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Abstract

cancer therapy.

may serve as a lead compound for novel anticancer drug.

Background: Heme oxygenase (HO) catalyzes NADPH-dependent degradation of heme to liberate iron, carbon
monoxide and biliverdin. The interaction between HO and cytochrome P450 reductase (CPR), an electron donor, is
essential for HO activity. HO-1 is a stress-inducible isoform whereas HO-2 is constitutively expressed. HO-1 induction
is commonly seen in cancers and impacts disease progression, supporting the possibility of targeting HO-1 for

Methods: We employed a cell-based bioluminescence resonance energy transfer assay to screen compounds with
ability to inhibit HO-1/CPR interaction. The effect of the identified compound on HO-1/CPR interaction was confirmed
by pull down assay. Moreover, the anti-tumorigenic activity of the identified compound on HO-1-enhanced tumor
growth and migration was assessed by trypan blue exclusion method and wound healing assay.

Results: Danthron was identified as an effective small molecule able to interfere with the interaction between HO-1
and CPR but not HO-2 and CPR. Additional experiments with structural analogues of danthron revealed that the
positions of hydroxyl moieties significantly affected the potency of inhibition on HO-1/CPR interaction. Pull-down assay
confirmed that danthron inhibited the interaction of CPR with HO-1 but not HO-2. Danthron suppressed growth and
migration of Hela cells with stable HO-1 overexpression but not mock cells. In contrast, anthrarufin, a structural analog
with no ability to interfere HO-1/CPR interaction, exhibited no significant effect on HO-1-overexpressing Hela cells.

Conclusions: These findings demonstrate that danthron is an isoform-specific inhibitor for HO-1/CPR interaction and

Keywords: Heme oxygenase-1, Cytochrome P450 reductase, Protein-protein interaction, Anti-cancer drug

Background
Heme oxygenease (HO) is a rate-limiting enzyme catalyz-
ing NADPH-dependent oxidative degradation of heme
to liberate ferrous ion, carbon monoxide (CO), and
biliverdin [1].

The electrons required for HO reaction are provided
by cytochrome P450 reductase (CPR), which is colocalized
with HO on endoplasmic reticulum [2]. HO plays a vital
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role in systemic iron homeostasis [1]. The free iron re-
leased from erythrocyte-hemoglobin turnover is recycled
back to bone marrow for erythropoiesis. Moreover, CO
gas is a signaling molecule with diverse biological effects,
including anti-inflammation, immune-modulation, proan-
giogenesis and anti-apoptosis [3]. Biliverdin and its subse-
quent metabolite, bilirubin, are antioxidants contributing
to the cytoprotective function of HO [3, 4].

Two HO isoforms were identified in mammalian system
[1]. In contrast to HO-2 which is constitutively expressed
in various tissues and cells, HO-1 is a stress-responsive
isoform highly expressed in many disease states, including
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cancer [4]. Over the past decade, considerable evidence
has revealed the pathological role of HO-1 in cancer pro-
gression [4]. HO-1 overexpression facilitates cancer cell
growth and survival post irradiation or genotoxin treat-
ment. It also promotes angiogenesis and metastasis through
modulating cancer microenvironment. Studies have dem-
onstrated that depletion of HO-1 expression by specific
gene knockdown approach or inhibition of HO-1 activity
by competitive inhibitors, such as zinc protoporphyrin IX,
increases tumor sensitivity to chemotherapeutic agent or
irradiation-induced cell death and suppresses cancer metas-
tasis [5—8]. It is conceivable that small molecules with spe-
cificity to block HO-1 activity would offer new therapeutics
for treating this devastating disease [9-11].

Recently, increasing evidence has supported that the
small molecule inhibitors of protein-protein interaction
are promising therapeutic targets [12—14]. Early studies
have shown that HO-1 interacts with CPR and mutations
of the amino acid residues in the interface leads to reduced
HO activity [15-17], suggesting that small molecules inter-
fering HO-1/CPR interaction may act as a potent inhibitor
of HO-1 reaction. To explore this possibility, in the
present study we employed a cell-based bioluminescence
resonance energy transfer (BRET) assay [18, 19] to screen
a compound library and identify molecules interfering
the interaction between HO-1 and CPR. This approach
allowed us to identify a few compounds with inhibitory
effect on HO-1/CPR interaction to various degrees. Among
the initially identified ten compounds, danthron (1,8
dihydroxyanthraquinone) exhibited dose-dependent ef-
fect without cytotoxicity at the highest concentration
tested. Moreover, danthron is a structurally simple com-
pound and its structural analogues are available for analysis.
Therefore, in the present study we further characterized
the potencies of danthron and structural analogues on
HO-1/CPR interaction. Interestingly, the interaction be-
tween HO-2 and CPR was not significantly affected by
danthron and structural analogues. We also performed ex-
periments to assess the inhibitory effect of danthron on
HO-1-induced cancer cell growth and migration.

