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Abstract

The availability of reliable biomarkers of brain injury secondary to birth asphyxia could substantially improve clinical
grading, therapeutic intervention strategies, and prognosis. In this study, changes in the metabolome of retinal tissue
caused by profound hypoxia in an established neonatal piglet model were investigated using an ultra performance liquid
chromatography – quadrupole time of flight mass spectrometry (UPLC-QTOFMS) untargeted metabolomic approach, which
included Partial Least Squares – Discriminant Analysis (PLSDA) multivariate data analysis. The initial identification of a set of
discriminant metabolites from UPLC-QTOFMS data was confirmed by target UPLC-MS/MS and allowed the selection of
endogenous CDP-choline as a promising candidate biomarker for hypoxia-derived brain damage assessing intensity of
retinal hypoxia. Results from this study will foster further research on CDP-choline changes occurring during resuscitation.
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Introduction

Perinatal asphyxia, defined as a severe lack of oxygen and

perfusion to the fetus during labor and delivery, is a worldwide

problem and a foremost cause of mortality and permanent

neurodevelopmental disabilities [1], [2]. Short and long-term

prognosis following perinatal asphyxia will closely correlate with

the subsequent degree of hypoxic ischemic encephalopathy (HIE)

[3]. Interestingly, the use of therapeutic hypothermia has

substantially increased survival and improved neurocognitive

outcome in babies with moderate HIE. However, it has only

been limited when applied to patients with the severe form of HIE

[4], [5]. The current approach to diagnosis of birth asphyxia in the

delivery room evolving to HIE relies on qualitative clinical

evaluation [6]. Once in the neonatal intensive care unit diagnosis

will be confirmed using an ample array of diagnostic tools such as

amplitude integrated electroencephalography, conventional elec-

troencephalography, brain ultrasound and Doppler, and magnetic

resonance imaging [6]. In this scenario, the possibility of an early

and accurately grading of brain damage using a reliable biomarker

could be extremely useful for clinicians to decide about the most

appropriate therapeutic approach, risk stratification and prognosis

[7].

A molecular biomarker is defined as a traceable substance that

can be objectively measured and evaluated as an indicator of a

physiological as well as a pathological process or pharmacological

response to a therapeutic intervention [8]. Therefore, specific

molecular modifications on DNA, RNA, proteins or metabolite

levels can be useful biomarkers. Despite considerable efforts

focused on genomics and proteomics, molecular biomarkers found

to be useful in the diagnosis of perinatal asphyxia are lacking [9],

[10]. The most widely employed markers of brain damage after a

hypoxic episode include S100B, neuron-specific enolase, activin A,

adrenomedullin, Interleukin (IL)-1b and IL-6. However, elevation

of these biomarkers can also be the consequence of a variety of

conditions not related to asphyxia or may be released by tissues

different from brain [11]. Conspicuously, the therapeutic window

between the hypoxic/ischemic insult and the subsequent enceph-

alopathy is relatively short (up to 6–8 h after birth) [11].

Therefore, it would be desirable to have available biomarkers

consistent with ongoing pathophysiologic changes in the brain and

easy and rapid to determine. In this context, metabolite

biomarkers offer several advantages over genes and proteins

including easier and faster analytical quantification. Metabolomics

has become a rapidly growing area of Systems Biology that reflects

the downstream products of gene regulation and expression.

Accordingly, it can be considered that the metabolome delivers a

dynamic snapshot of the functional level of a biological system

more appropriate than those provided either by genomics or

proteomics [12], [13]. The increasing use of metabolomics to gain

further insight into the medical conditions affecting the neonate

and the developing human being [14] as well as in different areas
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of neonatology has been recently reviewed [15]. In a previous

targeted metabolomic study it was shown that plasma ratios of

alanine to branched-chained amino acids (BCAA) and of glycine

to BCAA more accurately reflected duration and intensity of

hypoxia in newborn piglets than the traditionally employed plasma

lactate concentration [1].

The study of alterations of the metabolic profile within the

central nervous system under hypoxic conditions (e.g. perinatal

asphyxia) might yield complementary information to that provided

by plasma and urine analysis thus leading to the identification of

reliable biomarkers of brain injury. Retinal tissue is an integral

neuronal tissue directly communicating and sharing many

functional and structural characteristics with the brain [16].

Moreover, retina has a uniquely high metabolic demand for

oxygen compensated by a highly efficient vascular supply [17] and

it is considered one of the most oxygen-sensitive tissues. Hypoxia

induces adaptive responses in the retina including changes in

blood flow, protective metabolic adaptations, and angiogenesis

[17].

