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Abstract
Background: Dynamic modeling of metabolic reaction networks under in vivo conditions is a
crucial step in order to obtain a better understanding of the (dis)functioning of living cells. So far
dynamic metabolic models generally have been based on mechanistic rate equations which often
contain so many parameters that their identifiability from experimental data forms a serious
problem. Recently, approximative rate equations, based on the linear logarithmic (linlog) format
have been proposed as a suitable alternative with fewer parameters.

Results: In this paper we present a method for estimation of the kinetic model parameters, which
are equal to the elasticities defined in Metabolic Control Analysis, from metabolite data obtained
from dynamic as well as steady state perturbations, using the linlog kinetic format. Additionally, we
address the question of parameter identifiability from dynamic perturbation data in the presence
of noise. The method is illustrated using metabolite data generated with a dynamic model of the
glycolytic pathway of Saccharomyces cerevisiae based on mechanistic rate equations. Elasticities are
estimated from the generated data, which define the complete linlog kinetic model of the glycolysis.
The effect of data noise on the accuracy of the estimated elasticities is presented. Finally, identifiable
subset of parameters is determined using information on the standard deviations of the estimated
elasticities through Monte Carlo (MC) simulations.

Conclusion: The parameter estimation within the linlog kinetic framework as presented here
allows the determination of the elasticities directly from experimental data from typical dynamic
and/or steady state experiments. These elasticities allow the reconstruction of the full kinetic
model of Saccharomyces cerevisiae, and the determination of the control coefficients. MC
simulations revealed that certain elasticities are potentially unidentifiable from dynamic data only.
Addition of steady state perturbation of enzyme activities solved this problem.

Background
Metabolic activities of living cells are accomplished by a
well regulated, highly coupled network of numerous

enzyme catalyzed reactions and selective membrane
transport systems. To engineer such systems, enzymatic,
transport and regulatory functions of the cells are manip-
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ulated via the use of recombinant DNA technology [1].
Within the purpose of metabolic engineering, i.e. rational
redesign of the metabolic systems, the highly relevant
question of which (combination of) perturbation should
be applied in order to increase the productivity of the
microorganism is addressed. The answer to this question
requires information on both the regulatory level and the
metabolic level. Ter Kuile and Westerhoff showed by their
Hierarchical Control Analysis that the pathway flux is
rarely controlled solely by gene expression, but that
metabolite levels are also relevant [2].

In this context, we focus on the metabolic reaction net-
work level. Modeling metabolic reaction systems is usu-
ally based on stoichiometric sometimes followed by
kinetic modeling.

One of the initial steps in the modeling of metabolic reac-
tion networks is to determine the structure and steady
state characteristics of a given network using stoichiomet-
ric information alone. Steady state models describe time
invariant fluxes, gathered from steady state experiments;
hence they reflect the structural characteristics of the sys-
tem. Metabolic Flux Analysis (MFA) and Metabolic Net-
work Analysis (MNA) were developed as powerful tools to
analyze such flux data. At steady state, the mass balances
over the metabolites in the metabolic network yield a set
of linear relations between the metabolic fluxes which can
be expressed as:

S·v = 0  (1)

Where S is the (m × r) stoichiometric matrix and v is the (r
× 1) vector of metabolic fluxes, where m is the number of
balanced metabolites and r is the number of fluxes. Here,
the system is in most of the cases underdetermined so that
there are an infinite number of possible solutions. The
realized solution depends on the kinetic properties of the
involved reactions; this information is seldom known. To
bypass the need of information on kinetics of individual
reactions, alternative mathematical approaches have been
proposed in the past to obtain a unique solution. An
example is the constraint based optimization approach
which is based on assumed optimality criteria, e.g. maxi-
mum growth, given biochemical, thermodynamic and
irreversibility constraints and maximal reaction rates [3-
5]. Later, Segre et al. proposed the optimality constraint
that requires maximization of biomass formation while
minimization of metabolic adjustment (MOMA) in order
to obtain a unique flux distribution of a mutant strain. In
their approach, they defend their optimality criterion that
a knock-out mutant strain would optimize its biomass
production rate by changing minimally its metabolic
fluxes from the wild type strain [6]. An alternative meta-
bolic modeling framework which uses a fitness function is

the cybernetic approach. This approach assumes that an
organism is an optimal strategist in utilizing all available
sources with maximum efficiency. The expression and
activity of the enzymes that catalyze network functionality
are regulated by cybernetic control variables obtained
from the solution of a constrained optimization problem
[7-9].

Despite a number of successful applications especially in
mixed substrate and prediction of knock-out lethality, all
stoichiometric modeling approaches have their limita-
tions, e.g. they can not predict time courses of the cellular
processes, are based on "assumed goals" of the cell, and
do not give insight in molecular events occurring in the
cells, since information about the kinetic properties of the
individual enzymes are not required. In the light of the
above arguments, it is apparent that, to advance our
understanding of the (dis)functioning of living cells a sys-
tems biology approach is needed, whereby the use of
dynamic mathematical models of metabolic reaction net-
works to describe the complex kinetic behavior and inter-
actions (allosterical, feedback and feed forward effects,
cofactor coupling, compartmentation, intracellular trans-
port, etc.) is becoming increasingly relevant.

The kinetic behavior of many important enzymes occur-
ring in metabolic networks have been studied extensively,
however these studies have generally been performed
under non-physiological conditions in test tubes (in
vitro), and therefore the applicability of these results to the
in vivo metabolism is doubtful [10-13]. Teusink et al.
showed that discrepancies exist between the in vivo meas-
ured changes of the concentrations of the glycolytic
metabolites and their estimates using models based on
mechanistic rate equations and in vitro determined
parameters [12]. This basic problem invalidates detailed
models of metabolism containing kinetic parameters
which have been determined in vitro. Therefore, it is pre-
ferred to base the kinetic analysis of metabolic networks
on in vivo studies of intact cellular networks. These in vivo
studies are based on steady state and/or dynamic pertur-
bations of a metabolic network starting from a reference
steady state that is defined by its fluxes, enzyme activities,
metabolite levels, extracellular concentrations, and kinetic
parameters.

It is also important to notice that the number of parame-
ters that is typically involved in the traditional mechanis-
tic equations is very large which causes identifiability
problems due to parameter insensitivity. Despite the
information richness of data obtained from dynamic per-
turbations in in vivo experiments, there is a limit for iden-
tification of the parameters. For these reasons, it seems
justified not to limit ourselves to the available complex
mechanistic enzyme kinetics which must also be consid-
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ered as approximations of the true in vivo behavior
[14,15]. Approximative enzyme kinetic formats, which
contain much fewer kinetic parameters are therefore of
general interest. An overview of different approximative
kinetic formats (linear, power law, loglin and linlog kinet-
ics) used in metabolic network modeling is given by Hei-
jnen [16].

One of the proposed formats is, linlog kinetics, which has
been introduced for modeling of in vivo kinetics and for
metabolic redesign, and shown to have a good approxi-
mation quality, standardized format and relatively few
parameters [16,17]. In linlog kinetics, all the rate equa-
tions have the same mathematical structure in which the
relation between rates and enzyme levels is proportional,
while for metabolite levels, a linear sum of logarithmic
concentration terms is proposed. All variables are consid-
ered relative to a reference steady state (Eq. (2)). The lin-
log approximation is valid in the neighborhood of the
reference state (defined by J0, x0 and c0 in equation (2)),
but quite large changes of metabolite concentrations,
enzyme levels and fluxes are allowed [17]. The parameters

(  and ) in the kinetic equations are the same scaled

elasticities  that are used in Metabolic

Control Analysis (MCA). It is important to note that the
elasticity parameters appear in the model in a linear fash-
ion.

