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Abstract

Many machine learning procedures, including clustering analysis are often affected by miss-

ing values. This work aims to propose and evaluate a Kernel Fuzzy C-means clustering

algorithm considering the kernelization of the metric with local adaptive distances (VKFCM-

K-LP) under three types of strategies to deal with missing data. The first strategy, called

Whole Data Strategy (WDS), performs clustering only on the complete part of the dataset,

i.e. it discards all instances with missing data. The second approach uses the Partial Dis-

tance Strategy (PDS), in which partial distances are computed among all available

resources and then re-scaled by the reciprocal of the proportion of observed values. The

third technique, called Optimal Completion Strategy (OCS), computes missing values itera-

tively as auxiliary variables in the optimization of a suitable objective function. The clustering

results were evaluated according to different metrics. The best performance of the clustering

algorithm was achieved under the PDS and OCS strategies. Under the OCS approach, new

datasets were derive and the missing values were estimated dynamically in the optimization

process. The results of clustering under the OCS strategy also presented a superior perfor-

mance when compared to the resulting clusters obtained by applying the VKFCM-K-LP

algorithm on a version where missing values are previously imputed by the mean or the

median of the observed values.

1 Introduction

The incessant increase in volume and variety of data requires advances in methodologies in

order to understand, process and summarize data automatically. Cluster analysis is one of the

main unsupervised techniques that are used to extract knowledge from data, due to its ability

to aid in the process of understanding and visualizing data structures [1, 2].

The main goal in clustering is to organize the data (observations, data items, images, pixels

etc.) based on similarity (or dissimilarity) criteria such that observations belonging to the same

group show high degrees of similarity, while observations in different groups show high

degrees of dissimilarity [3, 4].
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Clustering methods are widely used in many areas of knowledge, such as taxonomy, data

mining, image segmentation, pattern recognition, information retrieval, computer vision, and

so forth [3, 5]. Depending on the application considered, the groups obtained in clustering

may present different characteristics. Thus, different clustering techniques have been proposed

in the literature, with the most popular ones being based on hierarchies and partitions. In hier-

archical clustering algorithms, structures are found such that they can be recursively divided

into levels. The output is a nested sequence of partitions of the input data known as a dendro-

gram [6].

In partitioning clustering methods, a single partition of the dataset is obtained, generally

based on the optimization of a suitable objective function [5]. These methods are more flexible

than the hierarchical ones because they allow observations to change groups at each step of the

algorithm, if that change leads to a better solution in terms of the variability of the resulting

partition. Partitioning clustering methods can be divided into two main branches: hard (or

crisp) and fuzzy (or soft). In hard clustering methods, the groups are naturally disjoint, that is,

the dataset is partitioned into a predefined number of groups and overlapping is not allowed,

which means that each instance may belong exactly to one cluster.

In real world applications, group boundaries are often difficult to define, as it is complex to

find reasonable criteria that include some data objects in a cluster, but exclude others. Trying

to solve this problem, methods that allow more flexible criteria, such as fuzzy clustering algo-

rithms, were proposed in the literature. In fuzzy clustering, an instance may belong simulta-

neously to all clusters with a certain membership degree [7, 8]. Fuzzy clustering methods offer

good capability to handle noisy/missing data, which is a common problem in different areas,

including microarray data analysis [3, 4, 9–11].

The most important component of any clustering algorithm is the dissimilarity (or similar-

ity) measure. Distances are important examples of dissimilarity measures and the Euclidean

distance is the most commonly used in the clustering literature. The Fuzzy C-Means (FCM)

method [12] is one of the most popular clustering algorithms and it is based on the Euclidean

distance. Algorithms that are based on this distance achieve good results when applied to data-

sets in which groups are approximately hyperspherical and approximately linearly separable

[13]. In the opposite situation, i.e. clusters with non-hyperspherical shapes and/or linearly

non-separable patterns), these algorithms may have poor performance and find unrepresenta-

tive clusters.

The seminal work by Girolami [14] introduces the kernel K-means algorithm that general-

izes several clustering methods [15] that produce hypersurfaces with nonlinear separation

between groups, such as the Kernel Fuzzy C-Means [5, 16, 17], Kernel-based Self-Organizing

Maps (SOM) [18, 19], Kernel Neural Gas [20] and Kernel Subtractive Clustering [21, 22]. Sev-

eral studies have shown the superiority of the kernel-based clustering methods in a variety of

real-world problems [23–27].

The use of kernel functions allows an arbitrary nonlinear mapping ϕ from the original p-

dimensional space of the dataset X � Rp to a higher-dimensional (possibly infinite) space,

called a feature space F . The purpose of this transformation is that by moving to higher

dimensions it may be possible to obtain more defined and linearly separable groups [28]. The

advantage and, at the same time, the main idea of methods based on kernel functions is that

inner products in the feature space can be expressed as a Mercer kernel [14, 29]. Two main

approaches have guided the development of kernel-based algorithms: kernelization of the met-

ric, in which the cluster prototypes are obtained in the original space and the distances

between instances and cluster prototypes are computed by means of kernels; and clustering in

feature space, in which cluster prototypes are obtained in the feature space [17].
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Research studies have shown that clustering methods based on kernel functions perform

better than traditional methods, as they are able to produce nonlinear differentiable hypersur-

faces of separation between groups [5, 17]. However, in most domains, especially if we are

dealing with high-dimensional datasets, some variables may be irrelevant for the construction

of the groups, and some among the relevant may be less important than others in relation to a

specific group. Ferreira et al. [13] proposed a family of methods based on kernel functions

with automatic weighting of variables. These methods were derived based on kernelized adap-

tive distances that change at each algorithm iteration and can be different for each group or

common to all groups. In this context, the Kernel Fuzzy C-Means clustering under the kerneli-

zation of the metric approach with local adaptive distances was considered, assuming the con-

straint that the product of the weights of the variables on each cluster must be equal to one. In

this work, we labeled this algorithm as VKFCM-K-LP.

Ferreira, et al. [13] focused on developing methods that are able to better describe the struc-

tures of groups in data, however, they did not investigate the performances of the algorithms

in the context of missing data. In real world applications, many inferential procedures have to

deal with the problem of missing data. There are several reasons for this problem, including

imperfect manual data entry procedures, incorrect measurement and equipment measurement

errors, among others [30].

In many areas, such as Industry and Medicine, it is common to find datasets that have up to

50% or more of missing values [31, 32]. Extensive research has been done to study the problem

of missing data, and the reason for this is the fact that many statistics were originally developed

for datasets with no missing values, and even a small amount of them in the dataset can cause

serious problems in analysis and decision making. This is enough to motivate the need to

develop efficient mechanisms to deal with incomplete data [33].

The development of statistical methods to deal with incomplete data has been the subject of

research for decades [34–36]. Green et al. [37] assessed two alternatives for dealing with miss-

ing values: Imputation, in which the missing values are estimated through the values observed

in the dataset, of which the most popular techniques are Average Imputation or Median Impu-

tation; and Exclusion, where observations that contain missing values are excluded from the

dataset. Although simple, these alternatives can produce biased estimates through the reduc-

tion of the size of the dataset and by replacing these missing values with estimates [35]. A more

effective approach can be to adapt traditional data analysis to deal with incomplete data.

Several approaches have been introduced in an attempt to extend the clustering techniques

in the presence of missing values. One of the first attempts was an approach based on probabi-

listic assumptions to handle missing data in order to perform pattern recognition [38] intro-

duces an approach based on probabilistic assumptions to handle missing data. The

Expectation-Maximization (EM) algorithm was used to deal with incomplete data in clustering

[39]. Several methods have been proposed to adapt the FCM method to deal with missing data

[40]. Wagstaff [41] proposed the K-means method with Soft Constraints (KSC) and Poddar

et al. [42] examine clustering data with missing entries using non-convex fusion penalties.

Hathaway [43] proposed strategies to deal with missing values in cluster analysis using the

FCM method. Li et al. [44, 45] proposed the FCM clustering method based on nearest-neigh-

bor observations and extended the FCM method by adding a variable weighting process to

handle incomplete data, in which the weight of each attribute is seen as an additional variable

to be optimized simultaneously in clustering. Recently, Li et al. [46] introduced a kernel

method to cluster datasets with missing values in the scope of imputation of observations.

In this work, we adapted the VKFCM-K-LP clustering methods [13, 43] to deal with miss-

ing data. The first strategy, called Whole Data Strategy (WDS) performs clustering only on the

complete part of the dataset, which means that, in this first strategy, the instances that contain
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any missing value are excluded from the analysis. The WDS can be applied as long as the

amount of missing values does not exceed a percentage of 25% of all observed values. The sec-

ond approach uses the Partial Distance Strategy (PDS), in which partial distances are com-

puted among all available resources and then re-scaled by the reciprocal of the proportion of

observed values. The third technique, called Optimal Completion Strategy (OCS), computes

missing values iteratively as auxiliary variables in the optimization of a suitable objective

function.

In the evaluation of the VKFCM-K-LP method under the WDS, PDS and OCS approaches,

we considered artificially generated datasets with 5%, 10%, 15% and 20% of missing values.

The results of the analyzes were quantified according to the following quality measures: the

Corrected Rand index (CR), F-measure (FM), the Overall Error Rate of Classification (OERC)

and the measure of consistency of variables for the OCS [47–50]. In addition, the results of the

clustering under OCS were compared with the results of the clustering using the imputation

methods via the mean and the median values.

The rest of the paper is structured as follows. In Section 2 the basic theory about kernels is

briefly presented. Section 3 describes the conventional kernel fuzzy C-means (KFCM) algo-

rithm under the kernelization of the metric approach. Section 4 presents the kernel-based

fuzzy clustering with variable weighting via local adaptive distances under the kernelization of

the metric approach (VKFCM-K-LP). Section 5 introduces the main approach to analyze miss-

ing data. New VKFCM-K-LP algorithms under the WDS, PDS and OCS schemes are proposed

in Section 6. Section 7 proposes the experimental design. Section 8 contains the results of sev-

eral numerical evaluations. Finally, Section 9 offers some concluding remarks.

