Thus, it can be concluded that all three models performed well in EGT estimation. In terms of other error metrics, the SVM model 
exhibited the best performance in EGT prediction (Fig. 8b). Ağbulut et al. [2] also reported that all three models used in engine 
emission estimation exhibited high performance in EGT estimation. 

In CO2 emission estimation, the R2 values of the ANN, XGBoost, and SVM models were 0.851, 0.956, and 0.861, respectively; the 
RMSE error metric values were 0.685 %, 0.503 %, 0.677 %, respectively; and the MAE error metric values were 0.545 %, 0.376 %, 
0.504 %, respectively (Fig. 8c). Thus, it can be concluded that all three models used for estimating CO2 emissions exhibited unsat-
isfactory performance, especially in the 1st and 17th observations (Fig. 8d). This was especially evident for ANN and SVM. The 
XGBoost model exhibited the highest accuracy in predicting CO2 emission values. 

In NOx emission estimation, the R2 values of the ANN, XGBoost, and SVM models were 0.959, 0942, and 0.931, respectively; the 
RMSE error metric values were 48.6, 60.4, and 64.7 ppm, respectively; and the MAE error metric values were 33.54 %, 49.57 %, 39.31 
%, respectively (Fig. 8e). Thus, it can be concluded that all three models exhibited satisfactory performance in NOx estimation. 
However, in terms of other error metrics, the ANN model exhibited the best performance in NOx emission estimation; moreover, all 
algorithms performed poorly in the 1st and 15th observations (Fig. 8f). 

In HC emission estimation, the R2 values of the ANN, XGBoost, and SVM models were 0.875, 0.973, and 0.87, respectively; the 
RMSE values were 2.05, 0.96, and 2.14 ppm, respectively; and the MAE values were 1.88 %, 0.76 %, and 1.98 %, respectively (Fig. 8 g). 
XGBoost exhibited the worst performance among the three, especially in the 60th observation (Fig. 8 h). 

4. Conclusion 

In this study, the exhaust emission characteristics and engine performance of diesel and iso-pentanol blended with safflower 
biodiesel were analyzed. Different modeling techniques, including experimentation, ANN, XGBoost, and SVM, were employed. The 
dataset was divided in the ratio of 70 %:30 % for training and testing, respectively. Fuel type and engine speed were used as input 
parameters, and BTE, BSFC, EGT, CO2, NOx, and HC were used as output parameters. The results of the study are summarized as 
follows:  

• Increasing the iso-pentanol content in the fuel blends did not exhibit a significant effect on BTE. However, BSFC increased because 
of the increased the amount of oxygen present in the fuel blends when the iso-pentanol ratio was increased.  

• Raising the content of iso-pentanol in the fuel blends decreased the EGT.  
• HC emissions in ternary fuel blends increased when the iso-pentanol ratio was increased. NOx emissions decreased with increasing 

iso-pentanol concentration. A 34.4 % reduction in NOx was observed in the D70B10P20 blend compared to diesel.  
• The presence of lower carbon atom count in the composition of higher alcohols compared to diesel fuel resulted in higher CO2 

emissions. CO2 emissions decreased with increasing the iso-pentanol ratio.  
• Engine performance assessment using the BTE metric yielded R2 values of 0.984, 0.973, and 0.676 for ANN, XGBoost, and SVM, 

respectively. The corresponding RMSE values were 0.411 %, 0.606 %, and 1.878 %, respectively, and the MAE values were 0.112 
%, 0.291 %, and 0.975 %, respectively. Thus, it can be inferred that ANN exhibited the best performance, whereas SVM exhibited 
the lowest performance in BTE prediction. 

Fig. 7. a) Statistical metrics of BSFC; b) Comparison of actual results and algorithm results.  
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Fig. 8. Statistical metrics of emission values and comparison of actual and algorithm results.  
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• In BSFC prediction, ANN exhibited the best performance, whereas SVM exhibited the lowest performance.  
• The models exhibited similar EGT prediction performances. However, SVM exhibited the best performance, outperforming ANN 

and XGBoost by 0.2 % and 1.02 %, respectively, in terms of R2 value. A comparison of the EGT model and experimental results 
revealed EGT prediction models can be developed using all three algorithms; however, SVM yielded the best results.  

• The XGBoost model exhibited the best performance in CO2 and HC emission prediction. In CO2 emission prediction, XGBoost 
outperformed ANN and SVM by 10.9 % and 9.93 %, respectively, in terms of R2. In HC emission prediction, XGBoost outperformed 
ANN and SVM by 10 % and 10.5 %, respectively, in terms of R2.  

• All three models exhibited similar performance in predicting NOx emissions. However, ANN outperformed SVM and XGBoost by 
1.77 % and 2.91 %, respectively, in terms of R2 values.  

• The ANN model exhibited superior performance in predicting the engine performance parameters of fixed biodiesel and fuel blends 
with different diesel/iso-pentanol ratios. The XGBoost model can be used for predicting all emission parameters because it is close 
to the best-performing model success in EGT and NOx emissions.  

• The ANN model has excellent generalizability for accurately predicting engine performance for different fuel blends and other 
biodiesel feedstocks, whereas the XGBoost model has excellent generalizability for accurately predicting emission parameters.  

• The effect of different iso-pentanol ratios (while keeping the biodiesel ratio constant in fuel blends) on emissions and engine 
performance can be modeled and predicted using ML methods.  

• The experimental and numerical analyses conducted in this study offer valuable insights for researchers, scientists, and the 
automotive industry, and may serve as a foundation for future research aimed at devising novel methodologies or models. 

To further investigate the effect of biodiesel fuel blends on engine performance and emission characteristics, in future research, we 
will optimize different biodiesel ratios while keeping the iso-pentanol ratio constant. In addition, we will conduct a techno-economic 
analysis of the current study to investigate the economic feasibility of the proposed method. 
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