When the elasticities are known, a full dynamic model of
the whole metabolic network can be set up using linlog
kinetics. Such a model allows in principle the calculation
of control coefficients also under dynamic conditions. In
linlog kinetics, the elasticities are the kinetic parameters
represented in the elasticity matrix. From these, and a
given network structure specified in the form of a stoichi-
ometric matrix, the control coefficients for a reference
condition can be calculated from the summation and con-
nectivity relations developed in the framework of MCA.
Also the change in control coefficients upon large changes
in enzyme levels can be calculated [18]. Moreover, the lin-
log formulation enables the analytical solution of the
mass balances for steady state metabolite and flux levels in
the metabolic network, providing the solution of the met-
abolic redesign problem, i.e. determination of the opti-
mal enzyme levels that maximize a certain flux while the
total amount of enzyme and the metabolite levels are con-

strained. Visser et al., reported a successful application of
linlog kinetics in an in silico study that aims to solve this
metabolic redesign problem [19].

In order to determine the kinetic parameters of a model of
a given in vivo metabolic system, in vivo perturbations of
the complete metabolic network have to be performed.
There are two main types of perturbations that can be
imposed on the system: steady state and dynamic pertur-
bations. In steady state perturbations, usually the enzyme
activity of one (sometimes more) of the reactions is
changed by adding specific inhibitors or activators or by
genetically changing the enzyme activity, resulting in a
new steady state. In steady state perturbations an impor-
tant problem has been addressed by Kacser and Burns,
which is the determination of the set of reactions that has
to be perturbed in steady state fashion, in order to be able
to determine all elasticities for a given metabolic network
which resulted in their "double modulation" [20]. They
showed that for a simple linear chain of reaction, pertur-
bation of the activities of the first and last enzymes allows
determination of the elasticities of all enzymes of the
chain under the condition that each enzyme is only
responsive to its substrate and product, which rules out
the fact that feedback loops are present. The theoretical
basis is presented in later studies which showed that deter-
mination of the elasticities for any enzyme in such a sim-
ple chain requires two perturbations, one upstream and
one downstream of the enzyme concerned [21]. Giersch
and Cornish-Bowden extended the double perturbation
approach to more complex pathways containing branch
points, regulatory loops, and conserved moieties and they
provided guidelines to list the possible reactions to be
modulated in order to determine the elasticities for arbi-
trary metabolic networks [22]. From the obtained list a
minimum set of steady state perturbations, to be imposed
on a specific network, can be chosen. As an alternative to
the analysis of Giersch and Cornish-Bowden, Hofmeyr
and Cornish-Bowden offered co-response analysis, to
identify the mono-functional units that respond together
to any perturbation applied [23]. These mono-functional
units have to be dissected in order to determine the elas-
ticities belonging to these groups.

Linlog kinetics has been successfully applied to estimate
the elasticity parameters for a linear pathway from sets of
steady state metabolite concentrations and enzyme activi-
ties [18]. Additionally, Heijnen et al. proposed a method
to obtain flux control coefficients around a branch point,
from large enzyme perturbation leading to large steady
state flux perturbations, using the linlog kinetic format
[24]. This approach allows obtaining explicit solutions for
steady state flux and metabolite levels as a function of
large changes in enzyme activities.
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An alternative to steady state perturbations are dynamic
perturbations, in which the system, being initially at the
reference state, is disturbed to create time dependent data
of transient metabolite levels. The dynamic metabolite
profiles are typically obtained as a series of snapshots in
time. A recent example of these are in vivo measurements
of a number of metabolites in rather dense time sequences
of a few seconds or minutes, using 'rapid sampling' meth-
ods with subsequent high precision metabolite measure-
ment techniques [25-28]. Transient data are rich in
information and allow determination of the time hierar-
chy of the different elements of the metabolic network
and the causal relationships between the network ele-
ments. It is possible to exploit these data to estimate the
parameters of a traditional full kinetic model [13,29].
Such a model can subsequently be used to calculate the
values of the elasticities at a given reference steady state.
Alternatively, when the linlog kinetic format is used the
elasticities can be directly estimated from the transient
data. This was demonstrated by Kresnowati et al. who esti-
mated the elasticities of a small example network from
transient concentration data, assuming that the dynamic
fluxes are unknown [30].

An important difference between steady state and
dynamic perturbations is that in the former both the
steady state enzyme levels (ei) and the metabolite concen-
trations (xi) have to be measured, whereas in rapid
dynamic perturbation experiments only xi is required
because the enzyme activities can be considered constant
within a sufficiently short time window following the per-
turbation. Note that flux data are required in both meth-
ods. However, fluxes are not independent variables as
they follow from the measured intra- and extracellular
metabolite concentrations and the proper mass balances.

In this work, we present a method to estimate kinetic
parameters (elasticities), using linlog kinetics, using
metabolome data obtained from steady state and
dynamic perturbation experiments. As such, this can be
considered as an extension of the work by Visser and Hei-
jnen [17], Wu et al., [18] and Kresnowati et al., [30] who
have provided the theoretical framework and a small prac-
tical application of the linlog kinetic format. We first gen-
eralize the notation to make it applicable to networks of
arbitrary size and complexity. Additionally, we address
further the question of parameter identification from
experimental data. We monitor the propagation of error
throughout the proposed parameter estimation procedure
and we determine the subset of identifiable parameters.
To illustrate the proof of principle, we apply the presented
theory on in silico generated data, with realistic experimen-
tal settings, to be able to compare the obtained results
with the "known truth". This data is generated using a pre-

viously published glycolytic pathway model [31] of Sac-
charomyces cerevisiae.

Results
In silico pulse experiments
In these experiments, the steady state was perturbed by
increasing the extracellular glucose concentration. When
the external glucose concentration is increased, the intrac-
ellular glucose concentration also increases as the sugar is
transported through facilitated diffusion. From Figure 1a
it can be seen that the G6P concentration increases
around 6% in the first five seconds and then starts to
decrease, as the ATP concentration drops due to the phos-
phorylation of the glucose in the hexokinase reaction. ATP
starts to recover after about 15 seconds due to increased
increase ATP production downstream of glycolysis. This is
in agreement with the literature on the glucose uptake
dynamics following a sudden increase in the external
sugar concentration [32]. Following this ATP fluctuation,
the PEP concentration also decreases and then recovers. In
the first five minutes, the concentrations of the external
metabolites increase because of their increased produc-
tion.

After this initial period of 2 min, in which the external glu-
cose concentration is nearly constant, the concentration
of external glucose slowly decreases due to continuous
consumption and wash-out from the reactor. The cells fol-
low this glucose drop by dropping the levels of intracellu-
lar metabolites. For the extracellular products
(polysaccharides, glycerol, ethanol) the washout from the
reactor is larger than their production and hence their
concentration also drops. After about 200 minutes, the
original steady state is restored (Figure 1b). Such a pulse
experiment therefore always delivers a highly dynamic
dataset, followed by a pseudo steady state dataset.

