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Muscle-Derived Angiopoietin-Like Protein 4 Is Induced by
Fatty Acids via Peroxisome Proliferator—Activated
Receptor (PPAR)-0 and Is of Metabolic Relevance in

Humans
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OBJECTIVE—Long-chain fatty acids (LCFAs) contribute to
metabolic homeostasis in part via gene regulation. This study’s
objective was to identify novel LCFA target genes in human
skeletal muscle cells (myotubes).

RESEARCH DESIGN AND METHODS—In vitro methods
included culture and treatment of human myotubes and C2C12
cells, gene array analysis, real-time RT-PCR, Western blotting,
ELISA, chromatin immunoprecipitation, and RNA interference.
Human subjects (two cohorts) were characterized by oral glu-
cose tolerance test, hyperinsulinemic-euglycemic clamp, mag-
netic resonance imaging and spectroscopy, and standard blood
analyses (glucose, insulin, C-peptide, and plasma lipids).

RESULTS—We show here that ANGPTL% (encoding angiopoi-
etin-like protein 4) represents a prominent LCFA-responsive
gene in human myotubes. LCFA activated peroxisome prolif-
erator-activated receptor (PPAR)-3, but not PPAR-a or -v,
and pharmacological activation of PPAR-8 markedly induced
ANGPTLA4 production and secretion. In C2C12 myocytes, knock-
down of PPARD, but not of PPARG, blocked LCFA-mediated
ANGPTL% induction, and LCFA treatment resulted in PPAR-3
recruitment to the ANGPTL4 gene. In addition, pharmacological
PPAR-3 activation induced LIPE (encoding hormone-sensitive
lipase), and this response crucially depended on ANGPTL4, as
revealed by ANGPTL4 knockdown. In a human cohort of 108
thoroughly phenotyped subjects, plasma ANGPTL4 positively
correlated with fasting nonesterified fatty acids (P = 0.0036) and
adipose tissue lipolysis (P = 0.0012). Moreover, in 38 myotube
donors, plasma ANGPTLA4 levels and adipose tissue lipolysis in
vivo were reflected by basal myotube ANGPTL4 expression in
vitro (P = 0.02, both).

CONCLUSIONS—ANGPTIA is produced by human myotubes
in response to LCFA via PPAR-3, and muscle-derived ANGPTL4
seems to be of systemic relevance in humans. Diabetes 58:
579-589, 2009
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he metabolic syndrome, a cluster of health prob-

lems including visceral obesity, subclinical in-

flammation, insulin resistance, and type 2

diabetes, is the prevailing metabolic disorder in
Western industrialized countries. The syndrome is caused
by environmental factors (high-caloric food intake, seden-
tary lifestyle) combined with a genetic predisposition.
Elevated plasma nonesterified fatty acid (NEFA) levels are
frequently observed in metabolic syndrome patients and
result from increased lipolysis of insulin-resistant white
adipose tissue (WAT) and/or chronically excessive dietary
fat intake (1).

Among the major plasma long-chain fatty acid (LCFA)
species, the saturated fatty acids palmitate and stearate
are of particular interest with respect to their potential
involvement in metabolic disarrangements, such as hyper-
glycemia, hyperinsulinemia, hypertriglyceridemia, and
B-cell dysfunction: administered chronically, they reduce
muscular glucose disposal (2), promote hepatic triglycer-
ide and VLDL synthesis (3), impair hepatic insulin clear-
ance (4), and inhibit pancreatic insulin secretion (5). One
proposed mechanism underlying all these metabolic LCFA
effects is ectopic lipid deposition in muscle, liver, and
pancreatic islets. The molecular links between LCFA ac-
tions and ectopic lipid deposition are however not well
understood.

Recent data suggest that saturated fatty acids exert
direct gene regulatory effects and may also in this way
contribute to metabolic syndrome (6). We reported that
palmitate and stearate, via nuclear factor kB (NF-kB)
activation, provoke an inflammatory response in human
skeletal muscle (SKM) and coronary artery endothelial
cells by induction of the gene encoding interleukin-6 (7,8).
Very high concentrations of these LCFA species, again via
NF-kB, induce pro-apoptotic genes and promote apoptotic
death of human coronary artery endothelial cells (9).
Furthermore, saturated fatty acids impair mitochondrial
activity of SKM cells by repression of the gene encoding
peroxisome proliferator-activated receptor (PPAR)-y co-
activator-1B8 (10), and reduced muscular oxidative capac-
ity was clearly demonstrated in patients with insulin
resistance and type 2 diabetes (11,12). By contrast, unsat-
urated fatty acids, such as palmitoleate, oleate, and li-
noleate, increase mitochondrial activity of SKM cells by
induction of PPAR-y coactivator-la (10).

