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Abstract

Understanding how neurons encode and compute information is fundamental to our study

of the brain, but opportunities for hands-on experience with neurophysiological techniques

on live neurons are scarce in science education. Here, we present Spikeling, an open

source in silico implementation of a spiking neuron that costs £25 and mimics a wide range

of neuronal behaviours for classroom education and public neuroscience outreach. Spikel-

ing is based on an Arduino microcontroller running the computationally efficient Izhikevich

model of a spiking neuron. The microcontroller is connected to input ports that simulate syn-

aptic excitation or inhibition, to dials controlling current injection and noise levels, to a photo-

diode that makes Spikeling light sensitive, and to a light-emitting diode (LED) and speaker

that allows spikes to be seen and heard. Output ports provide access to variables such as

membrane potential for recording in experiments or digital signals that can be used to excite

other connected Spikelings. These features allow for the intuitive exploration of the function

of neurons and networks mimicking electrophysiological experiments. We also report our

experience of using Spikeling as a teaching tool for undergraduate and graduate neurosci-

ence education in Nigeria and the United Kingdom.

This Community Page is part of the Cool Tools Series.

Introduction

Neuroscience is a major arm of modern life sciences. The first neuroscience degrees were

awarded by the University of Sussex in 1972, and many universities worldwide are now offer-

ing dedicated neuroscience undergraduate degrees [1] [2]. A fundamental aspect of these

courses is understanding electrical signalling within neurons and the transmission of signals

across synapses [3] as well as the experimental techniques necessary to observe these properties

[4]. However, owing to budgetary constraints and logistical hurdles, few students can be
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afforded the opportunity to experience an electrophysiological recording of a living neuron in

action, e.g., during an experimental class. Similarly, public understanding about the funda-

mentals of brain function is hampered by the lack of cheap, approachable, and easy-to-use

tools for neuroscience outreach aimed at illuminating how the basic machines of the brain,

neurons, and synapses operate to represent information [5]. The growing public interest in

areas such as artificial intelligence and the effects of neurodegeneration on an aging population

make it more pressing than ever to foster public awareness and interest in basic concepts in

neuroscience [6].

To support university-level neuroscience teaching and public understanding of neurons, we

designed ‘Spikeling’ (Fig 1A), a £25 electronic circuit that mimics the electrical properties of

spiking neurons by running the computationally efficient yet versatile Izhikevich model [7] in

real time. Depending on settings, Spikeling executes at approximately 420–1,000 Hz, which is

particularly appropriate to mimic ‘slow’ neurons of many invertebrates but about an order of

magnitude slower than the fastest cortical neurons of mammals. The circuit is built around an

Arduino [8], an open source programmable microcontroller that has found widespread use in

the teaching of engineering and the design and implementation of open source laboratory hard-

ware [9] [10].

Following the footsteps of Mahowald’s and Douglas’ 1991 first complete in silico realisation

of a spiking neuron [11], Spikeling presents a simple yet powerful model of an excitable neu-

ron with multiple dials and input/output options to play with. It is designed to facilitate a

hands-on and intuitive approach to exploring the biophysics of neurons, their operation

within neuronal networks, and the strategies by which they encode and process information.

Spikeling can be excited and its activity recorded so as to design a variety of classical experi-

ments similar to those that might be carried out on a biological neuron, which students learn

about in textbooks [12] [13]. Here, we present a series of basic neuronal processes that are effi-

ciently modelled using Spikeling, followed by an evaluation of our experience using the device

for teaching senior undergraduate and Master’s students in the UK and a graduate neurosci-

ence summer school held in Nigeria. Spikeling should be a useful tool in educating students of

neuroscience and psychology as well as students of engineering and computer science who are

interested in the biophysics of neurons and brain function.

A simple hardware implementation of a spiking neuron

Spikeling (Fig 1) consists of an Arduino Nano microcontroller, a custom-printed circuit

board, and a small number of standard electronic components (see Bill of Materials [BOM]).