The primary objective of this study was to assess metabolic

changes that could be representative of the intensity and duration

of hypoxia in an integral neuronal tissue. Facing the impossibility

of analyzing retinal samples in human clinics, the present study

was focused on metabolomic changes in the retina after an intense

period of postnatal hypoxia and its comparison to control animals

in room air in a well-established newborn piglet model of hypoxia,

which reliably reflects pathophysiologic changes in the retina [1],

[18]. Regardless of the analytical and biostatistical strategy

followed, initial identification of differentiating metabolites in

discovery studies based on the analysis of relatively reduced sample

sets cannot be extrapolated to the whole population because there

is merely not enough information to model the biological

variability. Nonetheless, results are of great value in basic research

in the hypothesis generation phase to guide further investigations

eventually leading to a ‘biomarker qualification’ [19]. This study is

aimed to guide further research for the development of highly

reliable non-invasive biomarkers of brain injury secondary to birth

asphyxia that could substantially improve clinical grading,

therapeutic intervention strategy and prognosis.

Materials and Methods

Ethics Statement
The animal studies were carried out at Oslo University Hospital

(Norway). The National Animal Research Authority (NARA)

approved the experimental protocol. The animals were cared for

and handled in accordance with the European Guidelines for use

of Experimental Animals by certified FELASA fellows (Federation

of European Laboratory Animals Science Association).

Chemicals and Reagents
All the solvents were of ‘LC-MS’ grade and were purchased

from Fisher Scientific (Loughborough, UK) or from Scharlau

(Barcelona, Spain). Additives and standards were purchased from

Sigma-Aldrich Quimica SA (Madrid, Spain). Commercially

available pharmaceutical SomazinaH 500 mg containing CDP-

choline at a concentration of 125 mg/mL was purchased from

Ferrer International (Barcelona, Spain).

Animal Model and Sample Processing
A total of 10 newborn Noroc (LyxLD) piglets with the inclusion

criteria of age between 12–36 h, hemoglobin .5 g/dL and good

general conditions were selected for the study. The piglets were

anaesthetized, orally intubated and surgically prepared as previ-

ously described [1]. Anesthesia was induced by giving sevofluran

5% (Sevorane, Abbott); an ear vein was cannulated, the piglets

were given pentobarbital sodium 15 mg kg21 and fentanyl 50 mg

kg21 intravenously as a bolus injection. The piglets were orally

intubated then placed in the supine position and washed for sterile

procedures. Anesthesia was maintained throughout the experi-

ment by continuous infusion of fentanyl (50 mg kg21 h21) and

midazolam (0.25 mg kg21 h21) in mixtures giving 1 mL kg21 h21

for each drug applied by IVAC P2000 infusion pump. When

necessary, a bolus of fentanyl (10 mg kg21), midazolam (1 mg

kg21) or pentobarbital (2.5 mg kg21) was added (need for

medication being defined as shivering, trigging on the respirator,

increased tone assessed by passive movements of the limbs,

increase in blood pressure and/or pulse). A continuous IV infusion

(Salidex: saline 0.3% and glucose 3.5%, 10 mL kg21 h21) was

given until hypoxia, or the corresponding time point for the

Control group, and then 5 mL kg21 h21 throughout the

experiment. The piglets were ventilated with a pressure-controlled

ventilator (Babylog 8000+; Drägerwerk, Lübeck, Germany).

Normoventilation (arterial carbon dioxide tension (PaCO2) 4.5–

5.5 kPa) and a tidal volume of 6–8 mL kg21 were achieved by

adjusting the peak inspiratory pressure or ventilatory rate.

Ventilatory rate was 15–40 respirations/min. Inspiratory time of

0.4 s and positive end-expiratory pressure of 4.5 cm H2O was kept

constant throughout the experiment. Inspired fraction of O2 and

end-tidal CO2 was monitored continuously (Datex Normocap

Oxy; Datex, Helsinki, Finland). The left femoral artery was

cannulated with polyethylene catheters (Porex PE-50, inner

diameter 0.58 mm; Porex Ltd Hythe, Kent, UK). Mean arterial

blood pressure (MABP) was measured continuously in the left

femoral artery using BioPac systems MP150-CE. Rectal temper-

ature was maintained between 38.5 and 39.5uC with a heating

blanket and a radiant heating lamp. Throughout the whole

experiment there was a continuous surveillance of blood pressure,

saturation, pulse, temperature and blood gas measurements. After

surgery, the piglets were placed in the prone position. One hour of

stabilization was allowed after surgery.

