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The second paper in a series on how learning health systems can use routinely collected electronic 

health data (EHD) to advance knowledge and support continuous learning, this review summarizes 

study design approaches, including choosing appropriate data sources, and methods for design and 

analysis of natural and quasi-experiments.

The primary strength of study design approaches described in this section is that they study the impact 

of a deliberate intervention in real-world settings, which is critical for external validity. These evaluation 

designs address estimating the counterfactual – what would have happened if the intervention had 

not been implemented. At the individual level, epidemiologic designs focus on identifying situations 

in which bias is minimized. Natural and quasi- experiments focus on situations where the change in 

assignment breaks the usual links that could lead to confounding, reverse causation, and so forth. 

And because these observational studies typically use data gathered for patient management or 

administrative purposes, the possibility of observation bias is minimized. The disadvantages are that one 

cannot necessarily attribute the effect to the intervention (as opposed to other things that might have 

changed), and the results do not indicate what about the intervention made a difference.

Because they cannot rely on randomization to establish causality, program evaluation methods 

demand a more careful consideration of the “theory” of the intervention and how it is expected to 

play out. A logic model describing this theory can help to design appropriate comparisons, account 

for all influential variables in a model, and help to ensure that evaluation studies focus on the critical 

intermediate and long-term outcomes as well as possible confounders.
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Introduction

Learning health systems use routinely collected 

electronic health data (EHD) to advance knowledge 

and support continuous learning. Even without 

randomization, observational studies can play 

a central role as the nation’s health care system 

embraces comparative effectiveness research 

and patient-centered outcomes research. 

However, neither the breadth, timeliness, volume 

of the available information, nor sophisticated 

analytics, allow analysts to confidently infer causal 

relationships from observational data. Rather, 

depending on the research question, careful study 

design and appropriate analytical methods can 

improve the utility of EHD.

This is the second paper in a series (see Box 1) 

on how learning health systems can use routinely 

collected electronic health data (EHD) to advance 

knowledge and support continuous learning, this 

review summarizes study design approaches, 

including choosing appropriate data sources, 

and methods for design and analysis of natural 

and quasi-experiments. The first paper1 began 

by drawing a distinction between big-data style 

analytics of electronic health data (EHD), with its 

claims that randomized studies were no longer 

necessary, and traditionalists who believe that 

without randomization little can be known with 

certainty. Of course this is a false distinction; some 

questions do not involve assessing a cause and 

effect relationship, but when causal assessment is 

Box 1. Series on Analytic Methods to Improve the Use of Electronic Health Data in a Learning Health 

System

This is one of four papers in a series of papers intended to (1) illustrate how existing electronic 
health data (EHD) data can be used to improve performance in learning health systems, (2) 
describe how to frame research questions to use EHD most effectively, and (3) determine the 
basic elements of study design and analytical methods that can help to ensure rigorous results in 
this setting.

•	Paper 1, “Framing the Research Question,”2 focuses on clarifying the research question, including 
whether assessment of a causal relationship is necessary; why the randomized clinical trial (RCT) 
is regarded as the gold standard for assessing causal relationships, and how these conditions can 
be addressed in observational studies.

•	Paper 2, this paper, addresses how study design approaches, including choosing appropriate 
data sources, methods for design and analysis of natural and quasi-experiments, and the use 
of logic models, can be used to reduce threats to validity in assessing whether interventions 
improve outcomes of interest.

•	Paper 3, “Analysis of observational studies,”3 describe how analytical methods for individual-
level electronic health data EHD, including regression approaches, interrupted time series (ITS) 
analyses, instrumental variables, and propensity score methods, can be used to better assess 
whether interventions improve outcomes of interest.

•	Paper 4, “Delivery system science,”4 addresses translation and spread of innovations, where a 
different set of questions comes into play: How and why does the intervention work? How can 
a model be amended or transported to work in new settings? In these settings, causal inference 
is not the main issue, so a range of quantitative, qualitative, and mixed research designs are 
needed.
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necessary observational studies of existing EHD can 

be a useful complement to RCTs. In particular, when 

the question is whether an intervention “works” – 

improves outcomes of interest, causal inference 

is indeed critical, but appropriately designed and 

analyzed observational studies can yield valid results 

that better balance internal and external validity than 

RCTs.

This second paper in the series addresses study 

design approaches including choosing appropriate 

data sources, and methods for design and analysis 

of natural and quasi-experiments. The primary issue 

addressed by evaluation designs is how to estimate 

the counterfactual – what would have happened if 

the intervention had not been implemented. Without 

randomization to establish causality, these methods 

demand a more careful consideration of the “theory” 

of the intervention. Logic models can help to 

design appropriate comparisons, and to ensure that 

evaluation studies focus on the critical intermediate 

and long-term outcomes as well as possible 

confounders. Another paper in this series5 discusses 

analytical methods for EHD, including regression 

approaches, interrupted time series (ITS) analyses, 

instrumental variables, and propensity score 

methods that, together with the design principles 

discussed in this paper, can also be used to address 

the question of whether the intervention “works.”