Even though LCFA-regulated transcription factors (NF-
kB, PPARs) are known to date, LCFA-dependent gene
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TABLE 1

Genes induced by both palmitate and linoleate in human myotubes

Fold-change by Fold-change by

Gene symbol UniGene ID palmitate linoleate

Angiopoietin-like 4 ANGPTL4 Hs0.9613 50.4 33.56

Granulocyte colony-stimulating factor CSF3 Hs0.2233 11.3 3.48
Pyruvate dehydrogenase kinase 4 PDK4 Hs0.8364 8.06 7.89
Biglycan BGN Hs0.821 6.77 245
Adipophilin ADFP Hs0.3416 5.66 5.98
Signal-induced proliferation-associated protein 1 SIPA1 Hs0.530477 5.39 4.44
Elastin ELN Hs0.252418 4.34 2.10
Protocadherin y A12 PCDHGA12 - 3.86 2.27
Spermine oxidase SMOX Hs0.433337 3.73 3.81
Insulin-like growth factor-binding protein 4 IGFBP4 Hs0.462998 3.51 2.58
myc-associated zinc finger protein MAZ Hs0.549052 3.48 2.39
LDL receptor-related protein 1 LRP1 Hs0.162757 3.47 2.52
Heparan sulfate proteoglycan 2 HSPG2 Hs0.550478 3.42 2.46
Collagen a3(V) chain COL5A3 Hs0.235368 3.27 2.66
Brain-specific angiogenesis inhibitor 2 BAI2 Hs0.524138 3.25 2.64
Xaa-Pro aminopeptidase 2 XPNPEP2 Hs0.170499 3.20 2.33
Transforming growth factor g1 TGFB1 Hs0.1103 3.16 2.01
CLIP-170-related 59 kDa protein CLIPR-59 Hs0.466539 2.98 2.25
Zinc finger protein 580 ZNF580 Hs0.94392 2.81 2.00
Vitronectin VTN Hs0.2257 2.71 2.03
Glucocorticoid receptor DNA-binding factor 1 GRLF1 Hs0.509447 2.64 243
Nucleobindin 1 NUCB1 Hs0.515524 2.62 2.17
Hyaluronan synthase 1 HAS1 Hs0.57697 2.62 2.04
Zinc and ring finger 1 ZNRF1 Hs0.427284 2.60 2.16
Inositol monophosphatase 2 IMPA2 Hs0.367992 2.57 241
Endothelin B receptor EDNRB Hs0.82002 2.51 2.50
SH3 domain GRB2-like protein B2 SH3GLB2 Hs0.460238 2.50 2.83
Meteorin, glial cell differentiation regulator-like METRNL Hs0.514615 2.45 2.11
SBF'1 protein SBF1 Hs0.280202 2.35 2.13
Glucosidase 2 B-subunit PRKCSH Hs0.512640 2.35 2.04
Mitogen-activated protein kinase 7 MAPK7 Hs0.150136 2.31 2.06
Replication initiator 1 REPIN1 Hs0.521289 2.20 2.08
fos-like antigen 1 FOSL1 Hs0.283565 2.14 2.06
5'-TG-3" interacting factor TGIF Hs0.373550 2.07 2.16
KIAA0467 protein KIAA0467 Hs0.301943 2.03 2.19

Cells were treated for 20 h with 1.25% BSA for control or 0.5 mmol/l LCFA (changes =2-fold, LCFA vs. BSA).

regulation and its involvement in metabolic disease is not
yet well understood. Therefore, it was this study’s
objective to identify, in human SKM cells differentiated
in vitro (myotubes), novel LCFA target genes that could
represent potential candidate contributors to the meta-
bolic syndrome.

RESEARCH DESIGN AND METHODS

A detailed description of the methods is given in the online appendix (found
at http:/diabetes.diabetesjournals.org/cgi/content/full/db07-1438/DC1).

Primary human myotubes and murine C2C12 myocytes were used for cell
experiments. Microarray analysis was performed with Affymetrix Human
Genome U133 Plus 2.0 arrays. Real-time RT-PCR was performed with SYBR
Green I dye on a LightCycler. The anti-ANGPTL4 antibody from BioVendor
was used for immunoblotting. Intracellular and secreted ANGPTL4 was
quantified by ELISA. For RNA interference (RNAi), siGENOME siRNA sets
designed by Dharmacon were used. Chromatin immunoprecipitation (ChIP)
analysis was performed with the anti—-PPAR-8 antibody K-20 from Santa Cruz
Biotechnology.

All 38 myotube donors underwent an oral glucose tolerance test (OGTT)
and a hyperinsulinemic-euglycemic clamp. The 108 subjects with plasma
ANGPTL4 measurements were characterized by OGTT and a subgroup of 91
subjects also by hyperinsulinemic-euglycemic clamp. All subjects gave in-
formed written consent to the study. The protocol was approved by the local
ethics committee. Total, visceral, and nonvisceral fat was determined by
magnetic resonance imaging. Intramyocellular and intrahepatic lipids were
measured by magnetic resonance spectroscopy. Glucose, insulin, C-peptide,
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NEFA, glycerol, triglycerides, and ANGPTL4 were quantified by standard
laboratory methods.

RESULTS AND DISCUSSION

Gene array analysis. In an initial attempt to identify
novel LCFA target genes related to metabolic syndrome,
we treated human myotubes derived from a healthy male
German donor with bovine serum albumin (BSA; carrier
control), the saturated fatty acid palmitate, or the unsat-
urated fatty acid linoleate and performed whole-genome
gene array analysis. Palmitate treatment repressed 181 and
induced 316 genes, and linoleate repressed 30 and induced
104 genes. Thus, LCFAs appear to influence the expression
of numerous genes in human myotubes. Notably, only five
genes were repressed (Supplementary Table 3, found in
the online appendix), and only 35 genes were induced
(Table 1) by both palmitate and linoleate. Thus, the
majority of LCFA-regulated genes appear to represent
LCFA-specific targets, and modulation of their expression
might depend on LCFA chain length and/or the degree of
saturation. The gene that revealed highest fold-induction
by both palmitate and linoleate was ANGPTL4 (Table 1),
encoding angiopoietin-like protein 4 (ANGPTL4). The sole
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purpose of this single nonreplicated experiment was to
generate new hypotheses. Therefore, these results cannot
be generalized.