Assembly takes between 20 minutes and 2 hours, depending on previous experience with sol-

dering and assembling circuit boards (see Spikeling manual). Spikeling features large contacts

and ample component spacing to facilitate soldering for beginners. The functional properties

of Spikeling can be modified by software within the Arduino integrated development environ-

ment (IDE).

Upon current injection, Spikeling begins to fire, with each spike translating into an audible

‘click’ from a speaker. In tandem, membrane potential is continuously tracked by the bright-

ness of a light-emitting-diode (LED). To mimic different types of neurons, Spikeling features a

‘mode button’ for switching between different preprogrammed model behaviours (e.g., regular

spiking, fast spiking, bursting, etc.). These can also be modified in the code provided.

For inputs, Spikeling (Fig 1A, S1 Fig) has 3 Bayonet Neill-Concelman (BNC) ports. Two are

‘input synapses’ that each respond to 5-V transistor-transistor-logic (TTL) pulses (ports 1 and

2), such as the ‘spike output’ of a second unit. Thus, Spikelings can also be connected into sim-

ple neuronal networks (Fig 1B and 1C). A third BNC input connection (port 3) is an analog-in
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Fig 1. Basic hardware and software. A. Fully assembled Spikeling board. B. Screenshots of the Serial Oscilloscope software used,

displaying Spikeling activity of the network in (C). C. Three Spikelings connected into a simple network.

https://doi.org/10.1371/journal.pbio.2006760.g001
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port that can be driven with a stand-alone stimulus generator or by a computer with a suitable

output port. The gain and sign of all inputs can be continuously set with rotary encoder knobs

(dials 1 and 2—with dial 2 controlling both analog-in and synapse 2 gain). One aim in the

design of Spikeling was to also teach how neurons encode a sensory stimulus, so an on-board

photodiode allows Spikeling to sense light. A light stimulus can be delivered externally (e.g.,

using a torch) or via an LED driven by a programmable on-board pulse generator. To mimic

the ‘noisiness’ of biological neurons in intact neural circuits, a knob is provided to add variable

amounts of membrane noise to the simulation (dial 3), while a final knob controls a static

input current to set resting membrane voltage (dial 4).

For outputs, Spikeling features digital (port 4) and analog (port 5) BNC connections that

can be used to visualise the ‘membrane voltage’ output on an external oscilloscope or to drive

another Spikeling. Alternatively, the modelled membrane potential and several key internal

processes (e.g., different current sources, input spikes, etc.) can be read out directly through

the universal serial bus (USB)-based serial port into a computer for data logging and live dis-

play on a monitor (Fig 1B). We also provide Python (as Jupyter Notebook) and Matlab

(Mathsworks) scripts for basic data visualisation and analysis. Finally, the system can be pow-

ered through the USB port or by a 9-V battery.

Simulating neuronal activity

In an informal setting, Spikeling can be explored in a playful manner simply by (i) depolarising or

hyperpolarising the neuron via the input current (dial 4), (ii) dialling up the membrane noise (dial

3, Fig 2A), or (iii) manual stimulation of the photodiode with a torch (Fig 2B, S1 Video). In each

case, elicited spike activity can be intuitively tracked by audible clicks coupled with flashes of the

onboard LED. In parallel, membrane potential and input current can be tracked live on a personal

computer screen through a serial plotter such as the openly available ‘Serial oscilloscope’ [14] (Fig

1B). In this setup, Spikeling can be used to explore basic concepts in neuronal coding. For exam-

ple, holding a torch over the photodiode initially elicits a burst of spikes that gradually slows down

if the light is held in place, thereby mimicking a slowly adapting ‘light-on’ responsive neuron (Fig

2B, left). The same experiment with Spikeling set to mode 2 (toggled via the on-board button) will

reveal a rapidly adapting rebound burst of spikes upon removing the light, thereby mimicking a

transient light-off responsive neuron (Fig 2B, center). Next, mode 3 mimics a sustained light-off

driven neuron with an elevated basal spike rate (Fig 2B, right, confer S2 Video). In total, Spikeling

is preprogrammed with 5 modes (S2 Fig). These can easily be modified or extended by the user in

the Arduino code provided.