This paper does not attempt to serve as a textbook 

or describe these approaches in detail. Rather, it 

presents these methods in a consistent framework 

rather than provide detailed information on each 

topic. Because the use of existing EHD is not yet well 

developed, some of the examples use other types of 

data but were chosen to illustrate the methods.

The two major potential sources of bias in non-

experimental studies of health care interventions are 

(1) different, if not zero, probabilities of exposure to 

experimental conditions (2) confounding. Cochran6 

recommends developing a clear definition of 

treatment and comparison conditions as well as clear 

inclusion and exclusion criteria for the study, so we 

begin this paper with a brief discussion of selecting 

data sources, patient populations, and comparators 

for which these types of bias are likely to be minimal. 

We continue with a discussion of how specific 

study designs – drawing mainly from analytical 

epidemiology – can also address issues of selection 

and confounding bias. This includes the standard 

cohort and case-control designs, and briefly 

introduces specialized designs including case-cohort, 

case-crossover, case-time controlled, and self-

controlled case series. This paper introduces a series 

of methods that are drawn primarily from the social 

sciences and the program evaluation literature. In this 

tradition, logic models help to clarify the expected 

relationship among program elements, outputs, 

and short- and long-term outcomes, and how they 

relate to both program theory and external events. 

Such clear specification can help determine whether 

the results of observational studies do in fact 

reflect causal effects. The central concepts in this 

perspective are the natural and quasi-experiment. 

Both approaches capitalize on deliberate changes in 

exposure to the treatment unrelated to other factors 

influencing outcomes, breaking links that could lead 

to selection bias, reverse causation, and so on. In 

the Cochran tradition, this paper concludes with a 

discussion of how the design of experiments can 

be a useful perspective in designing observational 

studies, even if randomization is not possible.

Selection of Data Sources to Minimize Bias

Careful selection of data sources, patient 

populations, including criteria for inclusion/

exclusion of individuals from those populations, and 

comparators for the statistical analyses described in 

this section can help to minimize confounding and 

selection bias. Two considerations are particularly 

important:
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•	 the key variables must be available to define an 

analytic cohort and identify exposures, outcomes, 

and confounders,

•	 the data resource be sufficiently granular, contain 

historical information to determine baseline 

covariates, and represent an adequate duration of 

equivalent follow-up.

For example, consider the study by Stuart and 

colleagues7 to estimate the effect of the Medicare 

Part D prescription drug program on individuals with 

serious mental illness clearly defines the population 

inclusion and exclusion criteria. The cohort they 

selected for analysis was defined by

•	 continuous enrollment in 2005 and 2006, so data 

on both baseline covariates and outcomes were 

available

•	 eligibility for both Medicare and Medicaid on Jan. 1, 

2006, when Part D came into effect

•	 Maryland residency, to control for variation in 

state-level factors and policies

•	 diagnosis of schizophrenia, bipolar, or depressive 

disorders (as defined by pre-specified diagnostic 

codes in Maryland’s all-payer billing files), because 

the impact on other health conditions could be 

quite different

•	 not being enrolled in Medicare Advantage, which 

has different drug benefits.

Table 1, drawn from AHRQ’S User’s Guide 

for Developing a Protocol for Observational 

Comparative Effectiveness Research,8 gives more 

specifics on this approach.

Study Designs for Individual-level EHD

Stürmer and Brookhart9 write that the choice of 

study design often has profound consequences for 

the causal interpretation of study results and provide 

an overview of various study design options for non-

experimental comparative effectiveness research 

(CER), with their relative advantages and limitations 

in controlling the potential for bias. See Velentgas10 

and Rothman11 for more detail on the study designs 

described in this section.

Cohort Studies

Cohorts are defined by their exposure (including 

the receipt of a treatment), or lack thereof, over a 

specified time. Subjects are then typically followed 

for the occurrence of the outcome. If designed 

properly, the main advantage of the cohort is that it 

has a clear timeline separating potential confounders 

from the exposure, and the exposure from the 

outcome. This means cohorts allow the estimation 

of incidence (risk or rate) in all exposure groups and 

thus the estimation of risk or rate differences. Cohort 

studies also allow investigators to assess continuous 

outcomes as well as multiple outcomes from given 

treatments/exposures. The cohort design is also easy 

to conceptualize and is readily compared to an RCT, 

a design with which most clinical researchers are 

very familiar. The principal disadvantages of a cohort 

design are the lack of randomization and resulting 

potential for confounding bias as well as loss to 

follow-up, which may result in selection bias.12

A variant of the traditional cohort design is the 

case-cohort design. Here cohorts are defined as 

usual, but additional information required for analysis 

(e.g., blood levels, biologic materials for genetic 

analyses) is collected for all cases (those with the 

outcome of interest) and a random sample of others 

in the cohort. This design has the same advantages 

and disadvantages as a cohort study, but is more 

efficient in terms of data collection costs.13

Case-control Studies

Unlike a cohort design, a case-control design 

identifies all incident cases in a database that 

developed the outcome of interest and compares 

their exposure history with the exposure history 

of controls selected from the imagined cohort 
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Source: Stürmer and colleagues.8