ANGPTILA was described as hepatic fibrinogen/angiopoi-

etin-related protein (13), fasting-induced adipose factor
(14), and PPAR-vy target gene related to angiopoietin (15)
and was characterized as a secreted protein predomi-
nantly produced by WAT, but also at lower levels by other
tissues (13-15). The role of ANGPTL4 was extensively
explored in mice by injection, targeted gene knockout, and
transgenic and retroviral overexpression, and in this way,
ANGPTIL4 was shown to affect lipid metabolism: by inhi-
bition of lipoprotein lipase (LPL), clearance of VLDL and
chylomicrons is blocked and hypertriglyceridemia is pro-
voked (16-20). Furthermore, ANGPTL4 stimulates WAT
lipolysis (21) resulting in elevated plasma glycerol and
NEFA levels (16,21). Besides hyperlipidemia, ANGPTL4
promotes WAT weight loss and hepatic steatosis (18,21).
Importantly, ANPTL4 expression was consistently found
upregulated in genetic mouse models of obesity and type 2
diabetes (15). Thus, ANGPTL4 represents a metabolically
relevant candidate gene induced by common plasma LCFA
species.
Human myotube ANGPTL4 expression before and
after LCFA treatment. To assess whether ANGPTILA is
produced by human myotubes at relevant levels, we
measured basal ANGPTL4 mRNA expression by real-time
RT-PCR. Untreated human myotubes expressed 20.9 = 7.2
fg ANGPTL4 mRNA/pg total RNA (mean * SD; n = 5).
This level was not only in the range of that found in a
representative human SKM biopsy (12 fg ANGPTL4
mRNA/pg total RNA) but also represents ~40% of the
mRNA level found in subcutaneous WAT (56 fg ANGPTL4
mRNA/pg total RNA), a major site of ANGPTL4
expression.

To confirm the gene array results and to explore the
influence of other plasma LCFAs on ANGPTL4 expression,
we treated human myotubes with BSA or selected major
plasma LCFA species and subsequently quantified the
cellular ANGPTL4 mRNA contents by real-time RT-PCR
(normalized to 28S rRNA). ANGPTL4 mRNA expression
was induced 10- to 50-fold by all LCFAs tested (Fig. 1A).
The ANGPTL4 mRNA levels found after treatment with
palmitate, stearate, palmitoleate, oleate, linoleate, or a
combination of palmitate and linoleate were significantly
different from their respective BSA controls (Fig. 1A4). The
ANGPTL4 mRNA contents detected after treatment with a
combination of palmitate and linoleate did not signifi-
cantly differ from those obtained with palmitate or li-
noleate alone. Thus, treatment with palmitate or linoleate
alone might already be sufficient to reach the maximum
response of LCFA-inducible ANGPTL% expression. More-
over, ANGPTL4% induction depended neither on the chain
length nor on the saturated/unsaturated nature of the
LCFA but, rather, represented a general LCFA effect. To
verify these LCFA-mediated gene regulations at the pro-
tein level, we used the first commercially available ELISA
kit and measured intracellular ANGPTL4 contents after
20 h LCFA treatment. All LCFAs increased intracellular
ANGPTIA protein 1.5- to 2.3-fold, with palmitate, oleate,
and linoleate reaching statistical significance (Fig. 1B).
The observed differences between mRNA and protein
induction rates are a well-known phenomenon that most
probably reflects that gene transcription rate and mRNA
half-life are not necessarily tightly linked to translation
efficiency and protein half-life. In addition, we tried to
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FIG. 1. ANGPTL4 production by human myotubes and its regulation by
LCFAs. Cells were treated for 20 h with 1.25% BSA (control for
myristate, palmitate, palmitoleate, oleate, and linoleate), 2.5% BSA
(control for stearate and palmitate + linoleate), or 0.5 mmol/l of each
LCFA. A and C: Induction of the PPAR target genes ANGPTL% (A) and
PDK% (C) by LCFA. RNA was quantified by real-time RT-PCR (relative
arbitrary units [RAU]). B: Intracellular ANGPTL4 protein levels. AN-
GPTL4 protein was measured by ELISA and normalized to cellular
protein contents. Statistics: P = 0.0008 (4), P = 0.0133 (B), and P <
0.0001 (C); ANOVA; n = 4; *significantly different from 1.25% BSA
(post hoc P < 0.05); **significantly different from 2.5% BSA (post hoc
P < 0.05).
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measure and visualize secreted ANGPTL4 protein. How-
ever, the high BSA concentrations used for LCFA treat-
ment interfered with the detection of secreted ANGPTLA.
To see whether human myotube ANGPTL% expression
was modulated by glucose, we performed a dose-response
experiment with 2.5, 5, 10, and 25 mmol/l glucose (added
to glucose-free medium). After 20 h, there was no signifi-
cant glucose effect on basal myotube ANGPTL4 expres-
sion (P = 0.9, ANOVA; n = 4).