Parameter estimation
The dynamic data obtained during the first five minutes of
the glucose pulse experiment (Figure 1a) were used to esti-
mate the elasticities via the linlog parameter estimation
procedure outlined in the Methods section (see section
Determining elasticities from dynamic perturbation
data). In Figure 1a, the simulation of the same dynamic
perturbation using the estimated elasticities is also given.
In Figure 2, the estimated elasticities are compared with
the theoretically calculated elasticities, derived from
mechanistic rate equations at the reference state.

Although the linlog simulation results do not differ much
from the noise-free experimental data generated with the
mechanistic model, some estimated elasticities are far
from the expected theoretical values. The difference is in
some cases in magnitude, for other cases there is a sign
contradiction. Specifically, 6 out of 16 elasticities (E3, E5,
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E6, E7, E8, E16) are predicted in very good agreement
with the theoretical ones (difference being around 10%),
6 estimated elasticities (E2, E9, E10, E12, E14, E15) agree
in sign, but the magnitudes differ by more than 50% (in
some cases up to 200%), and 4 elasticities (E1, E4, E11,
E13) are estimated with a sign contradiction. Notice that
in the case of E12, the 200% deviation is already expected.
This elasticity explains the effect of G6P on the polysac-
charide formation rate and in the mechanistic model this
effect is explained with a Hill type kinetic equation with a
Hill coefficient of 8.25, hence this rate is very sensitive to
the changes in G6P. To mimic this behavior, E12 is esti-
mated to be much higher than its theoretical value.

The poor identification of the elasticities has two possible
reasons: either the experimental design is poor or there is
a structural problem resulting that some interactions in
the network can not be resolved from the available infor-
mation. From an experimentalist point of view, it can be
seen from Figure 1a that the changes in the intracellular
metabolites during the first 300 seconds are between 25–
30% which can be easily detected with the current meas-
urement techniques [33]. The extracellular glucose and
polysaccharides also change to a detectable extent, but the
changes in the ethanol (and therefore glycerol) are only
2–3% which is hard to detect. To check if the poor exper-
imental design causes problems in the parameter identifi-
cation, we have altered the experimental design to create
larger changes in these concentrations. First the biomass
concentration was increased to 15 gDW L-1. Also at the
same moment that the fermentor was pulsed with the glu-
cose, the inflow and outflow of the fermentor was stopped
so the operation was effectively switched from though-

flow mode to batch mode, and the extracellular metabo-
lites were not washed out anymore. This allowed more
rapid accumulation of the secreted products resulting in
much larger changes. Also, the change in the extracellular
glucose concentration was more pronounced because
there was no further addition of glucose after the pulse.
These changes did not result in considerable changes in
the intracellular metabolite profiles; they follow the slight
change in the external glucose profile. The results of the
new experimental design are depicted in Figure 3 which
represents the new experimental data where only the sig-
nificantly changed external metabolite profiles are
depicted, together with the linlog simulation using the
estimated elasticities. However, no significant improve-
ment was achieved in the identification of the elasticities
compared to the initial experimental design (data not
shown). Hence it can be concluded that the problem is
not due to poor experimental design.

A closer look at the estimated elasticities reveals that the
elasticities belonging to the part of the metabolic network,
between VHK and VGAPD are correctly estimated, whereas
the estimation of the elasticities belonging to the lower
part of glycolysis and the uptake reaction is poor. This is
mainly due to the fact that the information content of the
metabolite data is insufficient to resolve the complex
interactions of metabolites and enzymes. Specifically, in
the VPK reaction rate, the feed forward activation of FdP
and the mass action effect of PEP are assumed. The pertur-
bation of the system via an increase in the external glucose
concentration results in an increase in the VPK flux. How-
ever, this does not allow a separate determination as to
what extent the change in VPK is due to mass action effect

Response of the network to an increase in external glucose concentrationFigure 1
Response of the network to an increase in external glucose concentration. a) First five minutes, a "rapid sampling" experiment 
(black) and the simulation of the same perturbation with linlog kinetics (blue) using the elasticities estimated from the experi-
mental data from dynamic perturbation. b) Long term response of the cells to the glucose pulse. The time is presented in min-
utes; intracellular metabolites are given in μmol gDW-1; extracellular metabolites are given in mM.
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of PEP or due to feed forward effect of FdP. This results in
identifiability problems for the elasticity parameters that
describe the ethanol production (E9, E10, and E11). The
same argument is valid for the elasticities belonging to the
glycerol producing reaction, since in the in silico network
the glycerol production is assumed to be proportional
with the ethanol production; hence the same combined
effect is seen in the glycerol production, resulting in an
identifiability problem for the latter triplet of elasticities
(E13, E14, E15)

In order to analyze the information content of the data,
the Fisher Information Matrix (FIM) is calculated as
described in [30]. FIM is an indicator of the information
content with respect to the parameters and due to the
parameter linearity in linlog kinetics FIM is independent
of the values of the kinetic parameters. It can be calculated
as YTY, Y being the design matrix appearing in equation

(9). The singular values of the FIM hold information on
the number of linear dependencies between the columns
of the data matrix. In our system, we checked the singular
values of FIM and concluded that not all the singular val-
ues are equally significant, which shows that there are
some colinearities within the data matrix. This is also evi-
dent from the condition number, which equals the ratio
of the highest to the lowest eigenvalues of the matrix and
is ideally 1 in a completely uncorrelated case. In this case
the condition number was calculated to be 5.0 × 106. This
fact supports the previous argument that using only one
single set of dynamic data is not sufficient to resolve all
the elasticity values.

In order to obtain better estimates of the elasticities,
steady state perturbation data are introduced. The steady
state enzyme perturbation data are generated as described
in the Methods section (see section Steady state perturba-

Results of the estimation of the elasticities using dynamic data only, comparison of the theoretical elasticities (black), with the linlog elasticities (white)Figure 2
Results of the estimation of the elasticities using dynamic data only, comparison of the theoretical elasticities (black), with the 
linlog elasticities (white).
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tions): in order to resolve the feed forward effect of FdP on
the VPK reaction, the enzyme amount of the VGAPD reaction
is perturbed in addition to the VIN and VATPase. Using the
steady state perturbation data in Table 1, and the calcula-
tion procedure described in the Methods section (see sec-
tion Determining elasticities from steady state
perturbation data), we have estimated the elasticities for
the in silico network under study. After the estimation of
the elasticities using steady state data only, we have also
simulated the dynamic perturbation of Figure 1a using
linlog kinetics, using the estimated elasticities. The results
are presented in Figure 4. Figure 4a shows the experimen-
tal data and the linlog simulation of the same pulse, and
Figure 4b compares the elasticities estimated using the
steady state data with the theoretical elasticities. As can be
seen from Figure 4b, using the steady state data, the elas-
ticities are estimated in good agreement with the theoret-

ical elasticities. However, as can be observed from Figure
4a, the linlog model deviates significantly from the exper-
imental data, so the estimated elasticities have to be fur-
ther refined.