Table 1. Questions to Consider When Choosing Data for an Observational Study

QUESTION TO ASK EXAMPLE

Do the data contain a sufficiently long 
duration of followup after exposures?

Are there data on weight for at least three years 
after bariatric surgery?

Are there sufficient historical data to 
determine baseline covariates?

Is there information of hospitalizations int he year 
prior to cardiac resynchronization therapy for an 
observational study of outcomes from the device?

Is there a complete dataset from 
all appropriate settings of care to 
comprehensively identify exposures and 
outcomes?

Is there a record of emergency department visits in 
addition to a record of outpatient and hospitalized 
care in a study of children with asthma?

Are data available on other exposures 
outside of the healthcare setting?

Are there data on aspirin exposure when purchased 
over the counter in a study of outcomes after 
myocardial infarction?

Are there a sufficient number of 
observations in the dataset if restricting the 
patient population is necessary for internal 
validity (e.g., restriction to new users)?

Are there a sufficient number of new users (based 
on a “washout period” of at least 6 months) of 
each selective and non-selective nonsteroidal anti-
inflammatory drug (NSAID) to study outcomes in 
users of each of these medications?

What is the difference between the study 
and target population demographics and 
distributions of comorbid illnesses? Will 
these differences affect the interpretation 
and generalizability of the results?

Is the age range of the data source appropriate to 
address the study question? Can any differences 
in demographics between data source and target 
population be addressed through appropriate 
design or analysis approaches?

Are the key variables available to define 
an analytic cohort (the study inclusion and 
exclusion criteria)?

Do the data contain height and weight or BMI to 
define a cohort of overweight or obese subjects?

Are the key variables available for 
identifying important subpopulations for the 
study?

Do the data contain a variable describing race for a 
study of racial differences in outcomes of coronary 
stenting?

Are the key variables available for 
identifying the relevant exposures, 
outcomes, and important covariates and 
confounders?

Do the data contain information on disease 
severity to assess the comparative effectiveness 
of conservative versus intensive management 
of prostate cancer? (Disease severity is a likely 
confounder.)

Are the data sufficiently granular for the 
purpose of the study?

Is it adequate to know whether the individual has 
hypertension or not, or is it important to know that 
the individual has Stage I or Stage III hypertension?

Are there a sufficient number of exposed 
individuals in the dataset?

Are there enough individuals who filled 
prescriptions for exenatide to study the outcomes 
from this medication?
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Source: Glanz and colleagues.15

of interest. Control selection is outside of the 

scope of this paper, but more information can 

be found in Rothman.14 Given rare outcomes and 

proper sampling of controls from the risk set, the 

estimation of the odds ratio in a case-control study 

is a more efficient way to estimate the otherwise 

identical incidence rate ratio in the underlying 

cohort, especially for rare outcomes such as 

adverse reactions to medications. This efficiency is 

especially important if additional data (e.g., blood 

levels, biologic materials, validation data) need to 

be collected. The case-control design also allows for 

assessment of multiple exposures, but breaks down 

if outcome incidence exceeds 10 percent or the 

controls do not have the same risk of developing the 

outcome of interest.

For example, Glanz and colleagues15 use a case-

control design to examine the association between 

under vaccination (receipt of less than the 

recommended number of doses) and pertussis 

in children 3 to 36 months of age who were 

members of the eight managed care organizations 

participating in the Vaccine Safety Datalink study 

between 2004 and 2010. Each laboratory-confirmed 

case of pertussis (72 patients) was matched to 

4 randomly selected controls (for a total of 288 

controls). Cases were matched to controls by 

managed care organization site, sex, and age at 

the index date, defined as the date of pertussis 

diagnosis for the case patients. Using a conditional 

logistic regression analysis, the study found that 

under-vaccination with DTaP vaccine increases 

the risk of pertussis. The results, shown in Table 2, 

demonstrate that the risk of pertussis increases with 

the number of doses missed, and that the risk of 

pertussis is significantly higher for children who miss 

any number of doses (OR = 4.36, 95 percent C.I. = 

2.23, -8.55, P<0.001). Because the number of adverse 

events is too small for differences to be detected in 

the RCT’s that were done to establish the vaccines’ 

efficacy, and because it would be both unethical 

and impractical to design a large-scale RCT to 

establish the vaccines’ safety, Glanz and colleagues16 

observational study using existing EHD fills in an 

important knowledge gap.