Because ANGPTL4 was described as a fasting-induced

factor (14,15,22) and plasma LCFAs are known to be
elevated during the fasting state due to unsuppressed
WAT lipolysis, these results turn plasma LCFAs into
potential candidate mediators of fasting-induced
ANGPTL4 production.
Modulation of human myotube PPAR isoform expres-
sion and activation by LCFAs. ANGPTL% is a known
target gene of PPAR-a and -8 in liver (14,22) and PPAR~y in
WAT (14,15), and a PPAR response element was identified
in intron 3 of the ANGPTL4 gene (23). To see whether
LCFAs enhance myotube ANGPTL expression via induc-
tion of the genes encoding PPAR-a, -y, or -8 (PPARA,
PPARG, or PPARD, respectively), we quantified the re-
spective mRNA levels before and after LCFA treatment. In
untreated human myotubes, the PPARD mRNA contents
were ~10-fold higher than those of PPARA and PPARG
(data not shown). Neither PPARA nor PPARG mRNA
contents were significantly altered by LCFA treatment
when compared with their respective BSA controls (P =
0.2, both, ANOVA; n = 5). Furthermore, all LCFAs shown
above to induce ANGPTL4 (Fig. 1A) did not induce
PPARD expression, with only one exception: stearate
increased PPARD mRNA contents 2.6-fold (P < 0.0001,
ANOVA; post hoc P < 0.05; n = 5). This stearate-specific
effect, however, cannot explain the general effect of LCFA
on ANGPTL% expression. To explore whether stearate’s
inductive effect is translated to the protein level, we
performed immunoblot analysis. None of the LCFAs
tested, including stearate, provoked relevant changes in
PPAR-3 protein after 20 h of treatment (n = 3; data not
shown). Therefore, we suggest that LCFAs act as PPAR
ligands or activators (intracellularly metabolized to ligands),
but not as regulators of PPAR expression/production.

To examine whether LCFAs are able to activate one of
the three PPAR isoforms in human myotubes, we also
quantified the mRNA levels of PPAR target genes, i.e.,
PDK% (encoding pyruvate dehydrogenase kinase 4) as a
target of PPAR-S and -a (24), CD36 (encoding fatty acid
translocase) and UCP3 (encoding uncoupling protein 3) as
PPAR-a-specific targets (25,26), and PPARG as a target of
PPAR-y itself (27). Compared with their respective BSA
controls, none of the LCFAs modulated the expression of
CD36, UCP3, or PPARG in these cells (P = 04, all,
ANOVA; n = 4). By contrast, all LCFA induced PDK%
mRNA expression 7- to 22-fold, and the effects of palmi-
tate, palmitoleate, oleate, linoleate, and the combination of
palmitate and linoleate were statistically significant (Fig.
1C). This led us to assume that the LCFAs tested in this
study selectively activate PPAR-6 in human myotubes, at
least at the concentration tested (0.5 mmol/l).
Stimulation of human myotube ANGPTL4 production
by pharmacological PPAR activation. To further inves-
tigate the role of PPAR isoforms in human myotube
ANGPTL% expression, we treated the cells with the PPAR-
a—specific fibrates Wy-14,643 and fenofibrate, the PPAR-y—
specific thiazolidinediones troglitazone and rosiglitazone,
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and the PPAR-3-specific activator GW501516. As presented
in Fig. 24, ANGPTL%4 mRNA expression was markedly in-
duced by GW501516 and moderately induced by troglitazone
(17-fold and 4-fold, respectively). By contrast, ANGPTL%
mRNA expression was neither altered by rosiglitazone, a
thiazolidinedione with 10-fold higher affinity for PPAR~y than
troglitazone, nor by any of the fibrates tested. Only
GW501516 treatment reached a level of ANGPTL4 induction
comparable to that found with LCFAs. Furthermore,
ANGPTL% induction by GW501516 followed the same kinet-
ics as the other PPAR-3 target gene PDK4 (Figs. 2B and 20).
We also tested GW501516’s effect on intracellular ANGPTL4
protein contents using ELISA. GW501516 treatment (1
pmol/l, 20 h) increased intracellular ANGPTL4 protein 2.5-
fold over DMSO control (365.6 = 52.9 vs. 908.2 = 154.0
pg/mg; P = 0.0158, ¢ test; n = 4). These data strengthened our
suggestion of PPAR-6 being a crucial mediator of LCFA-
induced ANGPTL4 expression in human myotubes.

In addition, 48-h treatment of human myotubes with
GW501516 resulted in continuous accumulation of
ANGPTLA4 protein in the culture supernatant (Fig. 2D).
Hence, human ANGPTL4 can be added to the novel and
growing list of muscle-derived secreted proteins with
metabolic functions (myokines), which also comprises
interleukin-6 (28), interleukin-15 (29), and musclin (30).
Besides full-length ANGPTL4 (~70 kDa), a 50-kDa
COOH-terminal and a 26-kDa NH,-terminal fragment
(both with biological activity) were reported to circu-
late in the bloodstream (18,23,31). Therefore, we asked
whether ANGPTL4 secreted into the supernatant by
GW501516-treated human myotubes is proteolytically
cleaved. Immunoblotting revealed that both full-length
ANGPTL4 and the COOH-terminal fragment accumu-
lated in the culture supernatant during the treatment
period (Fig. 2F). The NH,-terminal fragment could not
be detected with antibodies from different suppliers
directed against full-length or the NH,-terminal part of
ANGPTL4 and, thus, seems to be rapidly degraded. In
conclusion, ANGPTL4 secreted by human myotubes is
cleaved and biologically activated.