Experimental Protocol. A total of 10 piglets underwent the

experimental procedure. Out of these, 5 were randomly assigned

to hypoxia (experimental group) and the remaining 5 to room air

(control group). Hypoxemia was achieved by ventilation with a gas

mixture of 8% O2 in N2 until either the mean arterial blood

pressure decreased to 20 mmHg or the base excess (BE) reached

220 mmol/L. CO2 was added during hypoxemia aiming at a

PaCO2 of 8–9.5 kPa to imitate perinatal asphyxia. At the end of

hypoxia, or at the corresponding time point for the control group,

the eyes were extracted (from the full anesthetized piglets), placed

on an ice-cold glass plate and excised to quickly remove the retina

of each eye. Once the retinas were obtained, they were frozen on

liquid N2 and stored at 280uC. After the sampling of retinal tissue,

the animals were given a lethal dose of pentobarbital (150 mg/kg

iv). The left retinas were shipped on dry ice to the Perinatal

Research Group of the Health Research Institute Hospital La Fe

(Valencia, Spain) for processing and analysis. Samples were stored

at 280uC until processed. Samples were homogenized in

CH3OH:H2O (70:30%v/v) using a PreCellys 24 dual Homoge-

nizer (Bertin Tech., Montigny-le-Bretonneux, France) for a higher

repeatability among replicates, employing a single pulse of 30 s

and keeping samples at approx. 4oC using a Cryolys (Bertin Tech).

Solvent volumes were adjusted to reach final concentrations of

33.3 mg frozen tissue/ml PBS buffer. After homogenization,

samples were centrifuged for 10 minutes at 12000 rpm and 4uC
and then supernatants were stored at 280uC until UPLC-

QTOFMS and UPLC-MS/MS analysis.

Metabolomics of Postnatal Hypoxia in Piglet Model
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Metabolite Profiling
Metabolite profiling analysis of the retina extracts was

performed in an Acquity UPLC-QTOF MS instrument (Waters,

Milford, MA, USA). Sample extracts were analyzed by triplicate

using an HSS T3 (10062.1 mm, 1.8 mm, Waters) C18 column

with a HSS T3 VanGuard precolumn (562.1 mm, 1.8 mm,

Waters). 80 mL aliquot of the sample was placed in a clean

Eppendorf tube and 9.6 mL of an aqueous solution containing

0.83% (v/v) HCOOH and 0.42 mg/mL reserpine (m/z 609.2812)

as internal standard (IS) were added. Column and auto-sampler

temperatures were set at 40uC and 4uC, respectively. A 15-min

linear gradient elution was performed at a flow of 440 mL/min as

follows: initial conditions of 100% of solvent A (H2O 0.1% v/v

HCOOH) were kept for 0.5 min, followed by a linear gradient

from 0% to 95% of mobile phase B (CH3OH) for 7.5 min;

isocratic conditions of 95% B were held for 3.5 min; finally, a

0.5 min gradient was used to return to the initial conditions, which

were maintained for 3 min. The eluting analytes were detected

using a QTOF SYNAPT HDMS spectrometer (Waters, Milford,

MA, USA). The following electrospray ionization (ESI) parameters

were selected: capillary and cone voltages were set at 3.5 kV and

35 V in the positive mode; desolvation and source temperatures

were set at 340uC and 120uC, respectively; flow rates of the cone

and nebulization gases were set at 60 L/h and 800 L/h,

respectively. Full scan data were collected in the TOF MS mode

from 50 to 950 mass to charge ratio (m/z) with a scan time of

0.08 s. A Lock Spray interface (Waters) was used to maintain mass

accuracy during the analysis. To this end, a 50 pg/mL solution of

leucine enkephalin in CH3CN:H2O (1:1) (0.1%v/v HCOOH) was

infused every 10 s by using an isocratic pump at a flow rate of

40 mL/min, and its MS spectrum was acquired using a scan time

of 0.2 s. The data station operating software used was MassLynx

4.1 (Waters). Sample acquisition was randomized to avoid the

effect of potential instrument drifts during the sample batch

measurement thus minimizing or averaging instrumental sources

of variation that might bias the results. In addition, 7 blank

extracts were analyzed for background correction and to monitor

the lack of cross-contamination. Metabolite putative identification

based on MS data was performed using both, the human

metabolome database (HMDB, http://www.hmdb.ca) and the

MassBank (MassBank, http://www.massbank.jp) open databases

using a spectral mass tolerance of 65 mDa. Identification of

pyroglutamic acid (HMDB00267), CDP-choline (HMDB01413)

and oxidized glutathione (GSSG) (HMDB03337) was confirmed

by analysis of standard solutions under the same instrumental

conditions.

Quantitative Analysis of Choline, Acetylcholine and CDP-
choline

Quantitative analysis of choline, acetylcholine and CDP-choline

was performed using an Acquity UPLC system coupled to a Xevo-

TQ triple quadrupole MS detector with an ESI (Waters,

Manchester, UK) and a KinetexTM (5064.6 mm, 2.6 mm,

100 Å) HILIC column from Phenomenex (Torrance, CA, USA).