For more formal experimentation, Spikeling can be driven in a temporally precise manner

via the analog-in port or a regularly pulsed light source mounted over the photodiode (S3

Video). As a stimulus, port 1 (synapse 1/stimulus out) can be flexibly reconfigured into a digi-

tal stimulus generator. Alternatively, an external 0–5-V analog stimulus generator can be con-

nected (not shown). At default settings, this port will continuously generate 0–5-V pulses at

50% duty cycle, with the stimulation rate being controlled through dial 1. Accordingly, simply

connecting port 1 (stimulus out) to port 3 (analog-in) allows for temporally precise stimulation

of the model neuron.

The millisecond precision achieved in this way can then be exploited to study neuronal

function in further detail. For example, at default settings (see Spikeling manual) the stimula-

tor directly coupled to the analog-in port drives a highly stereotyped spike train upon repeated

stimulation (Fig 3A, left), as further elaborated in the raster plot (Fig 3A, right, see also S2 Fig).

From here, systematic variation of the analog-in gain (dial 2) can be used to drive Spikeling
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with different amplitude current steps, e.g., to build amplitude tuning functions for spike rate,

latency, or first-spike time precision (Fig 3B).

Next, rather than delivering port 1’s square–pulse drive via analog-in, the user can instead

drive an LED from the same port. In this way, positioning the LED above the photodiode (e.g.,

via the 3D-printable adapter provided or a custom paper tube) allows for temporally precise

driving of Spikeling via light (Fig 3C). Adding noise to this simulation allows exploring how

the addition of noise initially distorts spike timings before affecting rates (Fig 3D).

Similarly, the experimenter could vary the rate of stimulation to probe the intrinsic fre-

quency tuning of a neuron (dial 1, not shown). At faster stimulus rates, Spikeling can be set to

occasionally ‘miss’ individual current steps and instead adopt a volley code [15] for event tim-

ing (Fig 4A). In this configuration, Spikeling continues to phase lock to the stimulus, as sum-

marised in the event-aligned plot to the right. Note that even though spikes frequently fail, the

subthreshold potential continues to reliably track the stimulus. From here, the static input cur-

rent (dial 4) and noise (dial 3) can be tweaked to put the system into stochastic resonance [16]

[17]. In this situation, counterintuitively, the addition of noise is beneficial to the code (Fig

Fig 2. Manual exploration of Spikeling functions. A. Example recording of Spikeling membrane potential (top) and current (bottom)

during manual manipulations of the input current dial (4) to depolarise the neuron (left), following the addition of a noise current (dial

3, right). B. Example light responses in modes 1–3 (left to right, toggled by the button) to manual PD stimulation with a torch. The grey

horizontal lines indicate Itotal = 0. PD, photoiode.

https://doi.org/10.1371/journal.pbio.2006760.g002
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Fig 3. Basic stimulus-driven functions. A. Example recording of Spikeling in mode 1 driven by the internal

stimulator (port 1) via the analog-in connector (port 3), as indicated. Gain and stimulus rate are controlled on dials 2

and 1, respectively. Right: stimulus aligned response segments (grey) and average (black) as well as spike raster plot. B.
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4B). In the example shown, the ‘generator potential’ (the noise-free stimulus–driven mem-

brane voltage fluctuations) is itself insufficient to elicit any spikes. As a result, the neuron fails

to encode the stimulus at the level of its spike output (Fig 4B, left). Addition of noise occasion-

ally takes the membrane potential above spike threshold (Fig 4B, middle), and the probability

of this threshold crossing is higher during a depolarising phase of the generator. As a result,

the system now elicits spikes, which, depending on the noise level chosen, reliably phase locks

to the stimulus (Fig 4B, right). Such stochastic resonance can be used, e.g., by sensory systems

As (A, right), with varying input gain to probe amplitude tuning. Note systematic effects on spike number, rate, time

latency, and time precision. C. As (A), but this time driving Spikeling via an LED attached to the stimulus port

stimulating the photodiode. Note different waveforms of input current and consequences on the elicited spike pattern

compared to (A). D. As (C), with addition of current noise (dial 3). Note distortion of spike timings, while the number

of spikes triggered remains approximately constant. LED, light-emitting diode.