Role of PPAR-6 in LCFA-enhanced ANGPTL4 expres-
sion in C2C12 myocytes. To evidence that LCFA-
induced myocyte ANGPTL4 expression depends on
PPAR-3, we knocked down PPARD expression by RNAi.
This was done in murine C2C12 myocytes because human
myotubes could not be efficiently transfected. First, we
treated C2C12 myocytes with representative saturated
fatty acid and unsaturated fatty acid species. As presented
in Fig. 34, all LCFAs tested increased the C2C12 ANGPTL4
mRNA contents when compared with their respective BSA
controls, and the effects of stearate, oleate, and linoleate
reached the level of significance. Thus, LCFA-induced
ANGPTL4 expression was not restricted to human myo-
tubes but was reproduced in a murine SKM cell line.
Moreover, as in human myotubes, GW501516 treatment
induced ANGPTL4% mRNA expression up to 20-fold in
C2C12 cells (Fig. 3B). As depicted in Fig. 3C, transfection
with siRNA directed against PPARD, but not with control
siRNA directed against bacterial luciferase, reduced
C2C12 PPARD mRNA contents by 82%. After PPARD
knockdown, oleate-induced ANGPTL4 expression was sig-
nificantly impaired (2.4-fold in the presence vs. 6.8-fold in
the absence of PPARD siRNA); moreover, the oleate effect
was no longer significant (Fig. 3D). Furthermore, control
transfection with siRNA directed against bacterial lucif-
erase still allowed marked ANGPTL4 induction by oleate
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FIG. 2. Induction of ANGPTL4 production in human myotubes by pharmacological PPAR-3 activation. A: Induction of ANGPTL% expression by
isoform-specific PPAR agonists. Cells were treated for 20 h with 0.1% DMSO (carrier control), 10 pmol/l1 Wy-14,643, 60 pmol/l fenofibrate, 10
pmol/l troglitazone, 1 pmol/l rosiglitazone, or 1 pmol/l GW501516. RNA was quantified by real-time RT-PCR. Statistics: P < 0.0001; ANOVA; n =
4; *significantly different from DMSO (post hoc P < 0.05). B and C: Time-dependent induction of ANGPTL% (B) and PDK% (C) by GW501516. Cells
were treated for 48 h with 0.1% DMSO or 1 pmol/l GW501516. RNA was quantified by real-time RT-PCR. Statistics: *significant differences
between treatment groups over time: P < 0.0001 (B) and P = 0.0021 (C); time versus treatment; MANOVA; n = 3. D: Time-dependent stimulation
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MANOVA; n = 3. E: Cleavage of secreted ANGPTL4 during GW501516 treatment. Cells were treated for 48 h with 1 pmol/l GW501516.

Supernatants conditioned by human myotube cultures derived from two donors were subjected to immunoblot analysis.

(Fig. 3D). Thus, induction of ANGPTL4 expression in
C2C12 myocytes by the representative LCFA oleate re-
quires PPAR-3. Importantly, C2C12 PPARA expression
ranged at the detection limit of the real-time PCR method,
even upon utilization of sensitivity-enhancing hybridiza-
tion probes. Therefore, we conclude that PPARA is not
expressed in these cells and is not involved in LCFA-
induced ANGPTL4 expression. Transfection of the cells
with siRNA directed against PPARG, but not with control
siRNA, reduced C2C12 PPARG expression by 88%. How-
ever, this manipulation had no significant impact on
oleate-induced ANGPTL4% expression (P = 1.0, ¢ test; n =
3). Hence, LCFA effects on ANGPTL4 expression are
specifically mediated by PPAR-S.

To ultimately prove that PPAR-S is activated by LCFAs
and binds to the ANGPTL% gene, we performed ChIP
analysis in C2C12 cells treated for 6 h with oleate. In the
anti-PPAR-3 immunoprecipitate, markedly more AN-
GPTL% intron 2 DNA (harboring the PPRE) could be
detected in oleate-treated cells compared with BSA-
treated cells (Fig. 3E). This demonstrates that PPAR-5 is
activated and recruited to the PPRE of the ANGPTL% gene
upon LCFA treatment.

DIABETES, VOL. 58, MARCH 2009

Effect of pharmacological ANGPTL4 induction on
the expression of C2C12 myocyte lipases. ANGPTL4
is reported to enhance WAT lipolysis via induction of
adipose triglyceride lipase (21). We therefore asked
whether triglyceride lipases of SKM cells, which are re-
quired for breakdown of intramyocellular triglycerides,
are also under the control of muscle-derived ANGPTL4
(MANGPTL4). Untreated C2C12 myocytes expressed
46.3 = 10.6 fg PNPLA2 mRNA (encoding adipose triglyc-
eride lipase) and 11.8 = 2.0 fg LIPE mRNA (encoding
hormone-sensitive lipase)/ug total RNA (means * SD; n =
3). Treatment of C2C12 cells with GW501516 provoked
significant increments over time of LIPE and PNPLA2
mRNA (Fig. 4A and B) compared with DMSO (carrier
control). However, the kinetics of both gene regulations
was completely different from that of the aforementioned
PPAR-$ target genes PDK4 and ANGPTL4% in that these
lipases showed delayed induction (compare Fig. 2B and C
with Fig. 4A and B). This suggests that LIPE and PNPLA2
are not direct PPAR-3 target genes.