2 Theoretical background

This section describes the basic theory about kernels. The main idea behind kernel-based

methods is the use of an arbitrary nonlinear mapping ϕ from the original space of the input

data to a space of higher dimension (possibly infinite), called feature space F .

Let X = {x1, x2, . . ., xn} be a non-empty set with xi 2 R
p
; 8i. A function K : X � X ! R is a

Mercer Kernel, if and only if, K is symmetric, i.e. Kðxk; xiÞ ¼ Kðxi; xkÞ and the following

inequality is valid [29]:

Xn

i¼1

Xn

k¼1

cickKðxi; xkÞ � 0; 8n � 2; ð1Þ

where, cr 2 R; 8r ¼ 1; . . . ; n. Each Mercer Kernel can be expressed as:

Kðxi; xkÞ ¼ �ðxiÞ
>
�ðxkÞ; ð2Þ

in which, � : X ! F performs a nonlinear mapping from the original space of X to the space

of high-dimensional features F .

One of the most relevant aspects in the application of Kernel-based methods is the possibil-

ity to calculate Euclidean distances in F without having to explicitly specify the non-linear

mapping ϕ [51, 52].

This can be done using the so called distance Kernel trick [52, 53]:

k �ðxiÞ � �ðxkÞk
2 ¼ ð�ðxiÞ � �ðxkÞÞ

>
ð�ðxiÞ � �ðxkÞÞ

¼ �ðxiÞ
>
�ðxiÞ � 2�ðxiÞ

>
�ðxkÞ þ �ðxkÞ

>
�ðxkÞ

¼ Kðxi; xiÞ � 2Kðxi; xkÞ þKðxk; xkÞ;

ð3Þ
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where, the calculation of the distances in the feature space is a function of the input vectors.

Kernel functions [54] typically used are:

• Linear: Kðxi; xkÞ ¼ x>i xk,

• Polynomial of degree d: Kðxi; xkÞ ¼ ðgx>i xk þ yÞ
d
, γ> 0, θ> 0, d 2 N,

• Gaussian: Kðxi; xkÞ ¼ e�
kxi � xkk

2

2s2 , σ> 0,

• Laplacian: Kðxi; xkÞ ¼ e� gkxi � xkk, γ> 0,

where, γ, θ, σ and d are Kernel parameters. In the literature, Kernel-based clustering methods

can be divided into two main categories, kernelization of the metric [16, 55] and clustering in

feature space [56]. However, in this work, we consider only the kernelization of the metric

approach. Under this approach, clustering methods seek for prototypes in the original space of

the input data and the distances between a data point xi and the prototype of the k-th group vk

are obtained by means of kernel functions:

k �ðxiÞ � �ðvkÞk
2 ¼ Kðxi; xiÞ � 2Kðxi; vkÞ þKðvk; vkÞ: ð4Þ

3 Kernel fuzzy C-means (KFCM)

Let O = {1, . . ., n} be a set of n observations indexed by i and described by p variables. Let P =

{P1, P2, . . ., Pk} be a partition of O in K groups. The purpose of the Kernel fuzzy C-Means clus-

tering method under kernelization of the metric is to minimize the following objective func-

tion

J ¼
XK

k¼1

Xn

i¼1

ðukiÞ
m
k φ xið Þ � φ vkð Þk

2; subject to;
uki 2 ½0; 1�; 8k; i;
XK

k¼1
uki ¼ 1; 8i;

(

ð5Þ

where vk 2 R
p

is the prototype of the k-th cluster, k = 1, . . ., K, uki is the fuzzy membership

degree of the observation i to the k-th cluster, k = 1, . . ., K, i = 1, . . ., n and m 2 Rþ is a param-

eter that controls the fuzziness of the membership for each observation i. Here, U ¼ ½uki� 2

RK�n is the fuzzy partition matrix. Deriving prototypes for the clusters depends on the choice

of the kernel function. When considering the Gaussian Kernel, the most popular in literature,

we have that Kðxi; xiÞ ¼ 1, for all i = 1, . . ., n. Thus, the objective function described in Eq (5)

can be expressed as in Graves et al. [57] by Eq (6):

J ¼ 2
XK

k¼1

Xn

i¼1

ðukiÞ
m
ð1 � Kðxi; vkÞÞ; ð6Þ

therefore the equation of the cluster prototypes is defined for k = 1, . . ., K as

vðtþ1Þ

k ¼

Xn

i¼1

ðuðtþ1Þ

ki Þ
mKðxi; v

ðtÞ
k Þxi

Xn

i¼1

ðuðtþ1Þ

ki Þ
mKðxi; v

ðtÞ
k Þ

: ð7Þ

When updating the fuzzy partition matrix U, the prototypes vk are kept fixed and we need to

find the fuzzy membership degrees uki (k = 1, . . ., K, i = 1, . . ., n). Using the Lagrange multipli-

ers for the optimization process of the objective function J, subject to the restrictions in Eq (5),
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we have the following solution [57]:

uðtþ1Þ

ki ¼
XK

h¼1

1 � Kðxi; v
ðtþ1Þ

k Þ

1 � Kðxi; v
ðtþ1Þ

h Þ

 ! 1
m� 1

2

4

3

5

� 1

: ð8Þ

4 Kernel-based fuzzy clustering with automatic variable weighting

via local adaptive distance

Kernel-based clustering methods commonly found in the literature, such as the kernel Fuzzy
C-Means [58], do not take into account the weights or the relevance of each variable in the

clustering process. However, for the majority of the datasets, and especially if we are dealing

with high-dimensional data, some variables may be irrelevant, and, among the relevant vari-

ables, some may present greater or lesser importance than others. Moreover, different groups

can have different sets of relevant variables. Motivated by this problem, Ferreira et al. [13] pro-

posed a family of kernel-based fuzzy clustering methods with automatic weighting of variables,

which are clustering algorithms in which dissimilarity measures are obtained as sums of

Euclidean distances between patterns and cluster prototypes computed separately for each var-

iable. The main idea supporting these methods is that the sum of kernel functions applied on

each variable is also a kernel function. This reasoning enables the introduction of weights rep-

resenting the relevance of each variable.

The clustering method VKFCM-K-LP takes into account the weights or the relevance

of each variable for the construction of the clusters [13]. This clustering method is based on

a kernelized local adaptive distance with the constraint that the product of the weights of

the variables on each cluster must be equal to 1. The algorithm considers a separate weight

vector for each cluster in order to parameterize its local distances. Then, the closer the

observations are to the prototype of a given cluster with respect to a given variable, the greater

its importance to this cluster. The restrictions on the weight vector in the VKFCM-K-LP

method are based on hard clustering via adaptive distances and on fuzzy quadratic distances

[59, 60].

Result 1 (Scholkopf and Smola [53]) If K1 : X1 � X1 ! R and K2 : X2 � X2 ! R are ker-
nel functions, then the sum, Kðx1; x01Þ þKðx2; x02Þ is a kernel function defined in (X1 × X2) × (X1

× X2), where x1; x01 2 X1, x2; x02 2 X2 and X1;X2 � R
p.

Under this result, if an instance is represented by a vector with p variables, we can partition

it into up to p parts, and consider up to p different kernel functions, one for each part. For-

mally, we have that Kðxi; xkÞ ¼
Pp

j¼1
Kjðxij; xkjÞ, where Kj : Xj � Xj ! R are Kernel functions

and Xj is the the space of the j-th variable with j = 1, . . ., p. Therefore, a distance based on ker-

nelizing the metric between an instance xi and the k-th prototype vk with respect to the j-th

variable [51, 52] is defined by

k�jðxijÞ � �jðvkjÞk
2
¼ Kjðxij; xijÞ � 2Kjðxij; vkjÞ þKjðvkj; vkjÞ; ð9Þ

in which ϕj j = 1, . . ., p is a non-linear mapping of xi 2 X, X � Rp
into the feature space F j

concerning the j-th variable. In Eq (9) it is possible to introduce weights representing the rele-

vance of each variable. Let φ2(xi, vk) be a distance measure based on kernelization of the metric

between an observation xi and the prototype vk of the k-th cluster. Thus, the local adaptive dis-

tance φ2(xi, vk) with the restriction that the product of the weights of the variables in each
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cluster [61] is equal to 1, is given by

φ2
λk
ðxi; vkÞ ¼

Xp

j¼1

lkjk�jðxijÞ � �jðvkjÞk
2
; subject to

(
lkj > 0; 8i; j;
Qp

j¼1
lkj ¼ 1; 8k;

ð10Þ

where λk = (λk1, . . ., λkp) is the vector of weights for the k-th cluster. Given Eqs (9) and (10) we

can define an objective function J that measures the fit between the clusters and their proto-

types, given by

J ¼
XK

k¼1

Xn

i¼1

ðukiÞ
mφ2ðxi; vkÞ ¼

XK

k¼1

Xn

i¼1

ðukiÞ
m
Xp

j¼1

lkjk�jðxijÞ � �jðvkjÞk
2
; ð11Þ

subject to the constraints given in Eq (5), where uki is the fuzzy membership degree for obser-

vation i in the k-th cluster k = 1, . . ., K, i = 1, . . ., n and vk 2 R
p

is the prototype of the k-th

cluster.