Methods

Reagents

The library of natural product collection was obtained
from MicroSource Discovery systems Inc. The 96-well
plates for bioluminescent signal detection were purchased
from PerkinElmer Life Sciences. Coelentarazine 400a was
from Gold Biotechnology. Anti-His tag, anti-B-actin and
anti-green fluorescent protein (GFP) antibodies were
from Gene Tex. Anti-CPR and anti- glyceraldehyde 3-
phosphate dehydrogenase (GAPDH) antibodies were
from Abcam. Anti-GFP-affinity Sepharose was obtained
from Abcam. Danthron (1,8 dihydroxyanthraquinone),
1,4,5-trihydroxyanthra-9,10-quinone, 1-hydroxyanthra-9,
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10-quinone, and anthrarufin (1,5-dihydroxyanthraquinone)
were purchased from Sigma-Aldrich.

Plasmid constructs

The N-terminal Flag-tagged-HO-1 plasmid was prepared
as described previously [20]. To prepare HO-1(Luc-HO-1)
and HO-2 (Luc-HO-2) constructs with their N-termini
fused to a luciferase construct, human HO-1 and HO-2
cDNAs were subcloned into the pcDNA-RLuc8 vector.
To construct a human CPR ¢cDNA with C-terminus fused
to a GFP2 construct (CPR-GFP), CPR and GFP2 cDNAs
were subcloned into a pCMV-2 vector sequentially. Both
pcDNA-RLuc8 and GFP2 vectors were kindly provided by
Dr. Klim King (Genomic Research Center, Academia
Sinica, Taipei, Taiwan) [21]. A truncated human HO-1
construct (aa 13-260) and human HO-2 construct (aa
33-288) fused with 6 x His-tag at C-terminus were sub-
cloned into pQE-60 vector as described previously [22].

Cell lines

HEK293T cells were cultured in Dulbecco’s modified
Eagle’s medium (DMEM) supplemented with 10% fetal
bovine serum (FBS) and 1% penicillin/streptomycin.
HeLa cell lines without (mock) or with stable expression
of Flag-tagged HO-1 (HeLa-HO) were established and
cultured in DMEM containing 10% FBS and 400 pg/ml
hygromycin B as described previously [23].

BRET assay

For BRET donor saturation assay, HEK293T cells were
seeded in 6-well plate (2 x 10°/well) and transfected with
a constant amount of Luc-HO-1 or Luc-HO-2 plasmid
(0.25 pg of DNA) and increasing amounts of CPR-GFP
plasmid (from 0 to 0.875 pg of DNA) using GenJet Plus
transfection reagent (SignaGen laboratories, MD, USA)
according to the manufacturer’s instruction. For BRET
inhibition assay, cells were co-transfected with equal
amounts of RLuc-HO-1 and CPR-GFP vectors (1:1). At
24 h post transfection, cells were harvested and reseeded
into 96 well plates at a density of 2 x 10* cells /well in trip-
licates. After 18 h, medium was replaced with DMEM
containing 0.5% FBS and cells were treated without or
with indicated concentrations of tested compounds in cul-
ture for 6 h. Plate was then washed twice with phenol-red
free MEM containing 5 mM HEPES, followed by addition
of 100 pl of the same medium containing 5 uM of coe-
lenterazine 400a into each well. The plate was immedi-
ately loaded in SpectroMax Paradigm Detection Platform
equipped with a Dual-color luminescence detection
cartridge and SoftMax Pro 6.2.2 (Molecular Devices,
Sunnyvale CA, USA). The BRET signal was obtained by
the sequential integration of the luminescence and green
fluorescence detected at 370-410 nm and 500-530 nm,
respectively, over 60 to 150 s and calculated as the ratio of
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light emitted at 500-530 nm to that emitted at 370-
410 nm. Graphpad prism software was used to fit the
nonlinear curve. The one-site saturation binding model
was chosen to create the titration curves for the deter-
mination of Bmax (maximum number of binding sites)
and Kp (ligand concentration that binds to half the re-
ceptor sites at equilibrium). The Bmax and Kp values
were referred to as BRETmax and BRET5, respectively
[24, 25]. The ICs5y value was also determined from the
inhibition curve for each compound.