Having a good initial estimate for the linlog elasticities
from the steady state perturbation data only, we used in
the second step both the dynamic and steady state data for
the parameter estimation procedure. The nonlinear
regression procedure allows combining both available
steady state and dynamic experimental data, so that all
parameters can be accurately estimated. After the non-lin-
ear fit to the data, we have obtained the final estimation
of the elasticities. The simulation of the pulse experiment
with these final estimates, and the comparison of the elas-
ticities are given in Figure 5a and Figure 5b respectively,

The results of the new experimental designFigure 3
The results of the new experimental design (The inlet and outlet of the reactor is blocked just after the glucose is increased. 
The biomass concentration is 15 gDW L-1, see text for further details in the experimental design) (black) and simulation of the 
same perturbation with linlog kinetics (blue).
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which shows that most of the elasticities are correctly esti-
mated and that the experimental data are well described.

Analysis of parameter identifiability and model reduction
In the previous sections, we have seen that we could not
determine all the parameters from dynamic perturbation
data only and we have introduced the steady state pertur-
bation data. After determination of all of the elasticities,
using both types of perturbation data, we analyzed back
the identifiability of each parameter under noise. In order
to carry the identifiability and error propagation analysis,
MC simulation was used. As described in the Methods sec-
tion (see section Error propagation analysis), 10% relative
error was added to the noise free data represented in Fig-
ure 1a (rapid sampling experiment), and the non-linear
estimation procedure was implemented using the elastic-
ities estimated from the steady state data, as the initial
guesses. After repeating this scheme 50 times, we obtained
a distribution for each of the elasticities from which we
calculated the relative error for each elasticity as the stand-
ard deviation per mean of the corresponding elasticity
(Table 2).

The adjustable parameter λ in equation (6) determines
the relative importance of the different sources of data. In
our case, these are dynamic and steady state data. Notice

that during the MC simulations, noise is added only to
dynamic data. For steady state perturbations, the number
of data points that can be obtained is theoretically infi-
nite. This implies that, considering the central limit theo-
rem, the steady state data can, in principle, be considered
as noise free. However, the aim of the MC simulations was
to elucidate the potentially unidentifiable elasticities
using dynamic perturbation data, and therefore we chose
λ to be equal to zero. The other extreme (λ = 1) would
suppress the effect of noise and wouldn't lead to detection
of poorly identifiable elasticities. The values in between,
are up to the choice of the modeler, depending on how
many data points have been obtained from a dynamic
pulse experiment, the standard deviations of the measure-
ments, etc. We have implemented different values for the
value of λ, but the outcomes of the MC simulation, i.e.
which elasticities can hardly be identified, did not change
qualitatively.

From the distribution of each elasticity, the p-value, indi-
cating the probability that the actual elasticity is zero and
that the estimated value was caused by the random error
only, is calculated via t-test and the results are given in
Table 2 (second column). The elasticities E1, E4, E9, and
E15 have a relative standard deviation higher than 200%,
so these elasticities are not identifiable under the 10%

Table 1: Relative effects of steady state perturbations on metabolite concentrations and rates. The metabolites and the rates are given 
relative to their reference states

Perturbation Applied

eIN/eIN
0 = 1.2 eATPase/eATPase

0 = 0.9 eGAPD/eGAPD
0 = 0.8

Normalized metabolites

Gext' 0.793 1 1
Gin' 1.128 0.999 1
G6P' 1.15 1.103 1
FdP' 1.093 0.959 1.369
PEP' 1.131 1.055 0.908
ATP' 1.045 1.071 1
Pol' 3.053 2.208 1
Gol' 1.077 0.983 1

EtOH' 1.077 0.983 1

Normalized rates

VIN' 1.104 1 1
VHK' 1.104 1 1
VPFK' 1.077 0.983 1

VGAPD' 1.077 0.983 1
VPK' 1.077 0.983 1
VPol' 3.053 2.208 1
VGol' 1.077 0.983 1

VATPase' 1.045 0.964 1
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noise present. Therefore we conclude that these elasticities
are clearly candidates for model reduction by assigning
them to be zero (E1, E4, E9, E15 = 0).

A closer look reveals that E9 represents the feed-forward
effect of FdP on VPK. E4 and E15 represent the effect of ATP
on VHK and VGol respectively and E1 is the feedback inhi-
bition of G6P on VIN. Notice that the elasticities of the
reactions of VIN, VPK and VGol were already badly identi-

fied, when we estimated the elasticities using dynamic
data only (Figure 2).

Using the arguments stated above, we set the values of
these four (E1, E4, E9, E15) elasticities to zero, imple-
mented the non-linear regression step, with the new
sparser elasticity matrix, and estimated the elasticities
using steady state and dynamic data. The results are pre-
sented in Figure 6a, where the experimental data and the
linlog simulation using the new set of elasticities are given

Linlog model simulation of the dynamic perturbation of Figure 1a using elasticities obtained from steady state data onlyFigure 4
Linlog model simulation of the dynamic perturbation of Figure 1a using elasticities obtained from steady state data only. a) 
Experimental data (black) and the linlog simulation (blue). Units are the same as Figure 1. b) Comparison of the theoretical 
elasticities (black), with the linlog elasticities (white) estimated from steady state perturbation data.
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Results of the final estimationFigure 5
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same as Figure 1. b) Comparison of the theoretical elasticities (black), initial estimates from steady state perturbation data 
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and in Figure 6b where the comparison of the estimated
elasticities with the theoretical ones is presented. It is clear
that with the new set of 12 elasticities (replacing the orig-
inal 16) the dynamic pulse can also be simulated in good
agreement with the experimental data. The value of the
objective function increased only by 0.04%, when the
degrees of freedom increased by 21% (degrees of freedom
increased from 19 (= 35 data points – 16 parameters), to
23 (= 35 data points – 12 parameters)) showing that elim-
ination of these four elasticities in fact improved the qual-
ity of the fit.

Cross validation of the obtained model
In order to validate the estimated elasticities, we have per-
formed a cross validation study, for which we have gener-
ated an independent dataset, consisting of steady state
perturbation data, and we have predicted the effect of that
perturbation with our estimated parameters, and com-
pared the results. Since we already perturbed VIN, VGAPD
and VATPase and included the resulting data in the identifi-
cation dataset (Table 1), we had to select another enzyme
in the pathway as the target for independent steady state
perturbation. Among the remaining enzymes, we chose to
inhibit the activity of VPFK by 50%, because this enzyme
assumes many interactions and is known to be a complex
enzyme, which would be a challenge to cross validate for
our network. The comparison between the model predic-
tion and the experimental results is given in Figure 7. The
level of extracellular and intracellular glucose did not
change, whereas the levels of G6P and polysaccharides
increased considerably and the levels of PEP, FdP, ethanol

and glycerol decreased. The linlog model predicted this
steady state perturbation with maximal deviation of only
8.5% in G6P. We conclude that the linlog model with the
estimated parameters performed satisfactorily for the test
case considered.

Calculation of the systemic properties
After the estimation of the elasticities, we have calculated
the flux control coefficients (CJ0) using equation (11). The
comparison of these with the theoretical control coeffi-
cients of the main flux (JPK) is presented in Figure 8. The
flux is controlled mainly by three enzymes: the hexose
transporter (eIN), and to a lesser extent by the phosphof-
ructokinase (ePFK), and the ATPase (eATPase). These findings
are in qualitative agreement with the literature [31]. It is
noticeable that the elimination of the four elasticities did
not change these results significantly; the same three reac-
tions still have the main control of the glycolytic flux.