https://doi.org/10.1371/journal.pbio.2006760.g003

Fig 4. Volley coding and stochastic resonance. A. By varying the stimulus rate, Spikeling can be setup to ‘miss’ individual stimulus

cycles at the level of the spike output (left). However, when elicited, spikes remain phase locked to the stimulus (right). B. Example of

stochastic resonance. As (A), with neuron hyperpolarised just enough to prevent all spikes (left). Now, addition of membrane noise

occasionally elicits spikes (middle), which again are phase locked to the stimulus (right). Dotted line indicates approximate spike

threshold.

https://doi.org/10.1371/journal.pbio.2006760.g004

PLOS Biology | https://doi.org/10.1371/journal.pbio.2006760 October 26, 2018 7 / 16

https://doi.org/10.1371/journal.pbio.2006760.g003
https://doi.org/10.1371/journal.pbio.2006760.g004
https://doi.org/10.1371/journal.pbio.2006760


to deal with noisy inputs—summing across the spike output from many such resonating neu-

rons can then reconstruct the original stimulus with high fidelity [18] [19].

Next, two or more Spikelings can be connected into a network via BNC cables (S4 Video).

For this, the digital-out connector (port 4) of one unit is connected to one of two ‘synapse-in’

connectors (e.g., port 2) on another unit. Synaptic gain can then be controlled using a rotary

encoder (here, dial 2) to vary the efficacy and sign of the coupling, thus mimicking excitatory

or inhibitory connections (Fig 5A). Two reciprocally connected units can then be used to set

up a basic central pattern generator [20] [21] (Fig 5B).

Spikeling can also be used to explore neuronal function more systematically, e.g., by esti-

mating the linear filter that underlies its photo response in a given mode [22]. This is a funda-

mental approach in computational and sensory neuroscience, and the calculation of the linear

filter is based on recording a neuron’s response to a ‘noise stimulus’ for several minutes. Subse-

quent reverse correlation of the elicited spike or subthreshold activity against the original stim-

ulus then allows for calculating the average stimulus that drove a response in the neuron: the

linear filter, sometimes also referred to as ‘time-reversed impulse response’ or ‘response ker-

nel’. Reverse correlation to spikes is the more common calculation, when the linear filter is

also termed the ‘spike-triggered average’ (STA) [23]. To explore this concept, Spikeling’s stim-

ulus port (1) can be set to generate binary noise at a chosen frequency via a flag in the Arduino

code (see Spikeling manual). In this configuration, the photodiode can be stimulated by this

noise stimulus via an LED as before (Fig 6A, confer Fig 3C), thereby driving spikes and sub-

threshold oscillations. The linear filters of a mode 1 Spikeling (‘slow’) reveal a clear biphasic

(band pass) stimulus dependence at the level of spikes but a monophasic dependence (low

pass) at the level of subthreshold activity (Fig 6B, black). In comparison, the same mode 1 neu-

ron retuned to use a rapidly adapting photodiode-driven current (‘fast’) gives a triphasic stim-

ulus dependence at the level of spikes and a biphasic dependence at the level of the

subthreshold generator (Fig 6B, red).

Taken together, Spikeling can be used in a variety of classroom and demonstration scenar-

ios, ranging from simple observations of changes in spike rates upon stimulation to advanced

concepts in neuronal computation and analysis.

An example set of Spikeling-based classroom exercises is provided (see Spikeling manual).

From here, advanced users can easily reprogramme the Arduino code to implement or fine

tune further functionalities as required. The entire project, including all code, hardware

design, BOMs, and detailed build instructions are available online for anyone to freely view

and modify (https://github.com/BadenLab/Spikeling and https://badenlab.org/resources/).