A 6 min binary gradient elution at a flow rate of 400 mL/min was

performed as follows: the mobile phase composition was main-

tained constant at 5% B (CH3OH) during 1.5 min, and then the

gradient ran from 5% B to 5% A (H2O, 0.5% HCOOH) in

0.1 min and remained at 5% A for 1 min before it was returned to

5% B in 0.1 min for equilibration during 3.5 min. Positive ESI

and detection conditions were as follows: capillary voltage was set

to 3.5 kV, cone voltage to 10 V, source temperature to 120uC and

the cone, desolvation and collision gas flows were set to 50, 700

and 0.2 L/h, respectively.

Stock standard solutions were prepared in water by direct

weighing. A set of 10 standard solutions was prepared by serial

dilution in water in the concentration ranges summarized in

Table 1. Tandem MS (MS/MS) detection was used for

quantification using the acquisition parameters summarized in

Table 1. Ionization and fragmentation parameters were opti-

mized, for all analytes under study, by analyzing separate standard

solutions at a concentration of 50 mM. The analysis of individual

standards confirmed the lack of spectral interferences among the

selected analytes. Linear external calibration lines were obtained

from UPLC-MS/MS peak area measurements. Confirmation of

the identity of the acetylcholine and CDP-choline in samples was

based on the following criteria: i) both acquired Multiple Reaction

Monitoring (MRM) transitions must occur at the same time; ii) the

relative abundance of the MRM signals must be within 625% of

the one observed in a standard with a similar concentration; and

iii) the MRM transitions must have signal to noise ratios higher

than 9. Identification of choline was based on the retention time

due to the lack of appropriate additional MS fragments.

Data Analysis
Raw MS data was processed using MarkerLynx XS V4.1

(Waters, Milford, MA, USA) and the following main parameters:

peak baseline noise: 6 a.u.; peak width at 5% height: 8 s; marker

intensity threshold: 10 counts; retention time window: 0.15 min;

mass window: 0.02 Da, and activated deisotopic filter to remove

C13 signals from the markers table. Peak detection, integration and

alignment were carried out across all samples and blank injections

providing a raw data matrix X0 (376365) with samples in rows

and their corresponding features (i.e. variables) in columns. First,

the median values of each variable calculated from the within-

sample replicate measurements (n = 3) of the retina extracts were

calculated, thus obtaining an X1 (106365) data matrix. Then a

data set X2 (106229) was obtained after removal of a total of 136

background variables detected in blank injections, likely arising

from sample collection, storage and background contamination.

Finally, variables present in less than 3 retina samples in the data

set were eliminated, thus obtaining the data matrix X3 (106112).

The mean number of variables detected for normoxic (9664) and

hypoxic (9764) samples in X3 were found to be statistically

comparable. Preprocessing, normalization and multivariate anal-

ysis of UPLC-QTOFMS data was run under Matlab 7.7.0

(Mathworks Inc. Natick, MA, USA) using in-house written Matlab

functions and the PLS Toolbox 7.0 from Eigenvector Research

Inc. (Wenatchee, USA). Raw data and Matlab files are available

from the authors or at the website www.perinox.es.

Principal component analysis (PCA) and hierarchical

cluster analysis (HCA). A PCA model of the X3 (10 x 112)

metabolomic data set was built using autoscaling as data

pretreatment. Here, the number of Principal Components (PCs)

was selected by leave-one-out cross validation (LOO-CV). The

residual Q and the Hotelling’s T2 statistics were calculated for

outlier detection: the Q-statistic represents the Euclidean distance

between a sample and its projection onto the multivariate model.

For those samples whose Q value is outside the 95% confidence

interval, the model would be not valid due to the existence of a

new source of variation absent from the calibration dataset.

Hotelling’s T2, the sum of normalized squared scores, measures

the variation of each sample within the model.

Agglomerative hierarchical cluster analysis (HCA) was em-

ployed for initial unsupervised exploratory data analysis using the

Ward’s method and Euclidean distances to determine the

distances between samples in the PCA model. This method joins

the two existing clusters such that the resulting pooled within-
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cluster variance with respect to the centroid of each cluster is

minimized.
Partial least squares - discriminant analysis

(PLSDA). Supervised PLSDA was performed employing the

nonlinear iterative partial least squares (NIPALS) algorithm, a

maximum number of latent variables of 3, and autoscaling as data

pretreatment. The y vector containing the class labels (i.e. 0 or

1 for hypoxia and normoxia samples, respectively) was mean

centered. The residual Q and the Hotelling’s T2 statistics were

calculated for outlier detection.

In order to avoid model overfitting, PLSDA figures of merit

were calculated by means of leave-one-out double cross validation

(2 CV). The selection of the inner-PLS model dimensionality was

based on discriminant Q2 [20] calculated by leave-one-out cross

validation. The statistical significance of the PLSDA model was

assessed by a non-parametric permutation test in which the null

distributions of the figures of merit were estimated by randomly

permuting the class labels of the samples, as described elsewhere

[21]. In this work, the permutation test included all possible non-

complementary combinations taking 5 elements of each class at a

time for PLSDA modeling.
Selection of differentiating metabolites. The selection of

differentiating metabolites was carried out using the distribution of

mean PLS regression vectors obtained during the permutation test

(brandom) and the mean regression vector calculated using real class

labels (breal): for each variable, a p-value was computed as the

fraction of permuted statistics that are at least as extreme as the

test statistic obtained using real class labels [21]. Those variables

whose p-value was ,0.025 where classified as differentiating

metabolites. A detailed description of the algorithm can be found

elsewhere [21], [22], [23].