His-tagged HO-1 protein purification

His-HO-1 and His-HO-2 proteins were induced in Escheri-
chia coli (strain JM109) transformed with corresponding
pQE-60 vector bearing HO-1 or HO-2 construct and
purified by TALON™ metal affinity resin as described
previously [22]. The protein purity was examined by
SDS-polyacrylamide electrophoresis (SDS-PAGE) and
coomassie blue staining.

Western blot analysis
Cells were lysed in buffer containing 20 mM Tris-HCl
pH 7,4, 100 mM NaCl, 1% Triton X-100 and protease
inhibitor cocktail, followed by centrifugation at 12,000
xg for 15 min at 4 °C.

Supernatant was removed and protein concentration
determined by Bio-Rad protein assay. Cell lysates (20 pg)
were subjected to SDS-PAGE followed by immunoblotting
with indicated antibodies as described previously [23].

Pull-down assay

HEK293T cells were transfected with CPR-GFP con-
struct for 24 h. Cells were lysed with buffer A (20 mM
Tris-HCI pH 7,4, 100 mM NaCl) containing 1% Triton
X-100 and protease inhibitor cocktail. After centrifuga-
tion at 12,000 xg for 15 min at 4 °C, supernatant was re-
moved and CPR GFP protein was immunoprecipitated
with ant-GFP-affinity Sepharose at 4 °C overnight.

After two washes with buffer A containing 0.1% Triton
x-100, the CPR-GFP-bound Sepharose was resuspended
in 30 pl of buffer A. Ten pl of CPR-GFP-bound Sepharose
was then incubated with 1 pg of His-HO-1 or His-HO-2
in the absence or presence of indicated compounds in
100 pl buffer A at room temperature for 1 h with rotation.
The Sepharose was washed for three times with buffer A
and bound proteins eluted by 2X SDS sample buffer and
then subjected to SDS-PAGE and Western blot analysis
using anti-His (1:2000) and anti-GFP (1:2000) antibodies.

Cell proliferation

Mock and HO-1-overexpressing HeLa cell lines were
seeded in triplicate in 12-well plates at a density of
5 x 10 cells/well and grown in complete medium without
or with indicated concentrations of tested compounds. At
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indicated times, cells were harvested and counted by
trypan blue exclusion method.

Wound healing assay

Cell migration was assessed by wound healing assay
using the Culture-Inserts (ibidi, Germany). Briefly, HeLa
cells stably expressing control vector (mock) or Flag-tagged
full-lenth-HO-1 were seeded on both sides of a culture-in-
sert with a 500 um gap between each side of the well
(3.5 x 10* cells/well), and grown for 24 h to reach con-
fluency. Following serum deprivation for 24 h, the in-
serts were gently removed, and cells were incubated in
DMEM complete medium without or with indicated con-
centrations of compounds. Cells were photographed at in-
sert removal (0 h) and following 24 h of incubation.

Statistical analysis

Data were expressed as mean + SE. Student’s t-test was
used to compare data from two groups. Analysis of data
from more than two groups were conducted by one-way
ANOVA followed by multiple comparisons among means
(Tukey’s test) using SigmaStat 3.5 (Systat Software, Inc.,
San Jose, CA, USA). P<0.05 was considered statistically
significant.

Results

Monitoring HO-CPR interaction by BRET assay

To first evaluate whether the HO-1 isoform and CPR
interaction can be monitored by BRET assay, HEK293T
cells were transfected with a fixed amount of vector bearing
N-terminal-luciferase-fused HO-1 construct (Luc-HO-1)
together with increasing amounts of GFP vector or vector
bearing CPR construct with its carboxyl-terminus fused to
GFP (CPR-GFP) (Fig. 1a). At 24 h post transfection, BRET
analysis was performed. As shown in Fig. 1b, the BRET sig-
nals from the cells transfected with GFP and Luc-HO-1
were much weaker and did not significantly affected by the
amounts of GFP acceptor. In contrast, the signals obtained
from cells transfected with CPR-GFP and Luc-HO-1 vec-
tors were increased and reached a plateau along with in-
creasing amounts of CPR-GFP acceptor, indicating that the
BRET signals resulted from the specific interaction between
Luc-HO-1 and CPR-GFP. Likewise, the BRET signal was
also detected in cells transfected with Luc-HO-2 and
CPR-GFP (Fig. 1b), supporting the interaction between
HO-2 isozyme and CPR.