When considering the Gaussian Kernel the objective function described in the Eq (11) is

rewritten as

J ¼ 2
XK

k¼1

Xn

i¼1

ðukiÞ
m
Xp

j¼1

lkjð1 � Kðxij; vkjÞÞ: ð12Þ

While deriving cluster prototypes, the fuzzy membership degrees and the weights of the vari-

ables are kept fixed. Therefore, the prototype of the k-th cluster vk = (vk1, . . ., vkp) (k = 1, . . ., K)

that minimize criterion J in Eq (12) has its components vkj (j = 1, . . ., p) defined by

vðtþ1Þ

kj ¼

Xn

i¼1

ðuðtþ1Þ

ki Þ
mKjðxij; v

ðtÞ
kj Þxij

Xn

i¼1

ðuðtþ1Þ

ki Þ
mKjðxij; v

ðtÞ
kj Þ

: ð13Þ

in which, t = 1, . . ., T where T is the maximum number of iterations. The next step is to deter-

mine the weights of the variables. To do so, the fuzzy membership degrees uki and the cluster

prototypes vk are kept fixed. The weight vector λk = (λk1, . . ., λkp) that minimizes criterion J,
under restrictions λkj> 0 8kj and

Qp
j¼1
lkj ¼ 1, 8k, has its components λkj (j = 1, . . ., p, k = 1,

. . ., K) given by

l
ðtþ1Þ

kj ¼

Yp

l¼1

f
Xn

i¼1

ðuðtþ1Þ

ki Þ
m
k�ðxilÞ � �ðv

ðtþ1Þ

kl Þk
2
g

1
p

Xn

i¼1

ðuðtþ1Þ

ki Þ
m
k�ðxijÞ � �ðv

ðtþ1Þ

kj Þk
2

: ð14Þ

While updating the fuzzy membership degrees, the prototypes of the clusters vk and the

weights of the variables are kept fixed. Therefore, the fuzzy membership degrees that minimize

criterion J, given in Eq (5), are updated according to the following expression

uðtþ1Þ

ki ¼
XK

h¼1

φ2ðxi; v
ðtþ1Þ

k Þ

φ2ðxi; v
ðtþ1Þ

h Þ

 ! 1
m� 1

2

4

3

5

� 1

; ð15Þ

where φ2(xi, vk) is defined in Eq (10). Algorithm 1 shows the steps of the VKFCM-K-LP

method. The convergence properties of the method were demonstrated in the work of [13].
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Algorithm 1: VKFCM-K-LP clustering method
1: Initialization
Fix K (number of clusters), 2 � K < n; fix m, 1 < m < 1; fix T (num-

ber of iterations);
and fix �, 0 < � < 1. Randomly initialize the fuzzy membership degrees

uki with the restrictions given in Eq (5);
Uniformly initialize all weights as 1/p.
Do t = 1.

2: Update prototype vector vk according to Eq (13).
3: Update weight vector λk according to Eq (14).
4: Update fuzzy membership degree uki
given in Eq (15).

5: IF |Jt+1 − Jt| � � or t > T
STOP
ELSE do t = t + 1 and go to step 2.

5 Incomplete data analysis

Data quality is one of the most important factors that can affect the results of statistical analy-

sis. Problems during data collection or pre-processing can generate uncertain values, incorrect

or even absent values. Data analysis with missing data is a problem often discussed in many

areas of science, because these analyses were originally designed for datasets without missing

values. Although the causes of missing data are diverse in the literature, there are few missing

data patterns resulting from the missing values in the datasets. The missing data pattern

describes which values are observed and which values are absent from the dataset [35].

Generally, the most common missing data patterns are the multivariate, monotone, general

and file-matching patterns [35]. In the multivariate pattern (Fig 1a), missing values occur in a

group of attributes that are completely observed or missing. The monotone pattern (Fig 1b)

usually occurs as a result of longitudinal studies and has a ladder-like arrangement of values

when organized in a data matrix. The file-matching pattern (Fig 1d) occurs when the data are

obtained from several different sources and, consequently, the combined dataset will have fully

observed attributes and features that are not jointly observed.

In the general pattern (Fig 1c) the missing values are characterized by an arbitrary form in

the dataset and can be observed in practice for example, in the omission of responses in a ques-

tionnaire or loss of data in pre-processing.

Although missing data patterns describe what values are missing from the dataset, missing

data generation mechanisms provide information about the occurrence of these values. Miss-

ing data generation mechanisms refer to the relationship between the missing value and the

attribute values of the variables in the dataset. Therefore, whereas a missing data pattern

Fig 1. Types of missing data patterns. (a) Multivariate. (b) Monotone. (C) General. (d) File-matching.

https://doi.org/10.1371/journal.pone.0259266.g001

PLOS ONE Adaptive kernel fuzzy clustering for missing data

PLOS ONE | https://doi.org/10.1371/journal.pone.0259266 November 12, 2021 8 / 33

https://doi.org/10.1371/journal.pone.0259266.g001
https://doi.org/10.1371/journal.pone.0259266


indicates what values in the dataset can be used for statistical analysis, mechanisms provide an

indication of how the available values should be treated during data analysis to obtain the best

results.

The first works that deal with missing data generation mechanisms were proposed by

Rubin [34] and are still used today. These mechanisms are known as: Missing Completely at

Random (MCAR), Missing at Random (MAR) and Not Missing at Random (NMAR) and

describe the relationship between the analyzed variables and the percentage of missing values

in the data matrix [62, 63]. In this work, we focus on strategies for dealing with missing data of

the MCAR type [35]. Let X = {x1, . . ., xn} be a data matrix and define the p-dimensional vector

xi = {xi1, xi2, . . ., xip}, for 1� i� n and 1� j� p, where xij is the j-th variable of the i-th obser-

vation. We can rewrite X as X = Xobs [ XM, where Xobs = {xij}, if this value is observed in X, and

XM = {xij = NA} if this value is missing in X. In this context, we define a missing indicator

matrix M = [mij] that shows if the observation value xij is missing (mij = 1) or if xij is observed

(mij = 0). The missing data generation mechanism is defined as the conditional probability of

M given X, P(M|X, θ), where θ denotes the unknown parameters of a given probability distri-

bution. Missing values are defined as MCAR if a missing value does not depend on the dataset.

Formally, this mechanism is defined as:

PðMjX; yÞ ¼ PðMjyÞ; for all xij 2 X; y: ð16Þ

From a practical perspective, missing data mechanisms operate as assumptions that dictate

which techniques should be used to deal with these values [62].

5.1 Handling missing values

Traditionally, researchers use a wide variety of techniques to handle missing values. However,

the best method would be to avoid having these values in the dataset, through better experi-

ment mapping or repeated data collection. Nonetheless, investigating why these values are

absent and taking corrective measures can become impracticable or impossible. Therefore, it

is usually more feasible to adopt techniques that deal with missing values in the data matrix.

There are three common approaches in the literature to manipulate missing values [35]:

• Elimination: This technique is best used when the percentage of missing values in the data-

set is relatively small. The approach is to ignore missing data items or the attributes that con-

tain those values. Therefore, data analysis is performed on the set of available data, called

Complete-Case Analysis (CCA). The main advantage of exclusion is that it produces a com-

plete dataset, which in turn allows the use of standard data analysis techniques [62]. The dis-

advantage of this technique is that the sample size can be drastically reduced, especially for

datasets that include a large proportion of missing data.

• Imputation: This approach, which is called Imputation of Missing Values (IMV), consists of

replacing the missing values with estimated values that are generally derived from the avail-

able data. IMV techniques range from simple methods, such as replacing missing values

with the Mean or the Median value, to more sophisticated ones that use Regression, Maxi-

mum Likelihood and other statistical methods [63]. The disadvantage of this approach is

that the quality of the results of the data analysis can be affected by the imputation, since

imputed values are treated as observed values. As an advantage, standard analysis techniques

can be used since the missing values have been filled.

• Adaptation of data analysis methods to incomplete data: An effective approach is to adapt

data analysis methods so that they can handle datasets that have missing values. These meth-

ods include estimating missing values during data analysis and distinguishing between
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observed and imputed values. The main advantage of the adaptation approach is that all

observed data can be used for data analysis, avoiding the disadvantages of imputing the miss-

ing values.

6 Adapting the VKFCM-K-LP algorithm to handle missing data

The VKFCM-K-LP clustering method [13] cannot be applied directly to datasets with missing

values. As with most clustering methods, VKFCM-K-LP requires all values in the data matrix

to be present, in order to calculate prototypes and distance measurements. Several methods

have been proposed in the literature to deal with incomplete data, such as Hathaway et al. [43],

who proposed three strategies to group incomplete data using the Fuzzy C-Means algorithm

(FCM). In this Section, we use these three approaches to adapt the VKFCM-K-LP clustering

algorithm to deal with incomplete data.

6.1 Whole Data Strategy (WDS)

This strategy consists of omitting the incomplete data items and applying the VKFCM-K-LP

algorithm to the resulting complete data matrix [43]. This method is an example of CCA, since

the missing values are not included in the calculation of the cluster prototypes, and can be

applied when the percentage of missing data is relatively small. It is generally suggested that

WDS can be considered when the percentage of missing values is less than 25% of all values in

the dataset [43]. However, incomplete observations are not completely excluded from the anal-

ysis. At the end of the clustering process using the complete dataset, incomplete data are parti-

tioned using the nearest-prototype scheme based on Partial Distances (PD) computed from

each incomplete instance to each cluster prototype. The PD function calculates the sum of the

squared (kernelized) Euclidean distances between all available observations (i.e. non-missing)

and then weights them by the proportion of values used in their calculation. Algorithm 2

describes the steps for WDS.

Algorithm 2: VKFCM-K-LP clustering method with the WDS strategy.
1: Initialization
Fix K (number of clusters), 2 � K < n; fix m, 1 < m < 1;
fix T (number of iterations); and fix �, 0 < � < 1.
Randomly initialize the fuzzy membership degrees uki;
Uniformly initialize all weights as 1/p.
Do t = 1.

2: Update prototype vector vk according to Eq (13).
3: Update weight vector λk according to Eq (14).
4: Update fuzzy membership degree uki using Eq (15).
5: IF |Jt+1 − Jt| � � OR t > T
Partition XM according to Eq 17
STOP
ELSE do t = t + 1 and go to step 2.

6.2 Partial Distance Strategy (PDS)

Dixon [64] recommends the partial distance strategy in cases when XM is sufficiently large and

WDS cannot is not recommended. PDS consists of estimating the distance between two obser-

vations using the Partial Distance function. In VKFCM-K-LP, which uses a local adaptive
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kernel distance, its partial version is given by

φ2
dpðxi; vkÞ ¼

p
Ii

Xp

j¼1

lkjk�ðxijÞ � �ðvkjÞk
2Iij; ð17Þ

where Ii ¼
Pp

j¼1
Iij for 1� i� n and 1� j� p. The indicator function Iij is defined by

Iij ¼

(
1; if xij 2 Xobs;

0; if xij 2 XM:
ð18Þ

where Xobs and XM are defined in Section 5. Therefore the objective function for this strategy is

given by

JpdðV;U;ΛÞ ¼
XK

k¼1

Xn

i¼1

ðukiÞ
mφ2

pdðxi; vkÞ; ð19Þ

where V ¼ fv1; . . . ; vKg 2 R
K�p

, Λ ¼ fλ1; . . . ; λKg 2 R
K�p
þ

and φ2
dpðxi; vkÞ, which is defined in

Eq (17), is called Local Adaptive Partial Kernel with the constraint given in Eq (10).