Results

Cohort Characterization during the Experiment
The summary of the cohort characteristics measured after 1 h

stabilization/relaxation procedure before and after the interven-

tion is given in Table 2. Clinical parameters including mean

arterial blood pressure (MABP), base excess (BE), temperature,

pH, pCO2, pO2 and lactate measured after a one hour

stabilization/relaxation procedure did not differ between the

experimental (i.e. hypoxia) and control (i.e. normoxia) groups (p-

values.0.05) before intervention. The time of hypoxia needed to

reach a decrease in mean arterial blood pressure to 20 mmHg or

the base excess (BE) to reach 220 mmol/L ranged from 45–85

minutes.

Metabolomic Analysis of Retina Tissues
UPLC-QTOFMS data quality. Figure S1 depicts instrument

performance parameters monitored throughout the sample batch

measurement: peak area (Figure S1–A) and mass accuracy (Figure

S1–B). Stability of the overall instrument sensitivity, estimated as

the relative standard deviation (RSD) of the internal standard peak

area through the sample batch, was equal to 14%. Mass accuracy,

measured as the relative error (ppm) of the molecular ion of the

internal standard at the peak apex, ranged 610 ppm through the

sample batch. Figure S2 shows histograms of the %RSD values

calculated from the replicate analysis of the retina sample before

(A) and after identification of the set of differentiating metabolites

(B). Figure S2–C depicts scatter plots showing the correlation

found among replicates of a typical retina extract.

Principal component analysis (PCA) and hierarchical

cluster analysis (HCA). A PCA model was initially built using

4 PCs explaining together 72.8% of the total variance of the

original data set. In the obtained PC1–PC2 scores plot depicted in

Figure 1A, a remarkable separation of the samples into hypoxia

and normoxia groups was observed. No sample was classified as

outlier, as none of the samples fell outside the depicted 95%

confidence level calculated assuming a normal scores distribution

(see Figure 1A). Projections in later components did not provide

additional sample clustering (results not shown). Besides, calculat-

ed Q and Hotelling’s T2 statistics confirmed that all samples fall

within the 95% confidence levels (see Figure 1B). Figure 1C shows

the obtained dendrogram after PCA of the data confirming the

expected clustering between hypoxia and normoxia samples.
Partial least squares discriminant analysis

(PLSDA). Initially, a supervised PLS model was calculated to

discriminate between hypoxic and normoxic samples. The number

of latent variables (LV) of this model (LV = 1) was selected from

dQ2 values calculated by LOO-CV. No subgroup could be

identified from the PLSDA scores plot shown in Figure 2A, in

good agreement with results obtained by PCA (see Figure 1A). The

residual Q and the Hotelling’s T2 statistics depicted in Figure 2B

showed that all the samples were within the 95% confidence

intervals of both statistics.

Figure 2C shows the PLSDA predicted y values calculated by

2CV. From these values, two figures of merit were calculated: dQ2

and the number of misclassified samples (NMC) which provided

dQ2 = 0.69 and NMC = 0. Statistical validation of both figures of

merit was performed by means of a non-parametric permutation

test as described before obtaining empirical p-values,0.01 for

both statistics.
Selection of differentiating metabolites. The set of PLS

regression vectors obtained during the permutation test was used

to identify a total of 8 variables as differentiating metabolites (p-

value,0.025) (see Figure S3). Results obtained from the identi-

fication of the selected variables based on their m/z values are

summarized in Table 3. As previously stated, m/z based

identifications of CDP-choline, pyroglutamic acid and GSSG

from TOFMS data were further confirmed by analyzing available

reference standard solutions, leaving two of the selected signals

unidentified.

Figure 3 shows boxplots of the UPLC-QTOFMS intensities of

the differentiating metabolites. Results showed statistically signif-

Table 1. Main MS acquisition parameters employed for MRM.