The GW501516 effect on PNPLAZ2 expression was only
obvious at very late time points (beyond 24 h after start
of treatment) when DMSO alone also revealed some
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FIG. 3. Role of PPAR-6 in LCFA-induced ANGPTL expression in C2C12 myocytes. A: Regulation of C2C12 ANGPTL% expression by LCFAs. Cells
were treated for 20 h with 1.25% BSA, 2.5% BSA, or 0.5 mmol/l of each LCFA. RNA was quantified by real-time RT-PCR (relative arbitrary units
[RAU]). Statistics: P = 0.0012; ANOVA; n = 3; *significantly different from 1.25% BSA (post hoc P < 0.05); **significantly different from 2.5% BSA
(post hoc P < 0.05). B: Time-dependent induction of ANGPTL% by GW501516. Cells were treated for 20 h with 0.1% DMSO or 1 pmol/l GW501516.
RNA was quantified by real-time RT-PCR. Statistics: *significant differences between treatment groups over time: P < 0.0001; time versus
treatment; MANOVA; n = 3. C: Knockdown of C2C12 PPARD expression by RNAi. Cells were left untreated (basal) or were treated for 8 h with
siRNA directed against bacterial luciferase (for control) or PPARD, respectively. Cells were lysed after siRNA washout and incubation with fresh
medium for 16 h. RNA was quantified by real-time RT-PCR. Statistics: P < 0.0001; ANOVA; n = 3; *significantly different from basal (post hoc P <
0.05). D: Oleate-induced ANGPTL% expression of C2C12 cells after PPARD knockdown. Cells were left untreated or were treated for 8 h with
siRNA directed against bacterial luciferase (for control) or PPARD, respectively. After siRNA washout and 16-h incubation with fresh medium,
cells were treated for 20 h with 1.25% BSA or 0.5 mmol/l oleate. RNA was quantified by real-time RT-PCR. Statistics: P = 0.0217; ANOVA; n =
3; *significantly different from BSA (post hoc P < 0.05); **significantly different from oleate + control siRNA (post hoc P < 0.05). E:
Oleate-induced recruitment of PPAR-6 to the ANGPTLY gene. Cells were treated for 6 h with 1.25% BSA or 0.5 mmol/l oleate, respectively. After
cross-linking with formaldehyde, cells were subjected to anti-PPAR-8 ChIP. The co-immunoprecipitated DNA was analyzed for the presence of

ANPTL4 DNA using PCR amplification of a 310-bp fragment harboring the PPRE in intron 3.

gene regulatory effects. Using RNAi, we therefore as-
sessed here the potential autocrine/paracrine role of
myocyte ANGPTL4 expression during the moderately
delayed stage of LIPE expression (at 20 h of treatment).
As depicted in Fig. 4C, transfection with siRNA directed
against ANGPTL4, but not with control siRNA directed
against bacterial luciferase, reduced the GW501516-induced
ANGPTL% mRNA contents by 90%. The ANGPTL4 knock-
down significantly impaired GW501516-mediated LIPE in-
duction (1.6-fold in the presence vs. 2.6-fold in the absence of
ANGPTL% siRNA); in addition, the GW501516 effect was no
longer significant (Fig. 4D). Again, control transfection with
bacterial luciferase siRNA did not significantly alter the
GWb501516 effect on LIPE expression (Fig. 4D).

Here, we show that pharmacological PPAR-5 activation
upregulates LIPE expression in C2C12 SKM cells and
provide preliminary evidence for a role of mANGPTL4 in
this gene regulatory event. LIPE induction is supposed to
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enhance intramyocellular lipolysis and to increase endog-
enous fatty acyl-CoA, the preferred substrate of SKM
oxidative metabolism stimulated by PPAR-8 agonists (32).
Moreover, this finding could point to an autocrine/para-
crine function of mANGPTL4 in SKM. To corroborate the
role of mMANGPTLA4 in the breakdown of intramyocellular
lipids, further studies, e.g., in muscle-specific PPAR-8 gain-
and loss-of-function animal models, are clearly needed.
Because C2C12 cells do not store measurable amounts of
triglycerides (data not shown), other muscle cell models
are required to study ANGPTIA4’s lipolytic effect at the
cellular level.

Relationship between plasma ANGPTL4 and meta-
bolic traits in humans. Because our in vitro data dem-
onstrated a close relationship between ANGPTL4 and lipid
metabolism, we assessed this protein’s role in lipid metab-
olism, insulin sensitivity, and insulin secretion in humans
in vivo. To this end, we quantified plasma ANGPTL4 in 108
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FIG. 4. ANGPTL4-dependent LIPE expression in C2C12 myocytes. A and B: Time-dependent induction of C2C12 LIPE (A) and PNPLA2 (B) by
GW501516. Cells were treated for 48 h with 0.1% DMSO or 1 pmol/l1 GW501516. RNA was quantified by real-time RT-PCR (relative arbitrary units
[RAU]). Statistics: *significant differences between treatment groups over time: P = 0.0007 (A) and P = 0.0002 (B); time versus treatment;
MANOVA; n = 3. C: Knockdown of C2C12 ANGPTL% expression by RNAi. Cells were treated for 8 h with 1 pmol/l1 GW501516 alone (control) or
with GW501516 in combination with siRNA directed against bacterial luciferase or ANGPTL%, respectively. Cells were lysed after siRNA washout
and incubation with fresh GW501516-containing medium for 16 h. RNA was quantified by real-time RT-PCR. Statistics: P < 0.0001; ANOVA; n =
3; *significantly different from control (post hoc P < 0.05). D: C2C12 LIPE expression after ANGPTL% knockdown. Cells were treated as
described above (see C). RNA was quantified by real-time RT-PCR. Statistics: P = 0.0063; ANOVA; n = 3; *significantly different from DMSO (post
hoc P < 0.05); **significantly different from GW501516 + control siRNA (post hoc P < 0.05).