Although they can be efficient, case-control studies 

have some important limitations. Because they 

begin with the outcome, case-control studies can 

be difficult to understand and explain. The major 

limitation of case-control studies is the potential for 

selection-bias if the controls are not representative of 

the imagined cohort.17 Unless additional information 

from the underlying cohort is available, risk or rate 

differences cannot be estimated from case-control 

Table 2. Estimates of the Risk of Laboratory-confirmed Pertussis for Those Undervaccinated vs.  

Age-appropriately Vaccinated

NUMBER OF DOSES 
UNDERVACCINATED BY

ODDS RATIO (OR) AND 95% 
CONFIDENCE INTERVAL

P VALUE

1 vs. 0 2.25 (0.97 – 5.24) 0.06

2 vs. 0 3.41 (0.89 – 13.05) 0.07

3 vs. 0 18.56 (4.92 – 69.95) <0.001

4 vs. 0 28.38 (3.19 – 252.63) 0.002

1, 2, 3 or 4 vs. 0 4.36 (2.23 – 8.55) <0.001
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studies. Because the timing between potential 

confounders and the treatments is often not taken 

into account, case-control designs typically assess 

confounders at the index date rather than prior to 

treatment initiation, so the results may be biased if 

they inadvertently control for covariates that may 

be affected by prior treatment. If information on 

treatments needs to be obtained retrospectively, 

such as from an interview with study participants 

identified as cases and controls, there is the potential 

that treatments will be assessed differently for cases 

and controls, which will lead to information bias, 

including when either cases or controls are more 

likely to recall exposure than the other group.

Case-crossover Design

For this study design, only patients with the 

outcome (cases) who have varying exposures during 

the study period contribute information, and the 

cases serve as their own controls. The self-control 

removes the confounding effect of any characteristic 

of subjects that is stable over time, such as genetics, 

so measures of stable confounding factors are not 

needed. Because this design depends so much 

on timing, it is appropriate only for acute effects 

of transient exposures. It is not appropriate for 

exposures that may have long-lasting effects. It 

can be useful in situations in which patients switch 

between two similar treatments without stopping 

treatment as long as the causes of switching are 

unrelated to health events (e.g., due to changes in 

health plan drug coverage) and as long as there is 

not carryover of the effects of the first treatment 

into the second time period. If the switching were 

triggered by health events, however, within-person 

confounding would bias the parameter estimates. 

For instance, if some patients stop taking a 

medication because of side effects, comparisons 

or outcomes between those on treatment and not 

might yield a biased estimate of the treatment effect.

Case-time Controlled Design

This study design adjusts for calendar time trends 

in the prevalence of treatments that can introduce 

bias in the case-crossover design. To do so, it uses 

controls as in a case-control design but estimates 

a case-crossover odds ratio (i.e., within individuals) 

in these controls. The case-crossover odds ratio 

(in cases) is then divided by the case-crossover 

odds ratio in controls. This design has the same 

advantages as the case-crossover design, but is 

not dependent on the assumption of no temporal 

changes in the prevalence of the treatment. 

The control for the time trend can introduce 

confounding, however, although the magnitude 

of this problem for various settings has not been 

quantified.

Self-controlled Case Series

As with the case-crossover design, the self-

controlled case-series design estimates the 

immediate effect of treatment in those treated 

at least once. It is similarly dependent on cases 

that have changes in treatment during a defined 

period of observation time. The observation time is 

divided into treated person-time, a washout period 

of person-time, and untreated person-time. The 

immediate effect of treatment is estimated using 

conditional Poisson regression to estimate the 

incidence rate ratio within individuals. This design 

was originally proposed for rare adverse events in 

vaccine safety studies for which it seems especially 

well suited. As with the case-crossover design, the 

self-control removes the confounding effect of any 

characteristic of subjects that is stable over time.

Example: Intussusception Risk After Rotavirus 

Vaccination

Post-licensure studies have identified an increased 

risk of intussusception after vaccination with the 

second-generation rotavirus vaccines RotaTeq 
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SCRI = self-controlled risk interval design. Source: Adapted from Yih and colleagues.18

(RV5) and Rotarix (RV1). Yih and colleagues18 use a 

self-controlled risk interval (SCRI) design to assess 

this risk in infants. The study included data from 

infants 5.0 to 36.9 weeks of age who were enrolled 

in three U.S. health plans that participate in the FDA 

Mini-Sentinel program. Cases of intussusception 

and vaccine exposures from 2004 through mid-2011 

were identified through procedural and diagnostic 

codes. Medical records were reviewed to confirm 

occurrence of intussusception and rotavirus 

vaccination.