Spikeling in the classroom

We evaluated the utility of Spikeling in two classroom scenarios: (i) as a 2-day section within a

3-week intensive neuroscience summer school held at Gombe State University, Nigeria by

TReND in Africa [24] and (ii) as part of an 18-lecture module on ‘Sensory function and com-

putation’ delivered to third year undergraduate and MSc neuroscience students at the Univer-

sity of Sussex, UK. We report on each experience in turn.

At Gombe State University, Nigeria, we ran two identical 2-day sessions for a total of 18

Africa-based biomedical graduate students (9 at a time) as part of the seventh TReND/ Inter-

national Society of Neurochemistry (ISN) school on Insect Neuroscience and Drosophila Neu-

rogenetics [24]. None of the students had much experience with neuronal computation or

electrophysiological techniques, although most had covered basic concepts in neuroscience

such as action potential generation in their undergraduate degrees. We introduced Spikeling

in three steps. First, we held a 1-hour lecture during which a single Spikeling was connected to
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a computer with the serial oscilloscope output being projected live to the wall. In parallel, a

whiteboard was used for explanations and discussions. From here, we combined a general

explanation of concepts in neuronal computation on the board (e.g., rate versus time coding,

subthreshold integration, phase locking etc.) and then demonstrated each phenomenon in

front of the class using Spikeling. Based on feedback after the class, this was perceived as a very

engaging and effective method for introducing concepts in neuronal coding. Next, we moved

on to assembling Spikelings from bags of precompiled parts (Fig 7A and 7B). For this, every

student was provided with the printed circuit board, the electronic components, and a solder-

ing iron and taken through the assembly process by two instructors. After 2–3 hours, every

student had successfully assembled a working unit, despite most not having had any experi-

ence with soldering or electronic circuit logic. In a third step, each student was then provided

with the serial oscilloscope software as well as the exercise document and asked to sequentially

work through a set of predesigned exercises (Fig 7C and 7D, see Spikeling manual) in their

Fig 5. Synaptic networks. A. Two or more Spikelings can be connected to form synaptic connections, as indicated. Left: excitatory

synaptic connection with synaptic gain gradually increased by hand over time (dial 2). Right: inhibitory connection at two different

depolarisation states (dial 4). B. Example of a 2-neuron CPG. The two Spikelings are set to mode 2 and wired to mutually excite each

other. In each case, all traces display the activity and incoming spikes of the top-most Spikeling. CPG, central pattern generator.

https://doi.org/10.1371/journal.pbio.2006760.g005
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own time, with faculty being available to help as required. Following the course, all students

kept their Spikeling to facilitate their own teaching at their host institutions in 7 different Afri-

can countries (Nigeria, Malawi, Sudan, Egypt, Kenya, Zambia, and Burkina Faso).

At the University of Sussex, UK, we introduced preassembled Spikelings as part of 3 sets of

3-hour workshops provided to students in groups of 13. For this, we used a PC lab where each

student had their own Spikeling and PC with Arduino, Serial Oscilloscope, and Matlab prein-

stalled (Fig 7E and 7F). The first session began with a 20-minute presentation of basic concepts

in neuronal modelling and electronics, followed by a conceptual comparison between the bio-

physically realistic yet computationally heavy Hodgkin Huxley model [25], [26] and the much

lighter phenomenological Izhikevich model [7] implemented in Spikeling. Next, we projected

the serial oscilloscope screen of a Spikeling connected to the lecturer’s laptop to the wall. This

allowed easy, live demonstrations of some Spikeling functions, such as the photo response or

the use of different modes. From here, we asked students to connect and set up their own units

on their PCs and to start exploring ‘how to best drive spikes’ using their mobile phone torches.