In the first iteration of the VKFCM-K-LP algorithm, prototypes and weights are updated

using only the values in Xobs. Prototypes are given by

vðtþ1Þ

kj ¼

Xn

k¼1

ðuðtþ1Þ

ik Þ
mKðxij; v

ðtÞ
kj ÞxijIij

Xn

i¼1

ðuðtþ1Þ

ki Þ
mKðxij; v

ðtÞ
kj ÞIij

; ð20Þ

where Kð:Þ is the Gaussian Kernel. The weights of the variables are obtained by minimizing

the objective function given in Eq (19), which gives Eq (21).

l
ðtþ1Þ

kj ¼

Yp

l¼1

f
Xn

i¼1

ðuðtþ1Þ

ki Þ
m
k�ðxilÞ � �ðv

ðtþ1Þ

kl Þk
2Iilg

1
p

Xn

i¼1

ðuðtþ1Þ

ki Þ
m
k�ðxijÞ � �ðv

ðtþ1Þ

kj Þk
2Iij

; ð21Þ

for 1� k� K and 1� l� p. The scale factor p/Ii in Eq (17) has no effect on the calculation of

prototypes [43] in Eq (20) and consequently it does not affect the weight calculation in Eq

(21). This scale factor also has no effect on uki, which is calculated using Eq (22), because it

appears both at the top and at the bottom of the equation and can be omitted from the partial

distance given in Eq (17).

uðtþ1Þ

ki ¼
XK

h¼1

φ2
dpðxi; v

ðtþ1Þ

k Þ

φ2
dpðxi; v

ðtþ1Þ

h Þ

 ! 1
m� 1

2

4

3

5

� 1

ð22Þ

The steps of the PDS version VKFCM-K-LP are listed in Algorithm 3.

Algorithm 3: VKFCM-K-LP clustering method with the PDS strategy.
1: Initialization
Fix K (number of clusters), 2 � K < n;
Fix m, 1 < m < 1; fix T (number of iterations); and fix �, 0 < � < 1.
Randomly initialize the fuzzy membership degrees uki;
Uniformly initialize all weights with 1/p.
Do t = 1.
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2: Update prototype vector vk, according to Eq (20).
3: Update weight vector λk according to Eq (21).
4: Update fuzzy membership degree uki using Eq (22).
5: IF |Jt+1 − Jt| � � OR t > T
STOP
ELSE do t = t + 1 and got to the step 2.

6.3 Optimal Completion Strategy (OCS)

The main idea of this strategy is to iteratively calculate the missing values in XM as auxiliary

variables in the optimization of the objective function JM [43] defined in Eq (23).

JMðV;U;Λ;XMÞ ¼
XK

k¼1

Xn

i¼1

ðukiÞ
mφ2

λk
ðxi; vkÞ; ð23Þ

in which

φ2ðxi; vkÞ ¼
Xp

j¼1

lkjk φðxijÞ � φðvkjÞ k2

¼ 2
Xp

j¼1

lkjð1 � Kðxij; vkjÞÞ:

ð24Þ

Prototype vkj and weight λkj are defined according to Eqs (13) and (14). Thus, the missing val-

ues are updated by minimizing Eq (25).

Xðtþ1Þ

M ¼ arg min
XM

fJMðU
ðtþ1Þ;Vðtþ1Þ;Λðtþ1Þ

;XðtÞM Þg: ð25Þ

Thus, the missing value xij 2 XM is given by Eq (26) as described in [43].

xðtþ1Þ

ij ¼

XK

k¼1

ðuðtþ1Þ

ki Þ
mvðtþ1Þ

kj

XK

k¼1

ðuðtþ1Þ

ki Þ
m

; ð26Þ

where membership degree uki is defined as in Eq (15) and 1� i� n and 1� j� p. In this strat-

egy, missing values are imputed by the weighted averages of all prototypes at each iteration.

Moreover the missing values XM are initialized using random values. The expression in Eq

(26) is obtained through the partial derivatives of the objective function given in Eq (23), by

fixing prototypes, weights and memberships. Algorithm 4 describes the steps of the

VKFCM-K-LP method under the OCS approach. The advantage of this approach is that the

missing values are allocated during the clustering process.

Algorithm 4: VKFCM-K-LP clustering method with the OCS strategy.
1: Initialization
Fix K (number of clusters), 2 � K < n; fix m, 1 < m < 1;
fix T (number of iterations); fix �, 0 < � < 1.
Randomly initialize XM;
Randomly initialize the fuzzy membership degrees uki with the

restrictions given in (5);
Uniformly initialize all weights as 1/p;
Do t = 1.

2: Update prototype vector vk according to Eq (13).
3: Update weight vector λk according to Eq (14).
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4: Update fuzzy membership degree uki according to Eq (15).
5: Update xij 2 XM according to Eq (26)
6: IF |Jt+1 − Jt| � � OR t > T
STOP
ELSE do t = t + 1 and go to step 2.

7 Experimental design

The performance of the VKFCM-K-LP method proposed by [13] has not been evaluated in the

context of incomplete data. Thus, this work adapted VKFCM-K-LP using the three strategies

defined by [43] to handle missing data. To evaluate the methods, we implemented a missing

value generator, in order to create reproducible datasets with absent values on which the meth-

ods presented in this work can be evaluated. The implementation of the missing data genera-

tion mechanism and the graphical representations were performed with the aid packages

offered by R [65]. The main R packages used were ggplot2, VIM and naniar. The clus-

tering methods were implemented using C. Experiments ran on an Intel Core (TM)
I3-3217U CPU, clocking at 1.80GHz, with 4GB of RAM, using the Linux operating sys-

tem. The code and data for reproducing the results here reported are available in the following

repository: https://github.com/AnnyKerol/clustering_for_missing_data.

Three external indices were used to compare clustering results: Corrected Rand index (CR)

[47], F-measure [48] and Overall Error Rate of Classification (OERC) [49]. The CR index

takes its values from the interval [−1, 1], in which 1 indicates perfect agreement between parti-

tions, whereas values near 0 (or negatives) correspond to cluster agreement found by chance

[47]. F-measure takes its values from the [0, 1] interval, in which 1 indicates perfect agreement

between partitions. OERC aims to measure the ability of a clustering algorithm to find original

classes present in a dataset and takes its values from the [0, 1] interval, in which lower OERC

values indicate better clustering results.

At the end of the clustering process of the VKFCM-K-LP method under the OCS approach,

we obtained a complete dataset, which resulted in the best values of CR, OERC and F-measure.

To verify if the values imputed by OCS resemble each variable’s distribution; we calculated a

consistency measure [50] defined by

dkðjÞ ¼
jmp0ðjÞ � mp1ðjÞj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2
p0
ðjÞ þ s2

p1
ðjÞ

q ; ð27Þ

where k denotes the k-th cluster, 1� j� p and p represents the variables to be analyzed and

μp0 and s2
p0

are the mean and variance of the dataset with missing values, respectively. Addi-

tionally, μp1 and s2
p1

refer to the mean and variance of the dataset with imputed values. The bet-

ter the clustering under the OCS approach, the closer the values given by Eq (27) are to zero,

which indicates that the imputed values were consistent in relation to the original scales of the

variables in the dataset with missing values.

7.1 Missing data generation

The missing value generator used in this study removes values from the complete dataset with

a given probability, according to the MCAR mechanism. In the generation of missing values of

the MCAR type [35], we assume independence in the joint distribution of (xi, M), therefore,

the probability that an xij value is observed is independent of the values in X or M. Consider a

Bernoulli distribution with parameter θ, 0� θ� 1, for the indicator variable Mi, with probabil-

ity P(Mi = 1|xi, θ), given that xi is a missing value. If the missing values are independent from
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X, P(Mi = 1|xi, θ) = θ. Since the constant is independent of the values in X, this results in the

generation of the MCAR type mechanism.

In computational terms, a complete dataset X is selected, and subsequently modified to

obtain an incomplete dataset, by randomly selecting a specified percentage of its components

{xij} that are assigned as missing values. The {xij} values are taken as missing when element mij

from the sample generated for the indicator variable M is equal to one, i.e., mij = 1. Therefore

the value of {xij} is excluded from the complete dataset and designated as a missing value.

8 Results

This section presents an experimental evaluation of the kernel-based fuzzy clustering method

with automatic weighting of the variables using local adaptive distances VKFCM-K-LP under

the WDS, PDS and OCS approaches. In our experiments, datasets with 5%, 10%, 15% and 20%

of missing values were artificially generated using the methodology described in Section 7.1,

which means that random variable M was sampled from Bernoulli distributions with parame-

ter θ taken from {0.05, 0.10, 0.15, 0.20}. The clustering algorithms were executed 100 times for

each dataset, following a Monte Carlo simulation scheme with random initialization. On each

Monte Carlo iteration, the adjustment between clusters and prototypes is observed until con-

vergence, with a tolerance threshold of � = 10−10 or until a maximum number of iterations is

reached, i.e. until t> T with T = 300. At the end of the 100 Monte Carlo replications, we select

the best solution according to objective function J.
In order to compare the models, we calculated CR, FM and OERC on their best solutions.

The averages and standard deviations of these measures are also calculated across the 100 repe-

titions of each algorithm. The number of groups K was defined as equal to the known number

of classes of each dataset. Parameter m was set as 2.0, following a previous study [13]. The

terms 2s2
j , {j = 1, . . ., p}, of the Gaussian Kernel functions, were estimated as the average

between the 0.1 and 0.9 quantiles of kxij − xkjk2 for i 6¼ k; i, k = 1, . . ., n [13, 61].