Metabolite RT (min)
Quantification
MRM Confirmation MRMCE [eV] Cone [V] R2 SNRa Linear range [nM]

Choline 2.3360.01 104.1.60.2 - 15 40 0.96 35 19.5–10000

Acetylcholine 3.9560.02 146.2.87.1 146.2.60.1 15 40 0.997 451 19.5–2500

CDP-choline 2.53260.008 489.1.264.1 489.1.360.1 20 35 0.9998 19 19.5–10000

Note: SNR stands for signal-to-noise ratio and was calculated from data obtained during the analysis (n = 3) of a standard solution at a concentration of 19.5 nM.
doi:10.1371/journal.pone.0066540.t001

Metabolomics of Postnatal Hypoxia in Piglet Model
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icant differences between levels for normoxic and severely hypoxic

piglets (t-test, p-value,0.005). In order to confirm results obtained

by the untargeted approach a quantitative HILIC-UPLC-MS/MS

method for CDP-choline, choline and acetylcholine in retina

samples was developed. Quantification of CDP-DG could not be

included in the present study due to the lack of commercially

available standards. Typical chromatograms are shown in Figure

S4. Results summarized in Figure 4A confirmed an increase in

CDP-choline levels under hypoxic conditions (p-value,0.01). On

the contrary, no statistically significant difference was found

between acetylcholine and choline levels under hypoxia and

normoxia (see Figure 4, B and C).

Discussion

Metabolomic Data Quality and Pre-processing
Due to the wide detection capabilities of UPLC-QTOFMS,

minor differences in sample composition and/or measurement

conditions give rise to high numbers of missing values, that can

originate from different sample compositions (e.g. metabolites that

are absent or below the limit of detection in sample subsets) or

from faulty peak alignments. Features with a low frequency of

detection are not likely to be reliable markers. They reduce the

robustness and predictive capabilities of multivariate models [24]

and might hamper a further biochemical interpretation of the

results. Initial unsupervised data pre-processing described in

section Data analysis allowed the elimination of 253 variables

(69% of the total), reducing the variable-to-sample ratio from 36.5

to 11.2. Besides, it also provided statistically comparable numbers

of variables detected for normoxic (9664) and hypoxic (9764)

samples, and reduced the number of missing values in the data set

from 33% to 14% of the total. In summary, the initial variable

elimination reduced the probability of finding chance correlations.

This study focused at finding biologically relevant differences in

the retina metabolome of newborn piglets (12–36 h) subjected or

not to hypoxia. Therefore, it was of importance to assess that the

observed differences were not caused by instrumental sources of

data variation such as solvent contaminants, cross-contamination

or sensitivity drifts. Results depicted in Figure S1 (i.e. overall

instrument sensitivity equal to 14% and mass accuracy in the

610 ppm range) confirmed the stability and suitability of the

instrument performance for obtaining reliable metabolomic

profiles.

Variability among sample replicates is very important to accept

or reject data as it might be indicative of a low instrumental

stability or sample degradation during time-consuming sample

measurement and hampers the identification of minor changes

due to hypoxia. In this work, variability among replicates was

evaluated by both, their RSD% of the detected signals and the

correlation coefficients among the metabolomic profiles. Figure S2

depicts the histograms of the RSD% values using the 112 retained

variables (A) and a selected set of discriminant variables (B), where

it can be seen that the mean RSD% calculated for the selected

discriminant variables was comparable to that found for the

internal standard (14%). Besides, high correlation coefficients

(R.0.95) among the replicates were found (see Figure S2–C).

Table 2. Clinical parameters of the study cohort measured after a one hour stabilization/relaxation procedure before and after
intervention.

Before intervention After intervention

Normoxia Hypoxia p-value Normoxia Hypoxia p-value

MABP (mmHg) 63(6137) 54 (620) 0.4 66 (619) 18.6 (62) 0.001

BE (mmol/L) 2.5(61.8) 5 (63) 0.15 3.6 (61) 219 (63) ,0.001

Temperature 38.9 (60.9) 39.5 (60.4) 0.25 39.1 (60.6) 38.8 (60.2) 0.37

pH 7.44 (60.07) 7.45 (60.05) 0.48 7.44 (60.03) 6.9 (60.1) ,0.001

pCO2 (kPa) 5.2 (60.9) 5.5 (60.8) 0.61 5.5 (60.4) 9.5(61) ,0.001

pO2 (kPa) 11 (61.3) 11.6 (61.3) 0.85 11 (61.3) 5.0 (60.6) ,0.001

Lactate (mmol/L) 2.5 (60.9) 1.3 (60.4) 0.33 1.5 (60.6) 12.9 (63.7) 0.002

Values are presented as mean (6 standard deviation). p-values correspond to two-groups comparisons using Student’s t-test for independent data.
doi:10.1371/journal.pone.0066540.t002

Figure 1. Principal component analysis of the metabolomic profiles of retina tissues. A) Score plot of PC1 vs. PC2; B) residual Q versus the
Hotelling’s T2 statistics; C) dendrogram obained by hierarchical cluster analysis.
doi:10.1371/journal.pone.0066540.g001
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In summary, results confirmed the quality of the data as the

stability of the sensitivity and mass accuracy levels was ensured,

and the precision of the sample replicate measurements provided

results comparable to those found for the internal standard.