The concentration control coefficients (Cx0) are also calcu-
lated using equation (10). Figure 9 gives the comparison
of the Cx0s of the two branch point metabolites, G6P and
FdP. The levels of both metabolites can be increased by
increasing the activity of the hexose transporter. Increas-
ing the activity of eATPase will decrease the level of G6P,
whereas it increases the level of FdP. Increasing the activity
of ePFK will decrease and increase the levels of G6P and FdP
respectively. Lastly, an increase in the activity of eGAPD will
result in a slight increase in G6P level and a decrease in
FdP level. These results are also in agreement with the pre-
vious studies. As expected, the model reduction did not

Table 2: The relative deviations of the elasticities, expressed as the standard deviation per mean*100, and the p-value at which the null 
hypothesis, that the actual elasticity is zero and that the estimated value was caused by the random error only, can not be rejected

Elasticity Parameter

Relative standard deviation ·100 [%]

p-value

E1 235.3 2.1E-03
E2 9.1 0
E3 10.8 0
E4 295.4 1.0E-02
E5 15.7 0
E6 26.7 0
E7 12.1 0
E8 150.9 1.1E-05
E9 342.4 2.2E-02
E10 60.5 3.3E-16
E11 144.6 5.5E-06
E12 12.0 0
E13 143.0 4.5E-06
E14 159.9 2.7E-05
E15 360.2 2.8E-02
E16 84.5 2.3E-11

σ
μ

2
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have a significant effect on the estimated control coeffi-
cients.

Discussion
Large mathematical models are needed for finding the tar-
gets for engineering realistic metabolic systems. Currently,
the available large models of several organisms e.g. Sac-
charomyces cerevisiae are mostly stoichiometric models.
Although these models are highly relevant for knockout
studies and determining the capabilities of the network
considered, they have some limitations, e.g., they cannot
predict the time courses, do not give insights in molecular
events and are based on the "assumed goals" of the cells.
Hence, for driving engineering interventions, kinetic
models are needed. Here, we have presented a method to
estimate the elasticities using the linlog kinetic format,
from a combination of steady state and dynamic pulse
experiments. In the past, there have been efforts to extract
MCA parameters from transient metabolite data. Liao and
Delgado presented a method to obtain the control coeffi-
cients from such data [34]. Later, it was shown by Elde and
Zacchi through MC simulations that this method is highly
sensitive to noise [35]. Moreover a full dynamic kinetic
model is not obtained. Here, we have described an estima-
tion procedure which directly yields the elasticities as
parameters instead of control coefficients, hence allowing
the construction of a full kinetic model. Subsequently, the
control coefficients can be obtained from the summation
and connectivity theorems. Such a full kinetic model can
also be used to simulate the effect of different perturba-
tions on metabolism of a microorganism in a fermentor.

The method presented here assumes the availability of
dynamic perturbation data. Although the list of metabo-
lites is growing, not all of the metabolites in the cell can
be measured. In a recent study, Wang and coworkers
described an extension of the MCA, under uncertainty
[36-38] in which the authors described a framework to
calculate the control coefficients when either there are no
measurements on metabolites, or the available measure-
ments are subject to high uncertainty. Their proposed
framework can be considered as complementary to the
method presented in this paper. In a case where accurate
measurements are available, the present paper provides a
mathematical approach to obtain the elasticities as kinetic
parameters, from which one can calculate the control
coefficients.

When compared to previous studies where linlog kinetics
have been applied in combination with highly idealized
linear pathways or small networks with branch points, the
model in this work represents a more realistic case. The
model used in this study represents an intermediate size
system with branch points and conserved moieties. The
proposed method can easily be extended to larger net-
works that are needed not only to understand the func-
tioning of living cells, but also to infer engineering
applications of e.g. microorganisms.

In the example considered in this paper, we have assumed
that the zero entries of the elasticity matrix are known.
This is a reasonable assumption, since numerous enzymes
in the primary metabolism of many organisms are exten-
sively studied and there is a dedicated public compen-

Results of the estimation of the elasticities, after model reductionFigure 6
Results of the estimation of the elasticities, after model reduction. a) Experimental data (black) and the linlog simulation with 
the reduced elasticity matrix (blue). Units are the same as Figure 1. b) Comparison of the theoretical elasticities (black), with 
the linlog elasticities (white).
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dium for such information [39], allowing the use of a
priori knowledge on elasticities which are zero.

In the absence of any a priori knowledge on the zero elas-
ticities, the elasticities have to be estimated from the full
elasticity matrix, for which vastly more experimental data
are needed. In the MCA literature, there are several
attempts to determine the different perturbations needed
in order to determine all elasticities [22,23]. However,
one needs to consider that an enzyme will never be
affected by all metabolites; there is a physical limit for e.g.
the maximum number of binding sites of each enzyme in
a biological network.

From the results presented here, it has been shown that,
despite the rich information content of the data obtained
from dynamic experiments, not every elasticity of the net-
work could be correctly estimated. This problem of

parameter identifiability would be much more pro-
nounced in a case where all (possible) interactions are
taken into account, caused by the combinatorial explo-
sion of number of parameters to be estimated. In the cur-
rent work, in order to resolve some of the interactions
which could not be resolved from the dynamic data,
steady state enzyme perturbations have been introduced.
In order to get full kinetic models of microorganisms,
accurate measurements of metabolite concentrations
resulting from independent perturbations are needed,
such as presented in [28] and [40]. At this point it is
important to state that the property of the linlog kinetic
format, that the rate equations are linear in the kinetic
parameters, allows simultaneous use of alternative data-
sets by concatenating them in one parameter estimation
scheme, i.e. it is straightforward to extend the data matrix
Y in equation (9) and the vector χsim in equation (6), with
the data from alternative dynamic and steady state pertur-

Results of the cross validation studyFigure 7
Results of the cross validation study. An independent steady state perturbation is introduced, in which the activity of VPFK is 
decreased by half (see text). A comparison of the normalized in silico experimental results (black) with normalized model pre-
diction (white) are given. The concentrations are normalized with respect to the reference conditions, given in Table 3.
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bation experiments. In addition, the decoupling of the
parameters is also immediate i.e. we can isolate poorly
identifiable elasticities and estimate the remaining ones
accurately and thereby reduce the problem.

It is worth mentioning that the obtained parameters (elas-
ticities) are true kinetic parameters that reflect the proper-
ties of the enzymes with respect to the corresponding
metabolites. They can be assumed to remain invariant as
long as the enzyme keeps its properties in response to the
changes in the environmental conditions. Additionally,
since the linlog kinetics provides an approximation to the
actual rate of the corresponding reaction over certain
interval, the elasticity parameter that performs best may
be different than the theoretical value of the correspond-
ing elasticity. This should be kept in mind when compar-
ing some of the less well determined elasticity values to
the theoretical ones.

Conclusion
Constructing dynamic models of metabolic reaction net-
works under in vivo conditions using data obtained from
perturbation experiments remains still a challenging
problem in the area of systems biology. In this contribu-
tion, we presented a method which allows the determina-
tion of the elasticities directly from experimental data
from typical dynamic and/or steady state perturbation
experiments. These elasticities allow the reconstruction of
the full kinetic model of the glycolysis of Saccharomyces
cerevisiae, and the determination of the control coeffi-
cients. We further show by a posteriori parameter identifi-
ability analysis that a subset of elasticities could not be
identified using dynamic perturbation data only. Intro-
duction of additional experimental information, i.e.
steady state experiments, solved this parameter identifica-
tion problem.