The primary analysis used a self-controlled risk-

interval (SCRI) design that included only vaccinated 

children. Two alternative risk intervals were used: 

1-7 days and 1-21 days post vaccination. Assuming 

that any effect would occur in the first 21 days, the 

control interval was 22-42 days post vaccination. 

Logistic regression was used to adjust for age in risk 

and control intervals based on intussesception risk in 

external hospital data. The advantages of this design 

are that it inherently controls for all fixed potential 

confounders such as sex, race or ethnic group, and 

chronic predisposing conditions, and uses data 

only from exposed children, minimizing potential 

misclassification bias due to incomplete data on 

vaccine exposure.

A secondary analysis used a cohort design that 

included exposed (1-21 days post vaccination) and 

unexposed (5.0-36.9 weeks of age except 0-21 days 

post vaccination) person-time. Poisson regression 

was used to adjust for age (using a quadratic risk 

function), sex, and data partner. Calendar time and 

interactions were not included. Although the primary 

design was thought to be better for controlling 

selection bias, the latter was expected to have higher 

power.

As can be seen in more detail in Table 3, Yih and 

colleagues19 found that for the first dose of RV5, the 

estimated relative risk for intussusception was 9.1 (95 

percent CI, 2.2 to 38.6), representing an attributable 

risk of 1.5 (95 percent CI, 0.2 to 3.2) per 100,000 

doses. The secondary analysis of RV1 suggested 

a potential risk, although the study of RV1 was 

underpowered. Thus, more than the simple results of 

one analysis, the patterns of positive findings where 

Table 3. Case Counts and Risk Estimates for Confirmed Intussusception After First Dose of RV5 and RV1

DESIGN
DAYS AFTER 

VACCINATION  
IN RISK WINDOW

NUMBER OF 
CASES IN RISK 

WINDOW

NUMBER OF CASES 
IN CONTROL 

WINDOW

RELATIVE 
RISK (RR)

95% 
CONFIDENCE 

INTERVAL

RV5

SCRI 1 to 7 5 3 9.1 (0.3 – 2.7)

SCRI 1 to 21 8 3 4.2 (1.1 – 16.0)

Cohort 1 to 21 8 97 2.6 (1.2 – 3.2)

RV1

SCRI 1 to 7 1 0 – –

SCRI 1 to 21 1 0 – –

Cohort 1 to 21 1 97 3.2 (0.4 – 22.9)
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study design considerations would most expect 

them helps to strengthen the evidence for a causal 

effect.

Design and Analysis of Natural and  
Quasi-Experiments

Natural and quasi-experiment are central concepts 

in the social sciences oriented program evaluation 

literature. In a quasi-experiment, allocation to 

treatment and comparison groups is not random, 

as occurs when a law or policy changes in one 

jurisdiction but not others. In a natural experiment, 

subjects are randomly assigned to treatment 

and control conditions by a random process not 

controlled by the researcher. A good example of 

the latter is the “Oregon experiment” in which 

funding limitations permitted expansion of Oregon’s 

Medicaid program to only 30,000 residents, chosen 

by lottery from 90,000 eligible persons.20

Although researchers differ in how they distinguish 

between natural and quasi-experiments, both 

approaches capitalize on deliberate changes in 

exposure to the treatment unrelated to other factors 

influencing outcomes, breaking the usual links that 

could lead to selection bias, reverse causation, 

and so on. Thus they address the first and third 

of Riegelman’s criteria for a contributory cause: 

the cause precedes the effect and altering the 

cause results in a change in the effect. As a result, 

associations between the intervention and the 

outcome are more easily regarded as causal. And 

because these studies typically use data gathered 

for patient management or administrative purposes, 

the possibility of observation bias is minimized.

The primary focus of the study design of natural and 

quasi-experiments is in making an unbiased estimate 

of the counterfactual in order to assess Riegelman’s 

second criterion, that the cause be associated with 

the effect. If assignment is random as in the Oregon 

experiment, this is not an issue as long as outcomes 

in the eligible non-participants are assessed. 

Otherwise, causal inference can be strengthened by 

(1) using a logic model to position data in context 

and consider likely confounders (observed and/

or unobserved), (2) quasi-experimental design, 

especially finding settings where exogenous changes 

are unlikely and appropriate control subjects are 

available (3) multiple pre- and post-intervention 

measurements and the use of Interrupted Time 

Series (ITS) methods (see below) when appropriate, 

(4) individual-level statistical analysis of the type 

discussed in the third paper in this series21 to control 

for relevant confounders, and (5) the use of pre-

existing data to control recall bias (e.g. medical 

records rather than patient recall about use of a drug 

thought to cause adverse effects).

A logic model is a graphical representation of 

the logical relationships between the resources, 

activities, outputs and outcomes of a program. 

Logic models clarify the “theory of change” for 

an intervention and help to ensure that evaluation 

studies focus on the critical intermediate and long-

term outcomes as well as possible confounders. 