Additionally, we calculated the consistencies of the variables in the complete datasets when

evaluating the VKFCM-K-LP method under the OCS approach and we compared the cluster-

ing with the OCS method and the clustering using the imputation of missing values using

Mean and Median values. To show the effectiveness of the VKFCM-K-LP clustering methods

under the WDS, PDS and OCS approaches, we used two datasets: the Iris Plant dataset [66]

and the Thyroid Gland dataset [67], both obtained from the Machine Learning Repository at

the University of California, Irvine, United States (UCI Machine Learning Repository) [68].

The choice of these datasets is due to the fact that the groups have different structures, in par-

ticular the Thyroid Gland dataset presents greater group overlap than the Iris Plant dataset.

The performances of the methods in these datasets are described in the following Sections.

8.1 Iris Plant dataset

The Iris Plant dataset [66] is well known and widely used in the area of pattern recognition.

This set has three a priori classes (K = 3), each with 50 observations, for a total of 150 instances.

The classes correspond to three species of Iris flowering plants: Iris setosa (Class 1), Iris virgi-

nica (Class 2) and Iris versicolor (Class 3). For each species, four variables were observed

(p = 4), corresponding to flower measurements: Sepal Length (SL), Sepal Width (SW), Petal

Length (PL) and Petal Width (PW).

Fig 2a and 2b show the dispersion of the values of the variables for this dataset and the box-

plots for each species. It is possible to observe an apparently linear relationship between vari-

ables PL and SL and between variables PW and SW for the versicolor and virginica classes. We

also note that, considering the versicolor and virginica species, these variables are directly
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proportional, that is and increase in the value of SL implies an increase in the value of PL and

the same is observed for SW and PW. In addition, the three species differ in relation to the var-

iables, especially the setosa species, which is linearly separable from the other two.

The boxplots in Fig 2a show higher variability in the data of the virginica species for the SL

and PL variables. Fig 2b, on the other hand, shows less variability when considering the SW

variable.

Fig 3a and 3b present the missing values patterns that were artificially generated for the Iris
Plant dataset, distributed across its four variables. In each plot, the x axis represents the vari-

ables and the y axis represents the observations, with the black regions indicating missing val-

ues. The Figures also show the number of missing values by variable for each missing

percentage, with variable PL having the highest number of missing values for all analyzed per-

centages. In datasets with 5%, 10% and 20% of missing values, the SW variable has the lowest

missing amount. Observations belonging to Class 1 are in the 1|–50 range, while observations

belonging to Class 2 are in the 51|–100 range, and, finally, the 101|–150 range represents obser-

vations belonging to Class 3.

Table 1 shows CR, FM and OERC corresponding to the best solutions obtained in the 100

Monte Carlo replications of the VKFCM-K-LP clustering algorithm with the WDS, PDS and

OCS strategies. For all the missing value percentages studied, the CR and FM indices are close

to 1, which indicates a good agreement between the a priori classes and the groups provided by

the clustering methods. For 5% of missing values, the best performance was observed for the

PDS method. However, when analyzing the data with 10%, 15% and 20% of missing values,

the PDS method presented the worst performance. In general, increasing the percentage of

missing values in the datasets affects the performance of the algorithms, as expected. This

behavior is also verified for the PDS approach when increasing the percentage from 5% to 10%

and for the WDS and OCS approaches when the percentage goes from 15% to 20%.

Aiming to investigate the predictive power of the VKFCM-K-LP algorithm under the three

approaches for handling missing data, Table 2 shows the confusion matrices obtained for each

method, and for each percentage of missing values considered.

Fig 2. Scatter plots and boxplots for the Iris Plant dataset. (a) Length. (b) Width.

https://doi.org/10.1371/journal.pone.0259266.g002
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In the columns we have the original classes, and in the lines we have the clusters provided

by the clustering methods, which were identified as Cluster 1 (setosa), Cluster 2 (virginica) and

Cluster 3 (versicolor).

The confusion matrices in Table 2 show that for all clustering methods and for all percent-

ages of missing values considered, observations belonging to the setosa species in the dataset

Iris Plant were properly grouped into Cluster 1. This is expected, as this species is separable

Fig 3. Visualizations of the patterns and frequencies of the missing values by variable for the Iris Plant dataset. (a) 5%

missing. (b) 10% missing. (c) 15% missing. (d) 20% missing.

https://doi.org/10.1371/journal.pone.0259266.g003
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from the other two species, as shown in Fig 2a and 2b. It can be also noted that Clusters 2 and

3 showed higher numbers of incorrectly clustered observations, which is expected because

these groups are not linearly separable as observed for Cluster 1.

Tables 3–5 provide the weights of the variables in each cluster. In general, it is observed that

in the three approaches and for all the percentages of missing values, variables PL and PW

were the most relevant for the construction of the clusters. Variable PL obtained the greatest

relevance in all groups, even with the largest number of missing values, as shown in Fig 3a–3d.

However, there is a decrease in the weights of the PL variable with the increase in the

Table 1. Performance of the VKFCM-K-LP clustering algorithm with the WDS, PDS and OCS strategies for the dataset Iris Plant.

% NA CR FM OERC

WDS PDS OCS WDS PDS OCS WDS PDS OCS

5 0.7429 0.8018 0.7861 0.8991 0.9261 0.9198 0.1000 0.0733 0.0800

10 0.8016 0.7561 0.8015 0.9266 0.9065 0.9266 0.0733 0.0933 0.0733

15 0.8176 0.7561 0.8175 0.9333 0.9065 0.9333 0.0666 0.0933 0.0666

20 0.8018 0.7561 0.7859 0.9261 0.9065 0.9199 0.0733 0.0933 0.0800

https://doi.org/10.1371/journal.pone.0259266.t001

Table 2. Confusion matrices obtained by the VKFCM-K-LP algorithm with the WDS, EDP and OCS strategies using 5%, 10%, 15% and 20% of missing values.

Methods Clusters 5% 10% 15% 20%

1 2 3 1 2 3 1 2 3 1 2 3

WDS 1 50 0 0 50 0 0 50 0 0 50 0 0

2 0 47 12 0 46 7 0 44 4 0 42 3

3 0 3 38 0 4 43 0 6 46 0 8 47

PDS 1 50 0 0 50 0 0 50 0 0 50 0 0

2 0 47 8 0 45 9 0 45 9 0 45 9

3 0 3 42 0 5 41 0 5 41 0 5 41

OCS 1 50 0 0 50 0 0 50 0 0 50 0 0

2 0 46 8 0 45 6 0 45 5 0 45 7

3 0 4 42 0 5 44 0 5 45 0 5 43

https://doi.org/10.1371/journal.pone.0259266.t002

Table 3. Weights of the variables in each group adjusted by the VKFCM-K-LP algorithm with the WDS strategy under different percentages of missing values.

% NA Cluster Weights

SL SW PL PW

5 1 0.5037 0.1256 4.9758 3.1759

2 0.6373 0.4769 2.2666 1.4512

3 0.5558 0.5889 2.3945 1.2758

10 1 0.4921 0.1092 5.3030 3.5064

2 0.5829 0.4588 2.3282 1.6057

3 0.6278 0.6350 2.2436 1.1177

15 1 0.5193 0.1112 4.9059 3.5269

2 0.6167 0.4545 2.0929 1.7041

3 0.5142 0.6845 2.0667 1.3744

20 1 0.4840 0.0961 4.7588 4.5156

2 0.5645 0.4023 2.3154 1.9013

3 0.5618 0.6328 2.4836 1.1322

https://doi.org/10.1371/journal.pone.0259266.t003
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percentage of missing values in Cluster 2 for the PDS and OCS methods. This behavior is also

observed for the weights of the PW variable in Cluster 1 in the PDS method. For the WDS

strategy, as the percentage of missing values increases, variable PW becomes more relevant.

Fig 4 shows the performance results of the OCS, PDS and WDS algorithms in the 100

Monte Carlo repetitions. The WDS strategy had the largest deviations in error rate when com-

pared to the others. For the PDS approach, increasing and decreasing average error rates were

observed over the analyzed percentages. In the OCS strategy, there is an increasing error rate,

starting from 10% of missing values. This method presents a more defined behavior, i.e. as the

percentage of missing values increases, the error rate also increases. The OCS strategy showed

the smallest deviations in relation to the average error rate when compared with the WDS and

PDS strategies.

Analyzing the measures of variable consistency from Table 6, considering the complete

dataset obtained after clustering with the VKFCM-K-LP algorithm, together with the OCS

strategy, we have that these measures are very close to zero. This shows a good quality in the

Table 4. Weights of the variables in each group adjusted by the VKFCM-K-LP algorithm with the PDS strategy under different percentages of missing values.

% NA Cluster Weights

SL SW PL PW

5 1 0.4825 0.1349 5.1574 2.9772

2 0.5606 0.5797 2.4196 1.2713

3 0.6293 0.4658 2.2921 1.4879

10 1 0.4753 0.1317 5.3963 2.9595

2 0.6459 0.4525 2.2600 1.5135

3 0.5799 0.6772 2.2523 1.1304

15 1 0.5011 0.1345 5.1671 2.8709

2 0.7530 0.4172 2.2037 1.4443

3 0.5390 0.8078 2.1712 1.0575

20 1 0.5011 0.1345 5.1671 2.8709

2 0.7530 0.4172 2.2037 1.4443

3 0.5390 0.8078 2.1712 1.0575

https://doi.org/10.1371/journal.pone.0259266.t004

Table 5. Weights of the variables in each group adjusted by the VKFCM-K-LP algorithm with the OCS strategy under different percentages of missing values.

% NA Cluster Weights

SL SW PL PW

5 1 0.4876 0.1363 5.1732 2.9078

2 0.6364 0.4663 2.2082 1.5256

3 0.5590 0.5811 2.4149 1.2746

10 1 0.4744 0.1317 5.3949 2.9642

2 0.6447 0.4468 2.1660 1.6024

3 0.5545 0.6754 2.2918 1.1648

15 1 0.5062 0.1338 5.1193 2.8821

2 0.7345 0.4044 2.1258 1.5835

3 0.5219 0.7826 2.2277 1.0989

20 1 0.4576 0.1210 5.4762 3.2964

2 0.7185 0.4041 2.0228 1.7024

3 0.5122 0.7171 2.4697 1.1020

https://doi.org/10.1371/journal.pone.0259266.t005
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grouping, that is, the new values imputed through the OCS strategy were not discrepant in

relation to the original scale of the variables of the Iris Plant dataset.