Sample Size Evaluation and Exploratory Data Analysis
Selection of the sample size required to derive a statistically

meaningful estimation in metabolomics is critical to produce

robust results. Nonetheless, there is no single criterion to estimate

it in advance for highly collinear multivariate data sets typically

found in metabolomics studies. In this study, the required sample

size depended on a number of a priori unknown factors including

the size of the effect of hypoxia and its variation among the

individuals, the pre- and post-intervention biological variation of

the detected metabolites, as well as the analytical variation (e.g.

during sample collection, storage, pre-treatment and instrumental

measurement). Besides, the number of animals included in the

study should be kept to a minimum from an ethical standpoint

[25] and because of that both, overpowered and underpowered

studies are undesirable and a compromise must be ensured [26].

The group size is often small in piglet studies [27][28][29][30],

sometimes even having group sizes limited down to 2–5 piglets in

each group [31]. Therefore, two aspects were taken into account

for sample size selection: i) the cohort of piglets formed a

homogeneous group due to their high environmental and

physiological similarity (see Table 2), and ii) it was reasonable to

expect a high size effect of hypoxia on the retina metabolome due

to its extreme physiological effects on the piglets. Besides, the

retina is rich in polyunsaturated fatty acids, which might be at risk

of being oxidized by reactive nitrogen and oxygen species

[32][33].

Sample size selection criterion was supported by results

obtained from the explorative analysis of the data set. PCA is

one of the most commonly used methods for exploratory data

analysis. It provides an unbiased overview of the data structure

and it is a common strategy for the estimation of whether outliers,

trends or groups are present in multivariate data sets. The PCA

scores plot provides a direct illustration of the latent patterns in the

data set as the distance between objects (i.e. samples) is related to

their similarity with respect to what patterns the model describes

[34]. From the scores plot shown in Figure 1A, it was apparent

that the effect of hypoxia dominated PC1 variation which

describes 28.6% of the total variance of the data, and no within-

class clustering could be observed (see Figures 1A–B). This was

confirmed by the dendrogram calculated by HCA depicted in

Figure 1C. Although the number of groups in the dendrogram

depends on the choice of the distance cutoff, it was clear that the

high size of the effect of hypoxia on the retina metabolome split

the data into two clusters (i.e. normoxia and hypoxia samples).

Therefore both, the size of the effect and the within-class

homogeneity of the retina samples supported the use of the

selected sample size to provide adequate power to the analysis.

This limited-size study aimed at providing a characterization of

the metabolomic response of retinal tissue caused by profound

hypoxia in a well-established neonatal piglet model for the

identification of candidates of hypoxia biomarkers. However, the

study was essentially designed for hyptohesis-generation and the

usefulness, performance and biochemical significance of the

candidate biomarkers must be validated in larger studies.

Supervised Discriminant Analysis
Supervised PLSDA provided a better interpretation of the effect

of hypoxia on the retina metabolome, allowing the assessment of

the class separation and the identification of a subset of

discriminant metabolites. Initially, a PLSDA model was calculat-

ed. The use of a single latent variable was chosen from dQ2 values

calculated by leave-one out cross validation. The PLSDA scores

plot shown in Figure 2A did not reveal subgroups within the

hypoxia or normoxia groups of samples. Moreover, from the

residual Q and the Hotelling’s T2 statistics depicted in Figure 2B,

no sample was classified as outlier. Both results were in good

agreement with the results obtained by PCA.

When variables outnumber samples, false discovery rates and

premature claims of significance of PLSDA models due to, for

example random chance correlations and model over fitting

represent a major problem [22], [35] and model validation

Figure 2. Partial least squares - discriminant analysis of the retina metabolome between normoxic and severely hypoxic newborn
piglets. A) PLSDA scores plot; B) residual Q versus the Hotelling’s T2 statistics; C) PLSDA predicted class labels by double cross validation.
doi:10.1371/journal.pone.0066540.g002

Table 3. List of selected differentiating metabolites from the
retina data set.

Nr. Retention time[min] m/z Metabolite

1 0.57 84.0451 Pyroglutamic acid(1)

2 0.57 130.0506 Pyroglutamic acid

3 0.53 201.9340 Unidentified

4 0.54 222.0302 Unidentified

5 0.53 364.9069 CDP-DG(2)

6 0.69 489.1157 CDP-choline

7 0.69 511.0977 CDP-choline(2)

8 0.77 613.1588 GSSG

(1): Pyroglutamic in-source fragment [M+H-CH2O2]
+; (2): Na adduct.

doi:10.1371/journal.pone.0066540.t003
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becomes mandatory. The gold standard for validation is the use of

a representative external data set not used for model development

[36], [37]. Nonetheless, cross model validation (2CV) has been

repeatedly employed [21], [22], [23] as a suitable alternative in

metabolomic studies when no external set is available that provides

external figures of merit. In leave-one-out 2CV one of objects is set

aside as a test set. The remaining set of objects are again split into

training and validation sets and subjected to a leave-one-out

standard cross validation for the selection of the number of latent

variables [38].