Comparison of the systemic properties, flux control coefficients (CJ0) of the ethanol fluxFigure 8
Comparison of the systemic properties, flux control coefficients (CJ0) of the ethanol flux. First column (black): theoretical CJ0s 
calculated using theoretical elasticities. Second column (grey): CJ0s calculated using estimated elasticities in Figure 5b. Third 
column (white): CJ0s calculated using the estimated elasticities of the reduced model (Figure 6b).
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Considering the description of the dynamics, results of
the cross validation studies and the final values of the elas-
ticities, we conclude that linlog kinetics, although being
an approximate kinetic format, performs very satisfacto-
rily for estimating elasticities from data obtained from
dynamic simulation of a mechanistic model, that was
realistic in terms of biochemical complexity (glycolysis),
noise added and sampling frequency.

Methods
In linlog kinetics, all rate equations have the same mathe-
matical structure: proportionality to the enzyme level and

linearity in the parameters (elasticities,  and ) as rep-

resented by equation (2). This equation can be general-
ized in vector form to represent the rate vector of the
metabolic network under consideration

v = J0·e'·(i + Ex ln(x') + Ec ln(c'))  (3)

where the vector v is the (r × 1) rate vector, r being the
number of rates, J0 is the square diagonal matrix contain-

ing the reference state fluxes (J0 = diag( ) i = 1,...,r), e' is

the square diagonal matrix containing relative enzyme

levels (e' = diag(ei/ )i = 1,...,r), i is the (r × 1) vector of

ones, Ex and Ec are the (r × mx) and (r × mc) elasticity matri-

ces, mx and mc being the number of intracellular and extra-

cellular metabolites respectively, and x' and c' are the (mx

× 1) and (mc × 1) vectors containing relative concentra-

tions of the intracellular and extracellular metabolites

respectively (x' = xj/ j = 1,...,mx and c' = xk/ k =

εx
v εc

v

Ji
0

ei
0

x j
0 xk

0

Comparison of the systemic properties, concentration control coefficients (Cx0) of the two branch point metabolites: G6P (upper panel) and FdP (lower panel)Figure 9
Comparison of the systemic properties, concentration control coefficients (Cx0) of the two branch point metabolites: G6P 
(upper panel) and FdP (lower panel). First column (black): theoretical Cx0s calculated using theoretical elasticities. Second col-
umn (grey): Cx0s calculated using estimated elasticities in Figure 5b. Third column (white): Cx0s calculated using the estimated 
elasticities of the reduced model (Figure 6b).
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1,...,mc). In each term, the superscript '0' indicates the ref-

erence state values.

Determining elasticities from steady state perturbation 
data
Given that for steady state perturbation experiments, we
obtain information on fluxes (Ji's) using the mass bal-
ances and the measured metabolite concentrations (xj),
we can directly use the equation (3) for the estimation of
the elasticities. When it is rearranged, the equation (3) can
be presented in the following standard linear model:

a = Y·b  (4)

where a is the (r × 1) measurement vector that contains the
measured normalized fluxes and normalized enzyme lev-
els (a = (J0e')-1 v - i), b the (p × 1) vector that contains the
non-zero elasticities of the original elasticity matrices Ex

and Ec, and Y is the (r × p) design matrix of which each ith

row contains as nonzero elements ln(xj/ ) and ln(ck/ )

at positions corresponding with the non-zero elasticities

 and  in vector b. The equation (4) can be solved to

obtain the elasticities using linear regression according to:

b = (YTY)-1 YT·a  (5)

This shows that estimation of elasticities from steady state
perturbations requires data on metabolite levels (ln(xj/

) and ln(ck/ ) presented in matrix Y) enzyme activi-

ties (presented in matrix e') and steady state fluxes (pre-
sented in the vector v and the matrix J0).

Determining elasticities from dynamic perturbation data
Since in a dynamic perturbation experiment, the rate
information can not be obtained directly, we will follow
different procedure here and we will only make use of the
time profiles of the measured metabolites (xi's) in treating
dynamic perturbation data. The elasticities are, in this
case, estimated via non-linear parameter estimation pro-
cedure, in which the objective function to be minimized
is the weighed squared error between the experimental
response and simulation results. The general form of the
objective function is given in equation(6):

the limits of the summations, m, q and r are the number
of metabolites, measured time points and fluxes respec-
tively. In equation (6), χexp is the experimentally meas-
ured, χsim is the simulated (using linlog kinetics)

metabolite matrix containing intracellular and extracellu-
lar metabolite concentrations. Two additional parameters
are introduced here:

γ to weigh the effect of uncertainty in different metabolites
and λ to weigh the effect of two different sources of data,
namely steady state and dynamic perturbation data. In the
second term of the equation(6), J'sim and J'exp represent the
experimental and simulated steady state fluxes. The equa-
tion (6) contains the rate information implicitly, since the
χsim results from the integration of the set of ode's repre-
senting the dynamics of the system. Note also that
although we already explained the treatment of the steady
state perturbation data in the previous section, we explic-
itly included the second term in equation (6) again; to
state clearly that this form of the objective function allows
also the integration of data from different types of experi-
ments.

Two main classes of optimization algorithms are available
to minimize the objective function in equation (6):
greedy algorithms and evolutionary algorithms. Moles et
al. presented a comparison of global optimization meth-
ods used for parameter estimation in biochemical path-
ways [41]. In that review, they discussed various global
optimization methods and concluded that the algorithm
that uses evolutionary strategy using stochastic ranking
performed best. On the other hand, they also pointed out
that, generally, evolutionary algorithms require high com-
putational effort. The alternative, greedy algorithms, are
fast, but in turn require an initial estimate close to the
optimal solution. A good initial estimate is necessary not
only to evade local minima and improve the solution per-
formance, (i.e. convergence time, finding a global opti-
mum) but also to prevent highly stiff systems, which
increase the computation time. In this work, we chose to
use a greedy (simplex) algorithm, mainly because the lin-
log kinetic format has the advantage to provide a good ini-
tial estimate that can be obtained directly from the
experimental data via linear regression (see below) so that
the method presented in this paper does not require the
robustness of the evolutionary algorithms towards the ini-
tial estimate. It is noteworthy that alternative approxima-
tive kinetic formats such as the two proposed formats of
BST (i.e. GMA or S-system forms) lack this advantage of
providing a good initial guess to the non-linear regression
step. With these formats, zero is generally assumed as the
initial guess for the non-linear parameter estimation
problem [42].

To obtain initial estimates, we start with the general
dynamic model of a metabolic system in a typical rapid
pulse experiment in a chemostat which is given by the
mass balances for the mx intracellular (x) and mc extracel-
lular (c) metabolites:
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Where x and c are the (mx × 1) and (mc × 1) vectors con-
taining concentrations of intracellular and extracellular
metabolites respectively, expressed in μmol gDW-1 and
μmol L-1 respectively, S and Sc are (mx × r) and (mc × r) sto-
ichiometric matrices for the intra and extracellular metab-
olites respectively; v is the (r × 1) biomass specific reaction
rate vector in μmol gDW-1 hr-1, cfeed is the (mc × 1) vector
containing concentration of the extracellular metabolites
in the feed expressed in μmol L-1, D is the dilution rate (hr-

1), μ is the biomass specific growth rate (hr-1) and cX is the
biomass concentration in gDW L-1.