Fig 6. Estimating linear filters by reverse correlation. A. Via the Arduino code, the stimulus port can be set to deliver 50 Hz binary

noise, here used to drive the photodiode via an LED (confer Fig 3C). Current and spike pattern elicited by this stimulus. B. Linear filters

of a slow (black) and a fast (red) photo-adapting mode 1 neuron estimated at the level of spikes (left) and subthreshold membrane

potential (right). LED, light-emitting diode.

https://doi.org/10.1371/journal.pbio.2006760.g006

PLOS Biology | https://doi.org/10.1371/journal.pbio.2006760 October 26, 2018 10 / 16

https://doi.org/10.1371/journal.pbio.2006760.g006
https://doi.org/10.1371/journal.pbio.2006760


Fig 7. Spikeling in the classroom. A. ‘Bag of parts’ disassembled Spikeling, as used in our summer school in Gombe, Nigeria. B. Students soldering Spikelings as part

of an in-class exercise on do-it-yourself equipment building. C, D. Students exploring Spikeling functions based on an exercise sheet provided (see Spikeling manual).

E, F. In-class use of Spikeling as part of a computer lab for third year neuroscience undergraduates at the University of Sussex, UK.

https://doi.org/10.1371/journal.pbio.2006760.g007
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Students quickly realised that simply holding the light above the photodiode ceases to be effec-

tive after a few hundred milliseconds, while repeatedly moving the light over the photodiode

reliably elicits bursts of spikes. In this way, students could intuitively explore basic concepts in

time coding.

Afterwards, we brought everyone back to the same page by demonstrating these key ideas

on the Spikeling output projected onto the wall. We then showed students how to use the stim-

ulator, what the dials do, and how to log data on the serial oscilloscope. We also showed them

how to load and display their data using prewritten Matlab routines (see Supporting informa-

tion, which also provides analogous Python routines). From this point, we asked students to

carry out their first ‘experiment’ quantifying a neuron’s tuning using 2 measures of response

amplitude, instantaneous spike rate, and first-spike latency. These 2 tuning curves were com-

pared, again followed by an in-class demonstration and discussion. In this way, we moved

through the majority of Spikeling functions described in this paper over the course of 3

workshops.

Taken together, Spikeling allowed students to explore a number of fundamental aspects in

sensory neuroscience, including analog and digital coding, detection of signals above noise,

the functional consequences of adaptation, and the variety of temporal filters that neurons

implement. The concepts acquired, as tested with take-home problem sets, dovetailed with lec-

ture content covering rate and time coding, feature selectivity and tuning diversity, and adap-

tation. Students reported that the Spikeling work helped them to develop a more intuitive

grasp of these central ideas in sensory and systems neuroscience.

Discussion

With modern systems of neuroscience increasingly moving into the area of big data for which

the activity of thousands of neurons can be routinely recorded across a wide range of neuronal

circuits [27–33], a deep understanding of how neurons encode and compute information is

fundamental. These concepts need to be taught not just to students of the biological sciences

but also to students of psychology as well as engineers and computer scientists interested in

theoretical and computational neuroscience, artificial intelligence, and robotics [4]. However,

concepts in neuronal coding and computation can be unintuitive to grasp or ‘dry’ in lectures,

while classroom electrophysiology on live biological specimens can be technically challenging

and costly to set up [3]. As a result, many students in these disciplines graduate without ever

having had the opportunity to experience and control neuronal activity in hands-on experi-

ments. Indeed, in many parts of the world, systems of neuroscience are only a rather peripheral

aspect of neuroscience curricula, if present at all, while the cross-over of neuroscience into

engineering and informatics often jumps immediately into discussions of networks based on

units that are greatly simplified versions of biological neurons.

Spikeling is intended to help ameliorate some of these issues by allowing students to carry

out experiments in the same general fashion as classical electrophysiologists but without the

amplifiers, filters, manipulators, stimulus generators, and other equipment normally required.

Its low cost makes it widely affordable, and once assembled, it can be used for teaching for

many years without additional investment. It should also be immediately approachable to stu-

dents of engineering and informatics who can explore the electrical properties of neurons and

the code used to model these as well as carry out experiments illustrating basic concepts in the-

oretical and computational neuroscience [23]. By allowing students to interact physically with

the device, e.g., by providing actual sensory inputs, Spikeling can help build an intuitive grasp

of neuronal computations beyond that provided by pure computer simulation of neurons.
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Other recent efforts have also recognised the need for more intuitive hardware models of

spiking neurons, most notably the Neurotinker initiative [34], who release NeuroBytes. These

come in a variety of neuron types, such as photoreceptors or motorneurons, and run a simple

integrate-and-fire type model. Generally, NeuroBytes are designed to be very easy to use and

to be connected in larger networks to teach neuronal control logic to children in a playful

manner, albeit at the trade-off of giving less user control over model behaviour and data log-

ging. In contrast, Spikeling is perhaps more suitable for undergraduate-level neuroscience edu-

cation. Another initiative aiming to build microcontroller-based neurons is Spikee [35].