thoroughly phenotyped participants of the Tuebingen Life- 30.0-48.4 kg/m% n = 39) subjects revealed significantly
style Intervention Program (TULIP) (33-36), a cohort elevated ANGPTL4 levels in the obese subgroup (P =
characterized by a wide range of age, BMI, body fat 0.0172, ¢ test). Thus, plasma ANGPTL4 is influenced by
content, insulin sensitivity, and insulin secretion (clinical body adiposity reflecting ANGPTL4 production by WAT
characteristics are presented in Supplementary Table 2) (13-15). Ectopic (intrahepatic and intramyocellular) lipids
using ELISA. measured by magnetic resonance spectroscopy were nei-
The mean plasma ANGPTL4 concentration measured ther associated with plasma ANGPTL4 in the overall
was 1.73 = 0.11 ng/ml (means = SE; range 0.37-8.00 cohort (P = 0.6, all; adjusted for sex, age, and BMI) nor in
ng/ml). The plasma ANGPTL4 levels were not correlated the lean and obese subgroups (P = 0.07, all; adjusted for
with sex or age (P = 0.9, both), and this is in good sex and age). Thus, circulating ANGPTL4 does not appear
agreement with recently published data (37). There were to be involved in lipid breakdown in human muscle. This,
no significant correlations with BMI; waist-to-hip ratio; however, does not exclude a role of locally produced
body fat measured by bioelectrical impedance; total, viss mMANGPTL4 in muscle lipolysis.
ceral, and nonvisceral fat mass measured by magnetic As to metabolic traits, plasma ANGPTL4 levels did not
resonance imaging; or plasma levels of adiponectin and reveal significant associations with plasma glucose or
leptin (P = 0.06, all, after appropriate adjustments). How- insulin concentrations (in the fasting state as well as
ever, stratification of the cohort into lean (BMI <27 kg/m?, ~ during OGTT), with OGTT- and hyperinsulinemic-euglyce-
19.5-26.9 kg/m% n = 30) and obese (BMI =30 kg/m® mic clamp—derived indexes of insulin sensitivity, or with
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FIG. 5. Association of ANGPTL4 with lipid metabolism in humans. A and B: Association of human plasma ANGPTL4 with fasting NEFA (A) and
WAT lipolysis (B). Plasma ANGPTL4 and NEFA were determined in 108 subjects. A: Fasting plasma NEFAs were adjusted for sex, age, and BMI.
B: As an estimate of WAT lipolysis, the area under the curve (AUC) of NEFA during OGTT was used and adjusted for sex, age, BMI, and the AUC
of insulin during OGTT. Adjustments were achieved by multivariate linear regression modeling. C, D, and E: Association of basal human myotube
ANGPTLY expression with basal PPARD expression (C), WAT lipolysis of the donors (D), and plasma ANGPTL4 levels of the donors (E). RNA
was quantified by real-time RT-PCR (relative arbitrary units [RAU]). Glycerol and ANGPTL4 levels were measured in plasma. Data derived from
38 human donors are plotted. C and E: Unadjusted data are shown. In D, as an estimate of WAT lipolysis, the AUC of glycerol during OGTT was
used and adjusted for sex, age, BMI, and the AUC of insulin during OGTT. Adjustments were achieved by multivariate linear regression modeling.

indexes of insulin secretion, such as plasma C-peptide
levels at 30 min of OGTT and OGTT-derived first-phase
insulin secretion in the overall cohort (P = 0.24, all, after
appropriate adjustments) or in the lean and obese sub-
groups (P = 0.3, all, after appropriate adjustments).
Plasma triglyceride concentrations were also not signifi-
cantly associated with ANGPTL4 before (P = 0.14; ad-
justed for sex, age, and BMI) and after stratification into
lean and obese subjects (P = 0.3, all; adjusted for sex and
age). Hence, the hypertriglyceridemic action of ANGPTL4
detected in mice due to LPL inhibition (16-20) could not
be confirmed in this study. However, a very recent genetic
study identified a rare mutation in the ANGPTL4 gene,
E40K, in European Americans, which was associated with
lower plasma triglyceride levels clearly pointing to a role
of ANGPTL4 in VLDL/chylomicron metabolism in humans
(38).

Importantly, plasma ANGPTL4 levels were positively
associated with plasma NEFAs in the fasting state (Fig.
5A), possibly reflecting NEFA-mediated ANGPTL4 produc-
tion. In addition, plasma ANGPTL4 was positively corre-
lated with plasma NEFA levels during OGTT (Fig. 5B), an
estimate of WAT lipolysis. Even though these associations
cannot constitute causality, these results clearly point to a
close relationship between plasma NEFA and ANGPTL4
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levels in humans and, in part, confirm earlier findings in
mice.

Relationship between myotube ANGPTL4 expression
and metabolic traits of the donors. The human myo-
tubes used in this study underwent an extended cell
culture protocol including isolation from biopsies, expan-
sion, splitting and freezing, storage in liquid nitrogen and
thawing, growth to subconfluence, and finally in vitro
differentiation. As a result, these cells no longer reflect the
metabolic setting in vivo and have lost acquired pheno-
types, such as insulin resistance (39). However, some
genetically or epigenetically determined features, e.g.,
susceptibility toward saturated fatty acids (40) and basal
expression of genes (41,42), are maintained and show re-
markable inter-individual variation. Therefore, human myo-
tubes represent a model to study the unidirectional effects of
genes and their individual expression levels on metabolic
parameters of the donors, as discussed earlier (42).