8.2 Thyroid Gland dataset

In this Section, we evaluate the three missing data approaches using the Thyroid Gland dataset

[67]. This dataset has three a priori classes (K = 3): normal (Class 1) with 150 observations,

hyper (Class 2), with 35 observations and hypo (Class 3) with 30 observations. This dataset has

n = 215 observations and five variables (p = 5): T3-resin uptake test (T3), Total Serum thyroxin

(TTS), Total serum triiodothyronine (TST), basal thyroid-stimulating hormone (TSH) and

Maximal absolute difference of TSH value after injection of 200 micrograms of thyrotropin-

releasing hormone (DTSH).

Fig 4. Average error rates after 100 repetitions for the Iris Plant dataset.

https://doi.org/10.1371/journal.pone.0259266.g004

Table 6. Consistency of variables for the dataset Iris Plant.

% NA Cluster Weights

SL SW PL PW

5 1 0.00025 0.00115 0.00534 0.00067

2 0.00355 0.00035 0.00845 0.06201

3 0.00583 0.00271 0.01433 0.00000

10 1 0.00040 0.00485 0.00563 0.00001

2 0.00785 0.00154 0.01366 0.06181

3 0.00952 0.01112 0.03800 0.00295

15 1 0.00012 0.01161 0.01162 0.00029

2 0.00537 0.00181 0.06160 0.06618

3 0.01623 0.02967 0.03063 0.00266

20 1 0.00673 0.02212 0.02356 0.00263

2 0.01598 0.00622 0.10373 0.12329

3 0.02470 0.03045 0.01900 0.11264

https://doi.org/10.1371/journal.pone.0259266.t006
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Fig 5a and 5b present the dispersion and boxplot graphs for T3 plotted against TST and

TST versus TTS. Class 2 is more dispersed than the others, which is evidenced in the boxplots

for the analyzed variables. Fig 5b shows a linear relationship between variables TST and TTS

for classes 1 and 2. In addition, these classes have less variability when considering the TST

variable.

Fig 6a–6d show the missing values distributed across the five variables in the Thyroid Gland
dataset. Variable T3 presents a greater number of missing values for the 15% and 20% percent-

ages. For all analyzed datasets, the DTSH variable has the smallest amount of missing values.

Additionally, the missing values are well distributed among the variables. Observations in the

1|–150 range represent class 1 (normal), the 151|–175 interval corresponds to class 2 (hyper)

and finally, interval 175|–215 contains class 3 (hypo) observations.

Table 7 shows the best results among the 100 repetitions of the VKFCM-K-LP algorithm

under the three types of strategies for missing data. For 5% of missing values, the best perfor-

mances were obtained by the WDS method, presenting a CR equal to 0.818 and an FM equal

to 0.943, which means there was a good agreement between the a priori classes and the clusters

provided by the clustering algorithm. In this context, the OERC measure was equal to 5.5%.

For the PDS and OCS strategies, the increase in the number of missing values in the Thyroid
Gland dataset influences the quality of the clustering, as there was a decrease in the values of

the studied measures. The PDS strategy showed the best performances according to the quality

measures analyzed for all percentages of missing values.

To build the confusion matrices in Table 8, the clusters provided by the algorithm were

identified as Cluster 1 (normal), Cluster 2 (hyper) and Cluster 3 (hypo). The confusion matri-

ces show a great difficulty for the clustering algorithm in identifying Clusters 1 and 3 in all the

methods analyzed. These clusters correspond to the normal and hypo classes, which in Fig 5a

and 5b are more overlapped when compared to Class 2, which hinders the performance of the

clustering method.

Fig 5. Scatter plots and boxplots for the Thyroid Gland dataset. (a) TST. (b) TTS.

https://doi.org/10.1371/journal.pone.0259266.g005
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Fig 7 presents the average error rates for the 100 repetitions of the VKFCM-K-LP algo-

rithm, with the WDS, PDS and OCS strategies in the Thyroid Gland dataset. The average error

rates for PDS and OCS showed an increasing behavior along the percentages of missing values

evaluated. For 20% of missing values, the average Total Error Rate of classification for these

methods was approximately 0.20.

Fig 6. Graphs of missing value patterns and frequencies per variable for the Thyroid Gland dataset. (a) 5% missing. (b) 10%

missing. (c) 15% missing. (d) 20% missing.

https://doi.org/10.1371/journal.pone.0259266.g006
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The PDS method presents lower error rates from 5% to 15% of missing values, when com-

pared to the OCS strategy. The largest variations are observed in the WDS method for 5% and

15% of missing values. This method obtained an increasing error rate between 5% and 10%,

while its error decreased starting from 10%.

The weights of the variables in each cluster, with the WDS, PDS and OCS approaches, listed

in Tables 9–11, show that the TST and TSH variables were the most relevant to compose Clus-

ter 1. For Cluster 2, the most important variables were TSH and STD and, for Cluster 3, the

most relevant variables were TTS and TST. In addition, in the WDS strategy the TTS and TSH

variables were more relevant for the construction of Clusters 3 and 2 respectively, as the num-

ber of missing values increased. This behavior is also observed for the TST variable in Cluster

1 for the PDS and OCS strategies. In contrast, with the increase in the number of missing val-

ues in the DTSH variable, there was a decrease in its importance for the construction of Cluster

2 with the OCS strategy.

In order to assess the consistency of the variables in each cluster, as shown in Table 12, we

used the datasets before and after clustering, with the missing values imputed using the OCS

strategy. In this context, the consistencies obtained for the variables in the groups were close to

zero, which indicates a good performance of the OCS method when imputing the missing val-

ues. Additionally, the greatest consistencies were found in Clusters 2 and 3 for all percentages

of missing values evaluated.

8.3 Comparison between imputation methods

This Section compares VKFCM-K-LP using the OCS method with Imputation via Mean and
Median. Fig 8a and 8b show the accuracies obtained using the OCS method and by Imputation

via Mean and Median for the Iris Plant and Thyroid Gland datasets, when the amount of miss-

ing values varies from 5 to 20%.

Table 7. Performance of the VKFCM-K-LP clustering algorithm with the WDS, PDS and OCS strategies for the Thyroid Gland dataset.

% NA CR FM OERC

EDC EDP ECO EDC EDP ECO EDC EDP ECO

5 0.818 0.803 0.775 0.943 0.939 0.930 0.055 0.060 0.069

10 0.509 0.734 0.656 0.838 0.918 0.892 0.176 0.083 0.111

15 0.787 0.633 0.586 0.935 0.885 0.868 0.065 0.120 0.139

20 0.753 0.441 0.434 0.923 0.809 0.807 0.074 0.204 0.200

https://doi.org/10.1371/journal.pone.0259266.t007

Table 8. Confusion matrices obtained by VKFCM-K-LP with the WDS, PSD and OCS strategies using 5, 10, 15 and 20% of missing values.

Methods Clusters 5% 10% 15% 20%

1 2 3 1 2 3 1 2 3 1 2 3

WDS 1 144 0 6 118 1 4 143 2 5 147 5 8

2 6 35 0 32 34 1 7 33 0 3 30 0

3 0 0 24 0 0 25 0 0 25 0 0 22

PDS 1 143 0 6 138 1 5 130 1 5 117 2 8

2 7 35 0 12 34 0 20 34 0 33 33 1

3 0 0 24 0 0 25 0 0 25 0 0 21

OCS 1 141 0 6 133 1 6 127 1 6 115 2 7

2 9 35 0 17 34 0 23 34 0 35 33 1

3 0 0 24 0 0 24 0 0 24 0 0 22

https://doi.org/10.1371/journal.pone.0259266.t008
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For the Imputation via Mean and Median values, missing values are filled using the mean

or median estimates of the observed values in the datasets for each variable, before applying

the clustering algorithm.

For the Iris Plant dataset with 5% of missing values, accuracy was close to 0.90, which

shows a good performance of the methods when imputing missing values. However, for the

Thyroid Gland dataset, considering the same percentage of missing values, there are differ-

ences in accuracy as shown in Fig 8a. This difference between the two datasets is expected,

because the classes in the Thyroid Gland dataset are more overlapped than the classes in the

Iris Plant dataset. In order to visualize and understand the data overlap, we applied Principal

Component Analysis (PCA). Fig 9a and 9b show the resulting projections for the first two

components. In PCA, the components are orthogonal and sorted according to how much vari-

ance they explain, so it is possible to identify patterns and extract features [69]. Even after

Fig 7. Average results of 100 repetitions for the error rate with Thyroid Gland dataset.

https://doi.org/10.1371/journal.pone.0259266.g007

Table 9. Weights of the variables in each group found by the VKFCM-K-LP algorithm with the WDS strategy under different percentages of missing values.

% NA Weights

T3 TTS TST TSH DTSH

5 1 0.4469 0.6842 0.9406 5.3455 0.6502

2 0.2463 0.2615 0.1708 15.3753 5.9078

3 1.3989 3.2601 3.1756 0.2943 0.2345

10 1 0.5495 0.7670 1.1412 2.9349 0.7082

2 0.2504 0.2753 0.1993 17.6822 4.1143

3 1.8367 3.3095 3.0556 0.2484 0.2166

15 1 0.4591 0.7436 1.1079 3.9960 0.6614

2 0.2034 0.2707 0.1294 19.3835 7.2343

3 1.3438 3.9067 3.1396 0.2588 0.2343

20 1 0.4863 0.7701 1.2057 3.9571 0.5595

2 0.1909 0.2899 0.1010 21.5217 8.3067

3 1.1509 4.3158 3.4958 0.2505 0.2298

https://doi.org/10.1371/journal.pone.0259266.t009

PLOS ONE Adaptive kernel fuzzy clustering for missing data

PLOS ONE | https://doi.org/10.1371/journal.pone.0259266 November 12, 2021 23 / 33

https://doi.org/10.1371/journal.pone.0259266.g007
https://doi.org/10.1371/journal.pone.0259266.t009
https://doi.org/10.1371/journal.pone.0259266


Table 11. Weights of the variables in each group found by the VKFCM-K-LP algorithm with the OCS strategy under different percentages of missing values.