They also can help to identify appropriate control 

groups. The generic logic model in Figure 1 

illustrates how logic models represent the expected 

relationship among program elements, outputs, 

and short- and long-term outcomes and how they 

relate to both program theory and external events. 

Specifying these expectations in advance can 

help determine what intermediate and mediating 

variables should be measured, and help to determine 

whether the results of observational studies do in 

fact reflect causal effects.

Wagenaar & Komro22 illustrate how quasi-

experimental design elements can produce strong 

evidence of both whether a law or policy change 

caused an effect as well as the magnitude of effect. 

These can be summarized as follows:
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1.	 Incorporate dozens or hundreds of repeated 

observations before and after an intervention 

creating a time series (i.e., use an interrupted 

time series analysis – see Stoto23).

2.	 Measure outcomes at an appropriate time 

resolution to enable examination of the expected 

pattern of effects over time based on a theory of 

the mechanisms of intervention’s effect.

3.	 Include comparisons in the design, including 

multiple jurisdictions with and without the 

intervention under study, comparison groups 

within a jurisdiction of those exposed and not 

exposed to the intervention, and comparison 

outcomes expected to be affected by the 

intervention and similar outcomes not expected 

to be affected by the intervention under study.

4.	 Replicate the study in additional jurisdictions 

implementing similar interventions.

5.	 Examine whether the “dose” of the intervention 

across jurisdictions or across time is 

systematically related to the size of the effect.

Figure 2 demonstrates how high time-resolution 

data have another important advantage furthering 

the quality of a policy evaluation. Based on theory 

regarding the mechanisms of an intervention’s 

effects, one has an implicit or (even better) explicit 

hypothesis on the expected pattern of the effect 

over time. Using several jurisdictions in comparison 

with the one implementing the intervention rather 

than just one often enhances causal inference. 

And comparisons of different kinds nested in a 

hierarchical fashion substantially strengthen the 

design. Figure 3 illustrates this approach, using a 

change in the legal drinking age as the example.24

Example of Natural and Quasi-Experiments: 

Massachusetts’s Health Care Reform

In 2006 Massachusetts passed comprehensive 

health care reform with the goal of near-universal 

coverage. The law offered subsidized private 

insurance, expanded Medicaid, and created an 

individual mandate, serving as a model for the 

Figure 1. Generic Logic Model
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Note: X = policy change. Source: Adapted from Wagenaar & Komro.22

Figure 2. Possible Patterns of Policy Effects Over Time
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Source: Adapted from Wagenaar & Komro.22

Figure 3. Hierarchical Multi-level Time-series Design: Legal Drinking Age Example
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Affordable Care Act. Thus, understanding the 

effects of the Massachusetts law has important 

policy implications. Here we review two separate 

evaluations of the law’s impact that illustrate the 

natural experiment design approach. Figure 4 is a 

simplified logic model for this reform. The primary 

goal was to make health insurance available to 

most residents of the Commonwealth. Insurance 

coverage, first of all, provides financial security. The 

link to health outcomes begins with an increase in 

the utilization of primary care services, which in turn 

would lead to an immediate decrease in hospital and 

emergency room (ER) utilization. Improved primary 

care access was also expected to eventually lead 

to a reduction in health care amenable mortality 

and improved health status. Health care costs and 

affordability was explicitly not a goal of the 2006 

law, so there is no link to the affordability box in 

Figure 4.

Starting before the law was implemented, Long 

and colleagues25 have been conducting an 

annual telephone survey of approximately 3,000 

Massachusetts adults ages 19 to 64, the group most 

likely to be affected by the insurance expansion. 

Low-income areas and uninsured adults were 

oversampled. Based on this analysis, the researchers 

found that uninsurance rates remained low and 

access to health care, particularly primary care, 

was strong.26 Figure 5 shows that the proportion 

of adults with any insurance rose immediately after 

the law went into effect and remained high. Primary 

care utilization, measured by the proportion of adults 

with a usual source of care showed a similar pattern. 

Emergency department visits and hospital inpatient 

stays (not shown) both declined starting in 2010, 

suggesting improvements in effectiveness of primary 

care in the year since the law was implemented. 

However, the affordability of health care (measured 

by the proportion who had problems paying bills), 

which was not a focus of the 2006 reform, remains 

an issue.

Noting these results, Sommers and colleagues27 

address the impact on population health, specifically 

to determine whether the Massachusetts reform 

was associated with changes in all-cause mortality 

and mortality from causes amenable to health 

care. Treating the reform as a quasi-experiment, 

the authors compared county-level mortality rates 

Figure 4. Simplified Logic Model for Massachusetts Health Care Reform
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before and after reform in Massachusetts versus a 

propensity score matched control group of counties 

in other states using a difference-in-differences 

analysis. So for outcome variable X,

Effect = (XMass, after 2006 - XMass, before 2006) - (Xcontrol, after 2006 - 

Xcontrol, before 2006)

The primary outcome was age-, sex-, and race-

specific all-cause mortality, and deaths from causes 

amenable to health care was a secondary outcome.