Identification of small compounds interfering interaction
of CPR with HO-1 but not HO-2

We then employed the BRET assay in HEK 293 T cells
transfected with donor/acceptor vectors at 1:1 ratio, which
elicits signal within linear detection, to identify small
compounds exhibiting activities to modulate HO-1/CPR
interaction in live cells. At 24 h post transfection, cells
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Fig. 1 BRET assay monitoring interaction of HO-1 or HO-2 with CPR. a The constructs of Luc-fused HO and CPR-fused GFP proteins. b HEK 293 T cells
were co-transfected with the constant amount of Luc-HO-1 or Luc-HO-2 construct and increasing amounts of GFP or CPR-GFP construct as indicated.
After 24 h, cells were reseeded in triplicate in 96-well plates for 18 h. Luciferase substrate was then added into each well and the BRET signal was
monitored and expressed as the ratio of signals detected at 515 nm/410 nm. Data shown are mean + SE of three independent experiments
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were reseeded in 96 well plates and treated with tested
compounds at a concentration of 10 pM for 6 h prior
to BRET assay. From screening the Natural Product
Collection (MicroSource Discovery systems Inc.) which
contains ~ 700 compounds, danthron (1,8 dihydroxyan-
thraquinone) (Fig. 2a) was found to significantly de-
crease HO-1/CPR BRET signal. As shown in Fig. 2b,
when the inhibition assay was performed with increasing
ratios of acceptor/donor, danthron did not affect the back-
ground BRET signal derived from coexpression of GFP and
Luc-HO-1 in cells. However, danthron treatment signifi-
cantly reduced BRETmax from cells coexpressing CPR-
GFP and Luc-HO-1 (0.967 +0.060 vs 0.771 +0.004; P <
0.05) but did not significantly affected the value of BRET5,
(0.582 +£0.033 vs 0.534+0.053; P=0.719). The effect of
danthron was not due to the cytotoxicity (Fig. 2c). Further-
more, Western blot analysis revealed that danthron treat-
ment did not significantly affect the expression levels of
CPR-GFP and Luc-HO-1 in cells co-transfected with in-
creasing ratio of CPR-GFP/ Luc-HO-1 vectors or the ex-
pressions of endogenous CPR and HO-1 (Fig. 2d). These
observations support the effect of danthron on CPR/HO-1
interaction. Further experiment demonstrated that the ef-
fect of danthron was dose-dependent with an ICsy of
2.087 uM (Fig. 3b). To examine the structural specificity of
danthron on HO-1/CPR interaction, we performed the
BRET assays with several structural analogs with hydroxyl
groups attached to different positions of the phenolic rings
(Fig. 3a). As shown in the same figure, the potencies of
these analogues were danthron > 1-hydroxyanthra-9,10-
quinone (ICsy: 10.06 pM) > 1,4,5-trihydroxyanthra-9,10-

quinone (ICsq: 10.36 uM) > anthrarufin. Of note, anthraru-
fin (1,5-dihydroxyanthraquinone) showed no significant
effect on HO-1/CPR BRET signal up to 30 pM, but in-
creased BRET signal at higher concentration. To further
elucidate whether the effect is isoform specific, we ex-
amined the effects of these compounds on interaction
of HO-2/CPR. Interestingly, danthron and its analogues
at concentrations exhibiting inhibitory effects on HO-1/
CPR interaction did not showed significant effect on
HO-2/CPR BRET (Fig. 3b). This finding demonstrates
that the effects of danthron and analogs are HO isoform
specific. To examine whether the inhibitory effects of dan-
thron and its analogues on HO-1/CPR were resulted from
the effects on endogenous CPR and HO-1 expression, we
performed Western blot analysis of cell lysates harvested
from HEK293T cells treated with 20 puM of heme, an
HO-1 inducer, and indicated compounds for 16 h in culture.
As demonstrated in the left panel of Fig. 3c, HO-1 was
highly induced by heme but not by danthron and other
structural analogs. Likewise, CPR expression was not affected
by these compounds as shown in the same figure. Given that
the endogenous HO-1 expression in HEK293T cells is very
low (Fig. 2d), additional experiment was performed to exam-
ine whether danthron and the structural analogs would
downregulate the expression of HO-1. As demonstrated in
the right panel of Fig. 3c, HO-1 level was not signifi-
cantly reduced by the treatment with these compounds.