% NA Weights

T3 TTS TST TSH DTSH

5 1 0.4403 0.6634 0.9334 5.5916 0.6557

2 0.2187 0.2711 0.1691 16.4355 6.0643

3 1.3729 3.4176 3.2644 0.2926 0.2230

10 1 0.4888 0.6737 0.9699 5.0058 0.6253

2 0.2361 0.2653 0.1863 16.7371 5.1163

3 1.3996 3.3082 3.6077 0.2827 0.2117

15 1 0.4979 0.7017 1.0009 4.6589 0.6137

2 0.2656 0.2554 0.2031 17.3437 4.1813

3 1.2947 3.4309 3.2439 0.3200 0.2168

20 1 0.4921 0.6576 1.0223 5.1672 0.5848

2 0.3335 0.2552 0.2292 16.5093 3.1038

3 1.1178 4.3838 3.4333 0.2940 0.2021

https://doi.org/10.1371/journal.pone.0259266.t011

Table 12. Consistencies of variables for the Thyroid Gland dataset.

% NA Weights

T3 TTS TST TSH DTSH

5 1 0.01258 0.00092 0.00030 0.00238 0.00529

2 0.00407 0.04769 0.04562 0.00813 0.06072

3 0.00000 0.00691 0.00414 0.00000 0.01321

10 1 0.01514 0.03953 0.02637 0.00196 0.00063

2 0.02250 0.09938 0.14733 0.01706 0.22179

3 0.01783 0.12019 0.00961 0.00378 0.01297

15 1 0.02515 0.02872 0.01589 0.00372 0.01526

2 0.02845 0.16012 0.22214 0.01981 0.27982

3 0.03377 0.13482 0.00927 0.06684 0.05777

20 1 0.04188 0.03056 0.02345 0.00493 0.00116

2 0.04946 0.28002 0.34943 0.02413 0.40891

3 0.03002 0.20914 0.02891 0.11276 0.08566

https://doi.org/10.1371/journal.pone.0259266.t012

Table 10. Weights of the variables in each group found by the VKFCM-K-LP algorithm with the PDS strategy under different percentages of missing values.

% NA Weights

T3 TTS TST TSH DTSH

5 1 0.4379 0.6721 0.9378 5.5693 0.6503

2 0.2197 0.2613 0.1653 16.3745 6.4314

3 1.3780 3.4215 3.2403 0.2928 0.2234

10 1 0.4666 0.6584 0.9903 5.1460 0.6385

2 0.2303 0.2467 0.1711 15.662 6.5622

3 1.4038 3.3756 3.5690 0.2763 0.2139

15 1 0.4792 0.6781 1.0123 5.2929 0.5742

2 0.2548 0.2261 0.1784 16.4694 5.9023

3 1.2320 3.6878 3.5524 0.2785 0.2224

20 1 0.4973 0.6409 1.0404 6.0578 0.4976

2 0.3227 0.2245 0.2006 15.8473 4.3391

3 1.1033 4.8855 4.0218 0.2199 0.2097

https://doi.org/10.1371/journal.pone.0259266.t010
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applying PCA, the classes in the Thyroid Gland dataset are more overlapped than the classes in

the Iris Plant dataset. This makes it harder to group observations in the Thyroid Gland dataset.

This difficulty is accentuated with the increase in the number of missing values in the dataset

as shown in Fig 8b. It is also worth mentioning that classes overlap less in the Iris Plant dataset,

which favors the performance of the VKFCM-K-LP clustering method with the OCS strategy,

even when the percentage of missing values increases, as shown in Fig 8b.

For 10%, 15% and 20% of imputed missing values, the clustering accuracies with the impu-

tation by Mean and Median values in the Thyroid Gland dataset are concentrated around very

similar values, which does not happen in the Iris Plant dataset (Fig 8a).

Tables 13–16 show the consistencies of the variables with the imputation of the missing val-

ues via Mean and Median for the two analyzed datasets. Consistencies obtained by the Mean

and Median strategies were higher than the OCS strategy, as shown in Tables 6–12. This

means that Mean and Median imputations depart more from the original scale of the variables

in the two datasets than values obtained by the OCS approach.

To show the dispersion of the new values imputed using the strategies mentioned above,

variables T3 and TST were selected from the Thyroid Gland dataset with 5% and 15% of

Fig 8. Performance graphs of the methods for different percentages of missing values. (a) Iris Plant. (b) Thyroid Gland.

https://doi.org/10.1371/journal.pone.0259266.g008

Fig 9. Principal component analysis applied to both datasets. (a) Iris Plant. (b) Thyroid Gland.

https://doi.org/10.1371/journal.pone.0259266.g009
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Table 13. Consistency of variables in the VKFCM-K-LP clustering with the imputation of missing values using mean values for the Iris Plant dataset.

% NA Cluster Weights

SL SW PL PW

5 1 0.01731 0.01634 0.17422 0.25311

2 0.00890 0.05284 0.03431 0.05032

3 0.02456 0.00624 0.21387 0.00000

10 1 0.05468 0.05008 0.17244 0.32902

2 0.01209 0.07793 0.08767 0.06302

3 0.12788 0.00598 0.38896 0.09438

15 1 0.18425 0.12677 0.41515 0.43382

2 0.07385 0.10341 0.15307 0.03371

3 0.12372 0.02019 0.41156 0.09245

20 1 0.17918 0.12613 0.53173 0.49124

2 0.10224 0.11974 0.18223 0.03556

3 0.19865 0.01895 0.50715 0.23976

https://doi.org/10.1371/journal.pone.0259266.t013

Table 14. Consistency of variables in the VKFCM-K-LP clustering with the imputation of missing values using median values for the Iris Plant dataset.

% NA Cluster Weights

SL SW PL PW

5 1 0.01575 0.01845 0.18338 0.25776

2 0.00551 0.04521 0.02264 0.02167

3 0.02632 0.00879 0.16321 0.00000

10 1 0.04675 0.05812 0.18284 0.33365

2 0.03029 0.06797 0.03022 0.02191

3 0.14485 0.00464 0.30564 0.08778

15 1 0.17198 0.13849 0.42178 0.44085

2 0.09633 0.09032 0.04010 0.05905

3 0.13630 0.04332 0.32237 0.07927

20 1 0.16297 0.13849 0.53969 0.49929

2 0.13870 0.10174 0.02639 0.10506

3 0.21722 0.04332 0.40975 0.19766

https://doi.org/10.1371/journal.pone.0259266.t014

Table 15. Consistency of variables in the VKFCM-K-LP clustering with the imputation of missing values using mean values for the Thyroid Gland dataset.

% NA Weights

T3 TTS TST TSH DTSH

5 1 0.00891 0.00020 0.01779 0.09343 0.03028

2 0.02228 0.14048 0.02442 0.17675 0.23741

3 0.00000 0.17499 0.02278 0.00000 0.00214

10 1 0.05014 0.00643 0.04407 0.25214 0.05116

2 0.13232 0.16339 0.08427 0.24967 0.39328

3 0.02532 0.23810 0.03123 0.01299 0.00230

15 1 0.03076 0.01280 0.08501 0.25876 0.08239

2 0.16093 0.20753 0.12637 0.23315 0.43141

3 0.07188 0.36764 0.03087 0.16200 0.03564

20 1 0.03848 0.01942 0.08920 0.25748 0.10013

2 0.22618 0.32794 0.17708 0.22526 0.51254

3 0.06937 0.44036 0.00793 0.21541 0.11537

https://doi.org/10.1371/journal.pone.0259266.t015
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missing values. The T3 and TST variables were those that obtained the highest number of

missing values in the generation process (see Fig 6b and 6c). Therefore, it is important to

graphically visualize the relationship of these imputed values with the ones in the dataset, as

shown in Fig 10a–10f.

The box-plots for the imputed values and the complete values (blue color) are also shown.

The red and yellow colors represent imputed values for the T3 and TST variables respectively.

If the values are imputed to both variables, they are colored black. Fig 10a–10c show that, with

5% of imputed missing values, most of the resulting points are close to the distribution of the

complete data. The boxplots of the imputed values for the TST variable show higher similarity

with the boxplots of the complete values, that is, the dispersion of the data before and after the

imputation did not present significant discrepancies.

Regarding the T3 variable, the imputed values showed less variability than the complete

observations. For datasets with 15% of imputed values (Fig 10d–10f), the values obtained by

the OCS strategy showed better distribution in the groups compared to the values imputed

with Mean and Median estimates.

In the imputation of missing values via Mean and Median, there is a concentration in the

same value, forming a straight line with zero slope. Thus the set of values imputed through

these methods has zero correlation between variables T3 and TST. Tabachnick et al. [70] argue

that the imputation of missing values with central tendency measures such as the average,

affects the correlation between the variables and the variance is underestimated.

Indeed when analyzing the correlations of variables T3 and TST, we obtain ρ = −0.528 and

ρ = −0.529, after imputation with Mean and Median, respectively. Meanwhile, the correlation

for the original set (without missing values) is ρ = −0.536. The variability of the data is also

impaired, as the standard deviations (sd) for the T3 and TST variables in the complete dataset

were sd = 13, 145 and sd = 1, 419, respectively, while for the set with 15% of imputed values,

the standard deviations are sd = 11.87 and sd = 1.35 respectively, which indicates variance

underestimation.

Therefore, although the imputations using Mean and Median values are easy to implement,

the resulting clusterings are not satisfactory, since the structure of the correlation of the vari-

ables is modified and consequently these new values may not be related to their group of ori-

gin, as shown in Fig 10b, 10e and 10f. Finally, the VKFCM-K-LP method with the OCS

Table 16. Consistency of variables in the VKFCM-K-LP clustering with the imputation of missing values using median values for the Thyroid Gland dataset.