Based on this analysis, Sommers and colleagues28 

found that reform in Massachusetts was associated 

with a significant decrease in all-cause mortality 

compared with the control group (-2.9 percent; 

P=0.003, or an absolute decrease of 8.2 deaths 

per 100 000 adults; see Figure 6 and Table 4). 

Deaths from causes amenable to health care also 

significantly decreased (-4.5 percent; P=0.001). In 

addition, the changes were larger in counties with 

lower household incomes and higher pre-reform 

Figure 5. Impact of Massachusetts Health Care Reform on (a) Insurance, (b) Access to Primary Care 

(Usual Source of Care), (c) Emergency Department Use, and (d) Affordability (Problems Paying Bills)
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uninsured rates. They also found that reductions in 

mortality were largest in Massachusetts counties 

with lower incomes and lower insurance coverage 

before reform. Considered in conjunction with 

Long and colleagues’29 demonstration of significant 

gains in coverage, access to care, and self-reported 

health, Sommers and colleagues30 concluded that 

health reform in Massachusetts was associated with 

significant reductions in all-cause mortality and 

deaths from causes amenable to health care.

The authors note the limitations of the 

nonrandomized design and the possibility of 

unmeasured confounders, as well as the chance 

that the post-reform reduction in mortality in 

Massachusetts was due to other factors that 

differentially affected Massachusetts, such as the 

recession. As a result, they appropriately stop 

short of claiming definitive evidence of a causal 

relationship between the reform and the decline in 

mortality. Although the evidence is not definitive, 

Figure 6. Unadjusted Mortality Rates for Adults Aged 20 to 64 Years in Massachusetts Versus Control 

Group (2001–2010)
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they cite a number of factors deriving from the non-

experimental design principles that strengthen the 

case:

•	 The analysis was based not just on single pre- and 

post-intervention measures but annual data going 

back as far as 2001 for the mortality data.

•	 The relevant outcomes were measured annually 

for four years after the law’s implementation, 

permitting the authors to see first an increase 

in insurance coverage, second, improvement in 

primary care access, and finally, the impact on 

hospitalizations and health outcomes, as the 

theory of action would predict

•	 The analysis included multiple jurisdictions and 

comparison groups within Massachusetts and with 

other states. The analysis controlled for several 

distinct time- and county-specific economic 

measures by comparing each Massachusetts 

county to propensity score matched counties in 

other states. Within Massachusetts, the authors 

found that reductions in mortality were largest in 

counties with lower incomes and lower insurance 

coverage before reform, the areas likely to have 

had the greatest increase in access to care under 

reform.

•	 Within Massachusetts a comparison was made 

between outcomes expected to be affected by the 

intervention and similar outcomes not expected 

to be affected by the intervention under study. 

In particular, the larger proportional decrease in 

health care amenable mortality is consistent with 

the theory of action. The authors also found no 

evidence of a similar decline in mortality among 

elderly adults in Massachusetts, which would 

suggest a secular trend.

•	 Finally, the authors point out that it is challenging 

to identify factors other than health care reform 

that might have produced this pattern of results: a 

declining mortality rate since 2007 not present in 

similar counties elsewhere in the country, primarily 

for health care–amenable causes of death in adults 

aged 20 to 64 years (but not elderly adults), 

concentrated among poor and uninsured areas, 

and not explained by changes in poverty or 

unemployment rates.

Table 4. Drop in Mortality After Massachusetts Health Care Reform Among Adults Aged 20 to 64 

Years (2001-2010)

OUTCOME

UNADJUSTED MORTALITY PER 
100,000 ADULTS

ADJUSTED RELATIVE CHANGE 
(POSTREFORM - PREREFORM)

PRE-REFORM POST-REFORM DIFFERENCE 95% CI P VALUE

ALL-CAUSE MORTALITY

Massachusetts 283 274 2.9 (4.8 – 1.0) 0.003

Control group 297 299

HEALTH CARE-AMENABLE MORTALITY

Massachusetts 185 175 4.3 (6.2 – 2.7) <0.001

Control group 197 195

Source: Adapted from Sommers and colleagues.27
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Thus, while non-randomized studies can never 

definitively prove a cause and effect relationship, 

careful application of non-experimental design 

principles in this case make a very strong case. Such 

evidence may be “good enough” to inform decisions 

to replicate and/or spread health care interventions.