Danthron inhibits physical interaction between HO-1 and CPR
To confirm the results obtained from BRET assay, we
performed the pull down assay to assess the physical
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Fig. 2 Danthron reduces HO-1/CPR BRET signal without affecting cell viability. a Structure of danthron. b HEK293T cells were co-transfected with
the constant amount of Luc-HO-1 construct and increasing amounts of GFP or CPR-GFP construct as indicated. After 24 h, cells were reseeded in
96-well plates in triplicate for 18 h, followed by treatment with 20 uM danthron for 6 h. Luciferase substrate was then added into each well and
the BRET signal was monitored. Data shown are the mean + SE of three independent experiments. ¢ HEK293T cells were treated with indicated
concentration of danthron in culture for 6 h. Cell viability was then assessed by trypan blue exclusion method. Data shown are the mean + SE of
three independent experiments. d HEK293T cells were cotransfected with increasing ratio of CPR-GFP/Luc-HO-1 constructs for 24 h as described
above, followed by treatment without (DMSO) or with 20 uM danthron for 6 h. Cell lysates were prepared and Western blot analysis was performed

using antibodies against HO-1, CPR and GAPDH as indicated

interaction between HO and CPR. CPR-GFP proteins
overexpressed in HEK293T cells were first isolated by
anti-GFP affinity resin, followed by incubation with re-
combinant soluble His-tagged HO-1 (His-HO-1) or His-
tagged HO-2 (His-HO-2) protein in the absence or pres-
ence of 10 uM of danthron or anthrarufin as indicated
for 1 h at room temperature. His-tagged HO-1 or HO-2
proteins interacting with CPR bound to anti-GFP affinity
resin were then pulled down and examined by Western
blot analysis. As demonstrated in Fig. 4, His-HO-1 and
His-HO-2 proteins were pulled down by CPR-GFP im-
munoprecipitates, indicating the physical interaction of
HO with CPR. Nevertheless, danthron co-incubation
substantially reduced the binding of His-HO-1, but not
His-HO-2 to CPR-GFP. Similar to that observed in
BRET assay, anthrarufin treatment did not significantly
affect the interaction between His-HO-1 and CPR-GFP
as shown in the same figure.

Danthron but not anthrarufin attenuates HO-1-mediated
cancer cell growth and migration

HO-1 overexpression has been shown to promote cancer
cell growth and invasiveness [23]. We then performed
experiments to examine whether disruption of the inter-
action between HO-1 and CPR has an impact on the

HO-1-mediated effect on cancer cells. To this end, the
effects of danthron and anthrarufin on the proliferation
rates of mock and HO-1 overexpressing HeLa cell lines
were assessed. As shown in Fig. 5a and b, the growth of
mock cells was not significantly affected by the treatment
with either compound at concentration of 10 pM, the
highest concentration tested. However, the growth rate of
HO-1-overexpressing Hela cells was significantly reduced
by treatment with danthron dose-dependently. In con-
trast, anthrarufin at 10 pM had no significant effect on
the growth of HO-1-overexpressing cells. When the cell
migration was examined using a wound healing assay,
the results showed that danthron treatment attenuated
the migration response of HO-1-overexpressing cells but
not mock cells in a dose-dependent manner (Fig. 6a and b).
Again, anthrarufin did not have significant effect on both
mock and HO-1-overexpressing cell lines even at concen-
tration of 20 uM (Fig. 6¢ and d) These results demonstrate
that interruption of HO-1/CPR interaction is able to at-
tenuate the pro-tumorigenic effect of HO-1 in cancer cells.

Discussion

Danthron is a natural anthraquinone derivative previ-
ously used as a laxative in humans. It was later shown to
exhibit carcinogenic activity by inducing DNA damage
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and inhibiting DNA repair in rodents [26—28]. Never-
theless, danthron has been shown to function as a spe-
cific retinoic receptor antagonist [29] and regulates lipid
and glucose metabolism by activating AMP-activated
kinase [30]. Furthermore, there was a study showing that
danthron induces apoptosis of glioma cells by increasing
production of reactive oxygen species and decreasing
mitochondrial membrane potential 1 [31]. Danthron
and structural analogs also exhibit anti-oxidative and
anti-inflammatory activities [32] and are novel inhibi-
tors of scavenger receptor A expressed on macrophages
[33]. These findings demonstrate that danthron and its

structural analogs have multiple activities in various
cellular contexts.