% NA Weights

T3 TTS TST TSH DTSH

5 1 0.01004 0.00392 0.00398 0.02499 0.00407

2 0.02254 0.14674 0.03345 0.05759 0.21036

3 0.00000 0.16661 0.00844 0.00000 0.00121

10 1 0.05661 0.02413 0.01215 0.02623 0.00971

2 0.13441 0.17277 0.10566 0.08908 0.36343

3 0.02321 0.22150 0.00423 0.01625 0.00121

15 1 0.04232 0.01905 0.00615 0.03655 0.02563

2 0.16424 0.22067 0.15439 0.08908 0.39172

3 0.06671 0.34919 0.00423 0.18079 0.04952

20 1 0.04668 0.01045 0.00728 0.03869 0.01671

2 0.22855 0.34195 0.21072 0.08908 0.47284

3 0.06671 0.41992 0.03112 0.24134 0.13076

https://doi.org/10.1371/journal.pone.0259266.t016
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Fig 10. Scatter plots and boxplots for the Thyroid Gland dataset considering the different imputation methods.

(a) Imputation via OCS with 5% of missing values. (b) Mean imputation with 5% of missing values. (c) Median

imputation with 5% of missing values. (d) Imputation via OCS with 15% of missing values. (e) Mean imputation with

15% of missing values. (f) Median imputation with 5% of missing values.

https://doi.org/10.1371/journal.pone.0259266.g010
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strategy showed better performance in identifying a priori classes, according to the accuracies

observed in Fig 8a and 8b, so the set of values imputed using this strategy is closer to the set of

observations from the original dataset shown in Fig 5a.

9 Conclusions

The problem of missing data is commonly discussed in several areas of science, as statistical

techniques used for data analysis, such as clustering, were originally proposed for datasets

without missing values. An alternative to face this issue is to adapt the clustering methods so

that they can handle incomplete datasets. In this work, the VKFCM-K-LP clustering method

was studied with three types of strategies to deal with missing data, WDS, PDS and OCS. In

order to evaluate clustering methods in the context of missing data, two benchmark datasets

were used: Iris Plant and Thyroid Gland.

From these datasets, new datasets with 5%, 10%, 15% and 20% of missing values were artifi-

cially generated. The results of the clustering algorithms were evaluated according to CR, FM

and OERC. The results of the clustering for the Iris Plant dataset were satisfactory, with CR

and FM close to 1 and the OERC measure close to zero, for all analyzed methods and percent-

ages of missing values, which showed a good performance of the VKFCM-K-LP method

under the WDS, PDS and OCS approaches in identifying a priori classes. For 5% of missing

values the best performance of the VKFCM-K-LP clustering algorithm was observed with the

PDS strategy. However, the performance graph for the 100 repetitions of the algorithm shows

that for 10%, 15% and 20% of missing values, this method had the poorest performance. Addi-

tionally, the confusion matrices showed that observations belonging to Class 1 (setosa) in the

Iris Plant dataset were properly grouped.

Regarding the weights of the variables in each group, variable PL was the most relevant,

even with a higher percentage of missing values. The measures of consistency of the variables

for the datasets obtained from the grouping with the VKFCM-K-LP algorithm, together with

the OCS strategy, were close to zero, which showed a good clustering quality, that is, the values

imputed using the OCS method were not discrepant in relation to the original scale of the

variables.

In the generation of missing values for the Thyroid Gland dataset, variable T3 presented a

greater amount of these values for 15% and 20% of missing values. The best quality measures

for this dataset were observed in the PDS method. In addition, the methods showed an increas-

ing average error rate when analyzing the performance graph on the 100 repetitions of the

algorithm. The confusion matrices for the Thyroid Gland dataset showed an overlap between

Classes 1 and 2 in all methods analyzed, which corresponded to a greater number of incor-

rectly grouped observations when compared with Class 3.

Variables TSH and DTSH obtained the highest weights in the construction of Cluster 2 in

all analyzed cases. In contrast, variable T3 had little influence on the formation of the groups.

The consistencies of the variables obtained for the OCS method in the Thyroid Gland dataset

were close to zero, which means a good performance of the method in imputing the missing

values.

When comparing the clustering results using the OCS and the Average and Median impu-

tation methods, we have found that the best accuracy was observed for the OCS method in all

considered percentages of missing values for both analyzed datasets. The results of the

VKFCM-K-LP clustering using the imputation methods with the Mean and Median did not

present satisfactory results, because the set of imputed values affected the general correlation

of the variables in the dataset and there was a distortion in the variability of the data, which

affected the quality of the clusters.
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In general, the VKFCM-K-LP clustering algorithm together with the missing data strategies

WDS, PDS and OCS presented satisfactory results in the datasets with 5% 10%, 15% and 20%

of missing values. The best performances obtained by the grouping method were observed

when paired with the PDS and OCS strategies. In the groups made with the OCS approach,

new datasets were derived and the missing values were estimated in the optimization process.

The results of the clustering with the OCS strategy showed superior performances when com-

pared to the results obtained by imputing with the mean and median of the observed values.
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51. Müller KR, Mika S, Rätsch G, Tsuda K, Schölkopf B. An introduction to kernel-based learning algo-

rithms. IEEE transactions on neural networks. 2001; 12(2). PMID: 18244377

52. Schölkopf B, Smola A, Müller KR. Nonlinear component analysis as a kernel eigenvalue problem. Neu-

ral computation. 1998; 10(5):1299–1319. https://doi.org/10.1162/089976698300017467

53. Scholkopf B, Smola AJ. Learning with kernels: support vector machines, regularization, optimization,

and beyond. MIT press; 2001.

54. Vapnik V. The nature of statistical learning theory. Springer science & business media; 2013.

55. Wu Zd, Xie Wx, Yu Jp. Fuzzy c-means clustering algorithm based on kernel method. In: Proceedings

Fifth International Conference on Computational Intelligence and Multimedia Applications. ICCIMA

2003. IEEE; 2003. p. 49–54.

56. Graepel T, Obermayer K. Fuzzy topographic kernel clustering. In: Proceedings of the 5th GI Workshop

Fuzzy Neuro Systems. vol. 98; 1998. p. 90–97.

57. Graves D, Pedrycz W. Kernel-based fuzzy clustering and fuzzy clustering: A comparative experimental

study. Fuzzy sets and systems. 2010; 161(4):522–543. https://doi.org/10.1016/j.fss.2009.10.021

58. Chen DZS. Fuzzy clustering using kernel method. IEEE, Nanjing, China. 2002;.

59. Diday E. Classification automatique avec distances adaptatives. RAIRO Informatique Computer Sci-

ence. 1977; 11(4):329–349.

60. Gustafson DE, Kessel WC. Fuzzy clustering with a fuzzy covariance matrix. In: 1978 IEEE conference

on decision and control including the 17th symposium on adaptive processes. IEEE; 1979. p. 761–766.

61. Ferreira MR, de Carvalho FdA, Simões EC. Kernel-based hard clustering methods with kernelization of

the metric and automatic weighting of the variables. Pattern Recognition. 2016; 51:310–321. https://doi.

org/10.1016/j.patcog.2015.09.025

PLOS ONE Adaptive kernel fuzzy clustering for missing data

PLOS ONE | https://doi.org/10.1371/journal.pone.0259266 November 12, 2021 32 / 33

https://doi.org/10.1093/biomet/63.3.581
https://doi.org/10.1093/biomet/63.3.581
https://doi.org/10.1177/096228029900800102
http://www.ncbi.nlm.nih.gov/pubmed/10347857
https://doi.org/10.1109/3477.956035
https://doi.org/10.1109/3477.956035
http://www.ncbi.nlm.nih.gov/pubmed/18244838
https://doi.org/10.1016/j.eswa.2010.03.028
https://doi.org/10.1016/j.eswa.2010.03.028
https://doi.org/10.1016/j.neucom.2017.01.017
https://doi.org/10.1007/BF01908075
https://doi.org/10.1007/BF01908075
https://doi.org/10.1109/34.506415
http://www.ncbi.nlm.nih.gov/pubmed/18244377
https://doi.org/10.1162/089976698300017467
https://doi.org/10.1016/j.fss.2009.10.021
https://doi.org/10.1016/j.patcog.2015.09.025
https://doi.org/10.1016/j.patcog.2015.09.025
https://doi.org/10.1371/journal.pone.0259266


62. Baraldi AN, Enders CK. An introduction to modern missing data analyses. Journal of school psychology.

2010; 48(1):5–37. https://doi.org/10.1016/j.jsp.2009.10.001 PMID: 20006986

63. Rubin DB. Multiple imputation for nonresponse in surveys. vol. 81. John Wiley & Sons; 2004.

64. Dixon JK. Pattern recognition with partly missing data. IEEE Transactions on Systems, Man, and

Cybernetics. 1979; 9(10):617–621. https://doi.org/10.1109/TSMC.1979.4310090

65. R Core Team. R: A Language and Environment for Statistical Computing; 2020. Available from: http://

www.R-project.org/.

66. Anderson E. The irises of the Gaspe Peninsula. Bulletin of the American Iris society. 1935; 59:2–5.

67. Quinlan JR. Induction of decision trees. Machine learning. 1986; 1(1):81–106. https://doi.org/10.1007/

BF00116251

68. Bache K, Lichman M. UCI machine learning repository; 2013.

69. Ding C, He X. K-means clustering via principal component analysis. In: Proceedings of the twenty-first

international conference on Machine learning. ACM; 2004. p. 29.

70. Tabachnick BG, Fidell LS, Ullman JB. Using multivariate statistics. vol. 5. Pearson Boston, MA; 2007.

PLOS ONE Adaptive kernel fuzzy clustering for missing data

PLOS ONE | https://doi.org/10.1371/journal.pone.0259266 November 12, 2021 33 / 33

https://doi.org/10.1016/j.jsp.2009.10.001
http://www.ncbi.nlm.nih.gov/pubmed/20006986
https://doi.org/10.1109/TSMC.1979.4310090
http://www.R-project.org/
http://www.R-project.org/
https://doi.org/10.1007/BF00116251
https://doi.org/10.1007/BF00116251
https://doi.org/10.1371/journal.pone.0259266