Planned Variation

When a researcher designs an experiment and 

allocates some subjects to treatment and other to 

control conditions, one result is a balance in the 

number of subjects in each exposure group. Making 

assignments by randomization helps to ensure 

that both observed and unobserved confounding 

variables are also balanced. But principles of 

experimental design can also help to achieve balance 

even without randomization. For instance, delayed-

start and stepped-wedge designs,31 in which some 

observational units are started on a treatment after 

others in a carefully planned way can be useful 

even if the assignment is not make at random. If 

attention is paid to unit characteristics thought 

to be associated with the outcome, researchers 

can at least help to control the effect of known 

confounders.

This “planned variation” approach can also be 

extended to more complex experimental designs. 

For instance, Zurovac and colleagues have 

proposed the use of multifactorial experiments 

paired with EHD to enable scientifically-rigorous 

testing of multiple facets of care provision at the 

same time in real-world settings where change 

is ongoing. This approach has the potential to 

help providers conduct rapid-cycle comparative 

effectiveness research and examine the impact 

of alternative ways of implementing care. Table 5 

illustrates this approach in terms of assignments of 

alternatives that test ways of operationalizing care 

management. Note that although a full-factorial 

experiment exploring all combinations of the 4 care 

management factors would require 16 experimental 

units, in this example only 4 units are needed to 

provide estimates of each factor’s impact as well 

as the first order interactions. The benefits of this 

design approach include statistical efficiency 

(minimizing the variance of parameter estimates) 

as well as the ability to test many facets of care 

provision simultaneously in real-world settings. Thus 

this approach combines the rigor of experimental 

design with the ability to produce results on 

the effectiveness of alternate approaches to 

multicomponent interventions in a single experiment. 

Although Zurovac and colleagues’33 proposal 

assumes random assignment of experimental units 

(health care practices participating in the study) to 

specific combinations of intervention components, 

the principles of multifactorial design can be valuable 

even without randomization. These designs can also 

treat characteristics of units as factors to estimate 

their effect on outcomes as well as interactions with 

intervention components.

Conclusions

The primary strength of study design approaches 

described in this section is that they study the 

impact of a deliberate intervention in real-world 

settings, which is critical for external validity. The 

primary question addressed by evaluation designs 

is how to estimate the counterfactual – what would 

have happened if the intervention had not been 

implemented. At the individual level, epidemiologic 

designs focus on identifying situations in which bias 

is minimized. Natural and quasi-experiments focus 

on situations where the change in assignment breaks 

the usual links that could lead to confounding, 

reverse causation, and so forth. And because these 

observational studies typically use data gathered 

for patient management or administrative purposes, 

the possibility of observation bias is minimized. As 

a result, associations between the intervention and 

the outcome are more easily regarded as causal. 
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The disadvantages are that one cannot necessarily 

attribute the effect to the intervention (as opposed 

to other things that might have changed), and the 

results do not indicate what about the intervention 

made a difference.

Because they cannot rely on randomization to 

establish causality, program evaluation methods 

demand a more careful consideration of the “theory” 

of the intervention and how it is expected to play 

out. A logic model describing this theory can 

help to design appropriate comparisons, account 

for all influential variables in a model, and help to 

ensure that evaluation studies focus on the critical 

intermediate and long-term outcomes as well as 

possible confounders.

Table 5. Assignments of Alternatives That Test Ways of Operationalizing Care Management

CARE 
MANAGER

FREQUENCY OF 
ROUTINE CONTACT 

BETWEEN CARE 
MANAGER AND 

MEMBER

INVOLVEMENT OF A 
MEDICAL NURSE IN 
MANAGEMENT OF 

COMPLEX MEDICAL 
CASES

FOLLOW-UP 
DURING HOSPITAL 
ADMISSION AND 

AFTER DISCHARGE

BROWN BAG 
REVIEW OF 

MEDICATION*

1 a) Contact 
frequency based  
on member risk

b) Medical nurse is 
always involved

a) Current practice: 
care manager 
contacts member 
during the admission, 
conducts an in-
person follow-up 
at discharge, and 
monitors as needed

a) No brown 
bag review of 
medication

2 b) More frequent 
contact (also based 
on member risk)

a) A medical nurse 
is involved as 
needed

b) Current practice, 
plus additional 
follow-up within a 
week of discharge, 
plus monitoring

b) Care manager 
performs a 
brown bag 
review for 
members with 
4+ prescriptions

3 a) Contact 
frequency based  
on member risk

b) Medical nurse is 
always involved

b) Current practice, 
plus additional 
follow-up within a 
week of discharge, 
plus monitoring

a) No brown 
bag review of 
medication

4 b) More frequent 
contact (also based 
on member risk)

a) A medical nurse 
is involved as 
needed

a) Current practice: 
care manager 
contacts member 
during the admission, 
conducts an in-
person follow-up 
at discharge, and 
monitors as needed

b) Care manager 
performs a 
brown bag 
review for 
members with 
4+ prescriptions

Source: Adapted from Zurovac and colleagues.32
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