Finally, others have implemented the Izhikevich model on more powerful processors such as a

Programmable-Intelligent-Computer-32 (PIC32) [36] or a field-programmable gate array

(FPGA) [37]; however, these more expensive and complex implementations are, at least cur-

rently, more aimed at professionals in computing and electronic engineering and do not come

with a dedicated lay and user-friendly interface. Notwithstanding, there are already many soft-

ware-only implementations of neuron models available online for both research and teaching,

including several that are free and open source. For example, NEURON [38] is a popular high-

end neuron simulator environment used primarily in research, while simulator for neural net-

works and action potentials (SNNAP) [39] and MetaNeuron [40] are but two of many exam-

ples of educational options.

With time, we hope that others may take up our basic design and build upon it, e.g., by pro-

viding inputs to other sensory modalities such as touch or sound or by changing the Arduino

code to implement new functions or simulate neurons with different tuning properties. Spikel-

ing could also be used as a ‘test-neuron’ in conjunction with existing electrophysiological

equipment, e.g., to quickly verify stimulus protocols or as a stimulus generator.

Another point for future improvements is the model refresh rate. In the current ‘standard’

setup with all options enabled, the model runs at approximately 420 Hz. While this is easily

sufficient to model basic conceptual processes of neuronal function, it is slower than what

might be expected from, e.g., a mammalian cortical neuron and instead rather resembles neu-

rons of cold-blooded species. If desired, we elaborate how the user can trade-off model com-

plexity for speed (see Spikeling manual).

Notably, we are currently working on a version 2.0 of Spikeling, which uses the more pow-

erful and WiFi-capable ESP8266 instead of the Arduino Nano. This version can either execute

the model at about 5 to 10 times the speed of the version presented here, or alternatively drive

a standalone colour thin film transistor (TFT) screen at approximately the same speed as the

Arduino Nano (without screen). For Spikeling 2.0, please refer to the GitHub, which is

updated on an ongoing basis.

Spikeling is available on a share-alike open license, prompting any modifications of the

original code to be freely distributed for everyone to use. We aim to keep these efforts central-

ised on the Spikeling GitHub (https://github.com/BadenLab/Spikeling) or link to new reposi-

tories as they arise to gradually build a community of users and contributors. For convenience,

we also setup a simplified component sourcing option Kitspace at https://kitspace.org/boards/

github.com/badenlab/spikeling/. All hardware instructions, code, manuals, and example data

are freely available at https://github.com/BadenLab/Spikeling and https://badenlab.org/

resources/.

Supporting information

S1 Fig. Circuit and printed circuit board layout. A. Wiring diagram of Spikeling. B. PCB lay-

out.

(TIF)
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S2 Fig. Mode overview. A, B. All 5 preprogrammed Spikeling modes responding to current

(A) and light steps (B). Additional modes can be easily added in the Arduino code (see Spikel-

ing manual).

(TIF)

S1 Video. Basic functions.

(MP4)

S2 Video. Modes.

(MP4)

S3 Video. Stimulus generator.

(MP4)

S4 Video. Synaptic networks.

(MP4)

S1 Text. Spikeling Manual, including assembly and example exercises; BOM; PCB layout

files (Eagle); Arduino code for Spikeling; Matlab (times 2) and Python code for basic data

analysis and visualisation; OpenSCAD and STL files for 3D-printable LED-mounting

adapter; and example logged data (CSV). BOM, Bill of Materials; CSV, comma separated

variable; LED, light-emitting diode; PCB; STL, surface-tessilation.

(PDF)
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