By conducting chemical library screening with a cell-
based BRET assay, we identified danthron as a specific
inhibitor to interfere the interaction of CPR with HO-1,
but not with HO-2. The isoform-specific effect of dan-
thron on CPR-HO-1 interaction was also confirmed by
pull-down assay. HO-1 and HO-2 are HO isoforms de-
rived from two distinct gene products. Sequence align-
ment shows that HO-1 and HO-2 share about 50%
homology in primary amino acid sequences [1]. How-
ever, they share high structural similarity, especially the
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Fig. 4 Danthron interferes the physical interaction of HO-1 but not HO-2 with CPR. Cell lysate was prepared from HEK293T cells transfected with
CPR-GFP construct for 24 h. CPR-GFP protein was then immuno-precipitated by GFP-antibody-conjugated resin, followed by incubation with
His-HO-1 or HO-2 protein in the absence or presence of 10 uM indicated compounds at room temperature for 1 h with rotation. The HO protein
pulled down by CPR-GFP was then examined by Western blot analysis
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conserved heme binding region [9]. The chance for same
inhibitor targeting to the catalytic sites of both HO iso-
zymes is high. Therefore, the development of isoform-
specific inhibitor for HO-1, the inducible form highly
expressed in various pathological states, is a difficult task.
The present finding provide the potential to design in-
hibitors to block the function of HO-1 without influen-
cing HO-2. Further BRET assays revealed that danthron
reduced BRETmax but not BRET5, of CPR-HO-1 inter-

orientations between CPR and HO-1 but not affecting
their binding affinity. Although dantron could reduce
over 80% of the physical interaction between HO-1 and
CPR in pull-down assay, the degree of inhibition assessed
by cell-based BRET assay appeared to be much less. It is
likely due to the fact that the drug treatment in BRET
assay was performed with preexisting HO-1/CPR complex
in cells. Furthermore, the possibility that the activity of
danthron is modulated by other endogenous factors in

action, indicating that it affects the distance or relative  cellular context cannot be completely ruled out. Although
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the molecular structure of CPR/HO-1/danthron complex
was not determined in present study, we showed that the
structural analogs of danthron bearing hydroxyl groups at
different positions of the phenolic rings affected CPR/
HO-1 interaction with various potencies. Anthrarufin,
which has two hydroxyl groups located in 1,5 positions
of anthraquinone, failed to interfere CPR/HO-1 inter-
action as demonstrated by BRET assay. Again, none of
the structural analogs tested affects CPR/HO-2 inter-
action. These observations highlight the importance of
structural feature in danthron-mediated inhibition of
CPR/HO-1 interaction.

To further explore whether the disruption of CPR/
HO-1 interaction results in the ablation of HO-1-mediated
cellular effects, the effects of danthron and anthrarufin on
HO-1-enhanced proliferation and migration responses of
HeLa cells were examined. The results clearly showed
that danthron, but not anthrarufin, does-dependently
suppressed the increases in growth rate and migration
in HO-1-overexpressing cells without a significant ef-
fect on mock control cells. Given that HO-1 is overex-
pressed in many cancers and implicated in tumor
progression and resistance to chemotoxic agents and ir-
radiation [4—8], the present finding supports the thera-
peutic potential of developing inhibitors of CPR-HO-1
interaction for cancer treatment.

Conclusions

It is apparent that danthron exhibits paradoxical activ-
ities on cancer. Earlier studies have revealed the carcino-
genic activity of danthron in normal cells, resulting in
the suspension of its clinical use. Nevertheless, the present
study demonstrate that danthron has anti-tumorigenic ef-
fect via interfering the interaction of CPR with HO-1
which is highly induced in many types of cancer with pro-
tumorigenic function. Notably, danthron does not affect
the interaction between CPR and HO-2. Although dan-
thron cannot be considered as a candidate drug for cancer
therapy, the present study supports the possibility of using
danthron as a lead compound to design better isoform-
specific inhibitors to block HO-1 activity with higher

potency.
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