To assess the metabolic role of mANGPTL4 in humans
in vivo, we determined basal ANGPTL4% mRNA expression
in myotubes from 38 nondiabetic donors (for clinical
characteristics, see Staiger et al. [41]). From these sub-
jects, plasma glycerol measurements were available in
addition to plasma NEFAs. In the myotubes, basal
ANGPTL% expression revealed a strong positive correla-
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FIG. 6. Hypothetical model of mANGPTL4’s role in lipid metabolism. In states of increased muscle PPAR-$ activity and/or PPARD expression, such
as fasting and exercise, SKM produces and secretes ANGPTL4. Simultaneously, muscular fatty acid oxidation is increased by PPAR-6—-dependent
induction of B-oxidative enzymes. Via the circulation, nANGPTL4 enhances WAT lipolysis and thus prevents too strong decrements of plasma
NEFA levels and ensures ongoing fuel supply of the stressed (fasting or working) muscle. Together with ANGPTL4’s inhibitory effect on LPL, this
mechanism is expected to provoke loss of WAT mass. Furthermore, as derived from our in vitro data, ANGPTL4 could stimulate SKM lipolysis via
LIPE induction in an autocrine/paracrine manner. This effect would constitute, in addition to PPAR-8’s inductive effect on B-oxidation, a
synergistic mode of PPAR-3 action on muscle lipid catabolism (IMCL, intramyocellular lipids).

tion with basal PPARD expression (Fig. 5C) reflecting the
close relationship between PPAR-3 and its target gene.

By correlational analysis with the donors’ in vivo param-
eters, the myotube ANGPTL4 mRNA contents were not
associated with sex or age (P = 0.5, both). Furthermore,
there were no significant correlations with BMI, waist-to-
hip ratio, body fat content, plasma adiponectin and leptin
levels, plasma glucose or insulin concentrations (in the
fasting state as well as during OGTT), or indexes of insulin
sensitivity or insulin secretion (P = 0.10, all, after appro-
priate adjustments). Intramyocellular lipid measurements
were not available from the donors. Therefore, we have
currently no proof of our in vitro finding suggesting
involvement of mANGPTL4 in muscle triglyceride break-
down. As to lipid parameters, plasma fasting concentra-
tions of triglycerides, NEFA, and glycerol were not
significantly associated with myotube ANGPTL% expres-
sion (P = 0.06, all; adjusted for sex, age, and BMI).
However, a significant correlation between myotube
ANGPTL4 expression and the area under the curve of
glycerol during OGTT, an estimate of WAT lipolysis, was
detected (Fig. 5D). This not only confirms the results
obtained with plasma ANGPTL4 measurements but also
indicates that mANGPTL4 is of systemic importance and
enhances WAT lipolysis in humans.

To further substantiate the systemic role of mANGPTL4,
we additionally measured the plasma ANGPTL4 concen-
trations of the myotube donors. Importantly, myotube
ANGPTL4 expression was significantly correlated with the
donors’ plasma ANGPTL4 levels (Fig. 5F). This provides
evidence that mANGPTL4 production contributes to cir-
culating ANGPTL4 in humans. The myotube cultures were
derived from normal-weight healthy young subjects. Thus,
the interesting issue of whether myotubes from patients
with metabolic disease (obesity, type 2 diabetes) show
altered expression/secretion of ANGPTL4 remains to be
clarified, and future studies will shed further light on this
question.
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In summary, we show here that ANGPTL4 is produced
and secreted by human myotubes and is subject to gene
regulation by major plasma LCFAs. Furthermore, we provide
evidence for an involvement of PPAR-6 in LCFA-induced
muscle ANGPTL4 expression. These findings could be of
physiological relevance in states of increased B-oxidation
due to enhanced muscle PPAR-§ activity and/or PPARD
expression, such as fasting (43) and exercise (44—-46). In this
context, it is conceivable that promotion of WAT lipolysis via
PPAR-6-mediated mANGPTL4 production represents a
mechanism that prevents too strong decrements of plasma
NEFA levels and, in this way, ensures ongoing fuel supply of
SKM (Fig. 6). Such a feed-forward mechanism would favor
the efficient use of stored lipids, as opposed to glucose,
during periods of increased energy demand. In this scenario,
mMANGPTI4 would be an important player of crosstalk
between SKM and WAT and would explain the loss of WAT
mass observed after pharmacological PPAR-8 activation
and/or transgenic PPARD overexpression in mice (44,47,48).
Clearly, further studies are needed to confirm this hypothe-
sis. If our preliminary in vitro finding that mANGPTIA is
involved in muscle LIPE expression holds also for the in vivo
situation, a synergism of PPAR-8 actions can be derived in
which PPAR-3 activation, in an ANGPTLA4-dependent man-
ner, stimulates breakdown of intramyocellular lipids to fatty
acyl-CoA and, in an ANGPTIA4-independent manner, pro-
motes acyl-CoA oxidation via induction of p-oxidative en-
zymes (Fig. 6). Finally, this is to our knowledge the first
report demonstrating systemic relevance of mANGPTL4 in
humans.
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