Substitution of v by linlog kinetic rate equation (3) in the
mass balance equation (7) and assuming that there is no
change in the enzyme levels (e' = Ir × r) yields:

After rearrangement (and taking into account that due to
steady state of the reference, S·J0·i = 0), the set of equa-
tions are integrated for each metabolite, from ti to ti+1,

This can be presented in the following standard linear
model:

Where

and Y is a ((q - 1)·(mx + mc)) × p matrix, combining Yx and
Yc, containing the time integrals of the logarithm of the

normalized metabolite concentrations, and S, Sc, J0. Here
q is the number of measured time points. b is a (p × 1) vec-
tor containing the unknown elasticity coefficients, which
is estimated by linear regression similarly as above in eq.
(5). To obtain the integrals of equation(9), a linear inter-
polation of concentration between the measurements at ti
and ti+1 is used.

Although both equations ((6) and (5)) are based on least
square principle, the use of equation (6) (where b of
equation (5) is used as an initial estimate) has advantages,
namely, further improvement of the quality of the esti-
mated parameters, because initial linear regression
assumes that errors are only present in the dependent var-
iables (a in Eq. (5)), whereas errors in the measured
metabolites in fact also affect the independent variables
(matrix Y in Eq.(4) and Eq.(9)). Furthermore, the non-lin-
ear optimization allows the incorporation of additional
degrees of freedom for the correction of errors in the
metabolite levels at the first data point (t0) used for the
model simulation (integration of Eq.(8)). Moreover, dur-
ing the non-linear parameter estimation, linear interpola-
tion between the logarithms of the measured metabolites
is not needed anymore. An additional ease of the non-lin-
ear regression is in the introduction of the adjustable
parameter γ to weigh the effect of one (or more) metabo-
lite(s) on the fit. This is useful, when the measurement
precision is poor for a certain metabolite or when the rel-
ative change in one metabolite is small compared to the
others. The obvious choice for γ would be the inverse of
the standard deviation of the corresponding metabolite.
Although the weighing parameter γ can be introduced in
the linear regression step as well, introducing the factor γ
in the non-linear regression step is much more straightfor-
ward.

Calculation of the systemic properties

Having estimated the elasticities, we can calculate scaled
flux and concentration control coefficients

, using classical

summation and connectivity theorems [34]:

Cx0 = -Lx·(S·J0·Ex0·Lx)-1·S·J0  (10)

CJ0 = I + Ex0·Cx0  (11)

Here Lx is the metabolite link matrix, which links the
dependent metabolites to the independent ones and J0, S
and Ex0 are steady state flux matrix, stoichiometric matrix
and the elasticity matrix as represented in the previous sec-
tions. The scaled response coefficient (RJ0) for the external
metabolites can also be calculated [43]:
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RJ0 = CJ0·Ec0  (12)

Metabolic model
The glycolytic pathway of Saccharomyces cerevisiae has
been extensively studied in terms of enzyme kinetics and
metabolite levels. Over the last 30 years, modeling of the
glycolysis of yeast cells has been applied for several rea-
sons, such as simulation of physiology to understand reg-
ulation under dynamic conditions, MCA to amplify and/
or redirect metabolic flux [29,31,44-47], and to investi-
gate how changing environmental conditions change
metabolism.

In order to test the proposed method for estimation of
elasticities from steady state and dynamic perturbations
and the applicability of linlog kinetics, noise-free data
were generated using the modified version of the mecha-
nistic model of Galazzo and Bailey describing the glycol-
ysis of yeast cells, which contains 8 reactions and 9
metabolites (Figure 10). The set of mechanistic kinetic
equations are highly non-linear and contain 41 parame-
ters. The parameters used were taken from Galazzo and
Bailey [31] using the experimental settings for pHext = 5.5
with suspended cells in the original study. The glucose
uptake rate of the original model was modified in order to
be able to mimic realistic fermentation conditions. The
details of the metabolic model, the list of mechanistic rate
equations and the mass balances describing the kinetics of
the metabolic network of Figure 10 are given in the
Appendix.

Reactor model
The chosen glycolytic model was not designed to describe
growth, so in order to prevent washout of the cells and to
keep a constant amount of biomass within the fermentor,
the organism was assumed to be cultivated in a chemostat
with complete biomass retention. The glucose concentra-
tion in the feed was set at a low value resulting in low
steady state ethanol and glycerol concentrations, thus
allowing measurable changes in those metabolites when a
perturbation was applied. Furthermore the biomass con-
centration was set at 5 gDW L-1 and the dilution rate was
set at 1.5 hr-1 to provide a reasonable substrate load (qs)
and glycolytic flux. The resulting reference steady state
conditions (fluxes, metabolite levels) are represented in
Table 3.

Linlog kinetic model
The number of non-zero entries of the elasticity matrix
([Ex Ec] in equation(3)) defines the number of elasticities
to be estimated. Specifically, the elasticity matrix has 72
entries (8 reactions × 9 metabolites) and it followed that
16 of these were nonzero for the Galazzo and Bailey
model which was extended with the alterations on the
uptake reaction, mentioned in the Appendix. For the

present network, the structure of the elasticity matrix is
presented in Figure 11. The linlog model contains 16 elas-
ticities and 8 reference rates as parameters whereas the
mechanistic model has 41 parameters.

Dynamic perturbations
To obtain transient data, the reference steady state (Table
3) was perturbed by increasing the extracellular glucose
concentration (Gext) at t = 0 from 2666 μmol L-1 to 8000
μmol L-1, where after the relaxation of the system was sim-
ulated. The levels of the metabolites were recorded until
the system returned to the reference state.

In choosing the number of data points, i.e. the sampling
frequency, special attention had been paid to use a realis-
tic number of data points that an experimenter can obtain
from a typical rapid sampling experiment (for a short time
period) or from a dynamic pulse experiment (for a longer
time period). The data were obtained as follows: in the
first 120 seconds, where the initial dynamics after the glu-
cose uptake are important, 20 samples uniformly distrib-
uted over time were taken, in the next 120 seconds, 10
samples and in the last minute 5 samples were taken. For
long term experiments, from the 5th minute until the 10th

minute, 5 samples were taken, and from the 10th minute
until the end (400 min) 30 uniformly distributed samples
were taken. Metabolites for which concentrations were
assumed to be available at these times are intracellular
glucose, G6P, FdP, PEP, ATP and extracellular metabolites
glucose, ethanol, glycerol and polysaccharides.

Steady state perturbations
For the steady state perturbations, the enzyme levels were
modulated and the system was allowed to reach a new
steady state. The new steady state conditions (fluxes,
metabolite levels) were measured.

The minimum number of independent steady state per-
turbations needed in order to identify all the elasticities
for a reaction equals the number of non-zero elasticities
for that rate expression. From Figure 11, where the elastic-
ity matrix is shown, it can be inferred that the minimum
number of perturbations to be applied per reaction is 3,
due to the VPK and VGol reactions that have three non-zero
elasticities (E9–E10–E11 and E13–E14–E15 respectively).

As the reaction to be perturbed, VIN was chosen because it
is at the beginning of the glycolysis and therefore affects
the entire pathway. As the second reaction to be per-
turbed, VATPase was chosen because it directly affects the
level of ATP which is the effector of 6 out of 8 reactions.
Lastly, VGAPD was chosen for two reasons: 1) to resolve the
branch point relations around G6P and 2) to resolve the
feed forward effect of FdP on VPK. Note that since the pro-
duction rate of glycerol (VGol) was coupled (proportional)
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Glycolytic Pathway of Saccharomyces cerevisiae (Adapted from Galazzo and Bailey, 1990)Figure 10
Glycolytic Pathway of Saccharomyces cerevisiae (Adapted from Galazzo and Bailey, 1990).
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to the production of ethanol (VPK), the steady state branch
point relations around FdP can be reformulated as fol-
lows:

At steady state, JPFK = JGAPD + JGol and JGAPD = JPK/2. Addi-
tionally, as described above, JGol = k·JPK, hence JPFK = (1 +
2·k)·JGAPD where the value of k is given in the Appendix.
Therefore, there is no need to introduce additional steady
state perturbations to resolve the branch point relations
around FdP. Table 1 summarizes the steady state perturba-
tions used as data in this study. For example, in the first
column, the activity of the glucose uptake rate was
increased by 20% and the system is allowed to reach the
new steady state, the fluxes and the metabolite levels rela-
tive to the reference state are presented in the correspond-
ing column. Similarly, the second column represents the
inhibition of VATPase by 10% and the third represents the
data after the inhibition of VGAPD by 20%.

Error propagation analysis
In order to inspect whether the estimated elasticities are
robust against experimental noise in metabolite concen-
trations, we performed Monte Carlo (MC) simulations.
To this end, random errors of 10% are repeatedly added
to form 50 sets of "noisy data", which were used in the
non-linear parameter estimation procedure. This yields a
distribution of estimated elasticities which allows calcu-
lating the relative standard deviation for each elasticity as
the ratio of standard deviation to the mean of that elastic-
ity distribution.

Parameter identifiability and model reduction

The elasticities that have a high relative standard deviation
are suspected to be poorly identifiable in the network.
Potentially unidentifiable elasticities were recognized by
calculating a p-value for testing the null hypothesis that
the true mean of a given elasticity distribution is zero

Table 3: Reference conditions of fermentation and microorganism

Fermentation parameters

D = 1.5 hr-1,  = 8000 μmol L-1, cX = 5 gDW L-1

Biological parameters

Extracellular metabolite concentrations [μmol L-1]

Gext 2666.8
Pol 72.7
Gol 664.5
EtOH 9856.5
Macroscopic Fluxes [μmol gDW-1 hr-1]

qs 1600
qPol 21.8
qGol 199.4
qEtOH 2957
Intracellular metabolite concentrations [μmol gDW-1]

Gin 0.0524
G6P 3.133
FdP 11.657
PEP 0.0149
ATP 3.738
Intracellular rates [μmol gDW-1 hr-1]

VIN 1600
VHK 1600
VPFK 1578.2
VGAPD 1478.5
VPK 2957
VPol 21.8
VGol 199.4
VATPase 2714

c feed
Glucose
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through the statistic μ/(σ/ ) that has a t-distribution

with N degrees of freedom, where N is the number of MC
simulations. The elasticities that were found to be poten-
tially unidentifiable were set to zero, thus reducing the
number of non-zero entries in the elasticity matrix. Subse-
quently, for the reduced model, the remaining elasticities
were re-estimated, using the same steady state and
dynamic perturbation data and the parameter estimation
procedure explained in the previous sections.

Software used
MATLAB software (version 6.5, Stat-Ease Inc., Minneapo-
lis, USA) was used for generating the in silico data and
analyses of the data and the parameters obtained. The
non-linear minimization problem of parameter estima-
tion was solved using the Nelder-Mead simplex search
method.

Authors' contributions
IEN set up the methodology, performed the calculations
and drafted the manuscript. WvW supervised the calcula-
tions, the organization of the manuscript and revised the
manuscript. WvG contributed in organizing and revising
the manuscript. JJH supervised the whole project. All of
the authors read and approved the final manuscript.

Appendix
Details of the in silico metabolic model
In this paper, the model of Galazzo and Bailey describing
the glycolysis of yeast cells is used. This section describes
the details of the metabolic model. The model consists of
5 intracellular (glucoseintracellular, G6P, FdP, PEP and ATP),
4 extracellular (glucoseextracellular, polysaccharides, glycerol
and ethanol) metabolites and 8 reactions. In their work, a
mathematical model for the description of ethanol pro-
duction by non-growing Saccharomyces cerevisiae has been
constructed using non-linear mechanistic rate equations.
The glucose uptake is modeled by symmetrical carrier
model (see below for the changes in the uptake reaction),

N

Nonzero entries of the elasticity matrixFigure 11
Nonzero entries of the elasticity matrix. Adapted from Galazzo and Bailey, 1990, with modifications in the VIN reaction. For the 
modifications in the uptake reaction, see text.
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the hexokinase reaction is described by a two substrate
single displacement mechanism, the phosphofructoki-
nase and pyruvate kinase reactions are described by allos-
teric kinetics according to Monod-Wyman-Changeux,
polysaccharide formation is explained by Hill type kinet-
ics and the glyceraldehyde 3-phosphate dehydrogenase
reaction is described by a kinetic expression which takes
into account the crossed product inhibition by G3P and
NAD+ and competitive inhibition by AMP, ADP and ATP.
The ATP consumption is assumed to have first order kinet-
ics.

One property of the original model is that the glycerol
production is assumed to be stoichiometrically coupled to
ethanol formation, i.e. there is no separate dynamics for
the glycerol formation. Additionally, the NAD+ and
NADH levels are assumed to be constant, as given below.

As it was originally published, the glucose influx was a lin-
ear function of the glucose-6-phosphate concentration
only; hence, it was insensitive to the changes in extracellu-
lar glucose concentration. To mimic realistic fermentation
conditions, where one can perturb the organism by add-
ing a specific compound such as glucose to a chemostat,
we have modified the glucose uptake reaction and mod-
eled the glucose uptake by a symmetrical carrier model,
suggesting that the transport of glucose across the cell
membrane occurs via facilitated diffusion, as proposed by
Teusink et al., [4]. The list of mechanistic rate equations
used is given in the following section.

Mechanistic rate equations used to construct the in silico 
network. (Adapted from Galazzo and Bailey, 1990)
The rate equations of the reactions in Figure 10 are given
by:

with

R = 1 + F6P + 16.67 ATP + 16.67F6P·ATP

T = 1 + 5.10-4 F6P + 16.67 ATP + 0.00833F6P·ATP

, L0 is pH dependent

with

ζi,i=1,2,3 = AMP, ADP, ATP  Ki,i=1,2,3 = 1.1, 1.5, 2.5

with

R = 1 + 159.88PEP + 0.2ADP + 3.1976PEP·ADP

T = 1 + 0.02PEP + 0.2ADP + 0.004PEP·ADP

, L0 pH dependent

VGol = 0.06742·VPK

VATPase = 12.1·ATP

Equilibrium relations
The following metabolites were assumed in equilibrium
throughout the simulated time window:V
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Mass balances
The concentrations of the extracellular metabolites are
described by the following mass balances:
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