Results from 2CV of the PLSDA model are depicted in

Figure 2C. Results showed that all the samples were correctly

classified (NMC = 0) also providing dQ2 = 0.69. The statistical

significance of NMC and dQ2 figures were established using a

non-parametric permutation test providing p-values,0.01 for both

statistics, thus supporting the existence of a significant effect on the

retina metabolome caused by hypoxia which could not be

attributed to chance or model overfitting.

The compounds selected summarized in Table 3 were

considered as discriminant metabolites and thus classified as

potential biomarkers of hypoxia. To obtain further information on

the results, univariate plots of the intensities of these metabolites

were depicted indicating clear up or down regulations of the

metabolites (see Figure 3). Although multivariate and univariate

plots cannot be directly compared, results found facilitated the

biological interpretation of the results. Besides, the use of the

newborn piglet model enables us to exactly know the time of

hypoxia and we could thereby correlate the selected set

biomarkers to the duration of hypoxia. The possibility of

prediction of the duration of hypoxia by quantification of

endogenous plasma metabolites (i.e. ratios of Ala/BCAA, Gly/

BCAA, succinate and propionyl-L-carnitine) has been recently

reported [1] opening a new field of research. In spite of the

observed differences on the levels of the selected metabolites

between both groups further research is needed to assess their

correlation with the duration of hypoxia. Quantitative analysis of

CDP-choline concentration in the retina extracts by HILIC-MS/

MS confirmed results obtained by UPLC-QTOFMS (see Figures 3

and 4).

Biological Interpretation
When selecting signals as potential biomarkers, their discrim-

inant capability and physicochemical properties as well as the

biochemical relation with the topic of investigation were consid-

ered. GSSG (oxidized glutathione) was identified as a differenti-

ating metabolite and in fact, the ratio of reduced glutathione

(GSH) and GSSG is typically employed as an indicator of the

oxidative status of biological systems. However, accurate quanti-

fication of GSH in biological matrices requires a previous

derivatization step using, e.g. N-ethyl-maleimide [39], [40] to

block free sulfhydryl groups thus avoiding oxidation into GSSG.

Therefore, as the acquired signal might be biased, GSSG was not

classified as a potential biomarker in this data set. Nonetheless,

Figure 3. Intensities of the selected differentiating metabolites. Boxplots showing UPLC-QTOF intensities of the selected discriminant
metabolites in retina of normoxic and severely hypoxic newborn piglets.
doi:10.1371/journal.pone.0066540.g003
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quantitative analysis of GSH/GSSG using a dedicated analytical

protocol will be the subject of future studies.

Analogous, pyroglutamic acid (also known as 5-oxoproline),

which was also identified as differentiating metabolites, is involved

in glutamate availability for GSH synthesis and its accumulation

induces oxidative stress [41]. Under hypoxic conditions, GSH

synthesis is activated to compensate the high GSH consumption

by the retina [42]. Of note, re-cycling of glutamate, a relevant

neurotransmitter, from the synaptic space during hypoxia is

blunted due to the lack of ATP causing its accumulation in the

neuronal tissue. However, its concentration rapidly decreases upon

reoxygenation and therefore cannot be considered a reliable

biomarker for the intensity of hypoxia [43].

CDP-choline is the limiting intermediate compound in the

major pathway of the phosphatidyl-choline biosynthesis (i.e. the

Kennedy pathway) [44]. Together with its hydrolysis products,

namely cytidine and choline, CDP-choline plays an important role

in the generation of phospholipids involved in membrane

formation and repair. Moreover, it contributes to important

metabolic functions such as formation of nucleic acids, proteins

and acetylcholine [45]. Neuroprotective properties of endogenous

CDP-choline have been known over two decades [3] and

exogenously administered it prevents, reduces or even reverses

effects of ischemia and/or hypoxia in different animal and cellular

models. However, information regarding the role of endogenous

CDP-choline is still scarce [3], [45]. It is known that during CDP-

choline synthesis pyrophosphate, which is involved in energy

transfer reactions such as glycolysis under anaerobic conditions, is

released [44], [46]. Under normoxic conditions, as a result of the

interaction of CDP-choline with diacyl-glycerol, phosphatidyl-

choline and monoglycerides are produced. However, under

hypoxic conditions, the normal reaction is reversed due to an

increase in monoglycerides, and diacyl-glycerol is rapidly degraded

to free fatty acids [44]. This is in agreement with results obtained

in this study where elevated levels of CDP-choline and a decrease

in CDP-DG were observed under hypoxic conditions (see

Figure 3). Besides, previous works showed that induced apoptosis

in HL-60 cells caused an increment of CDP-choline concentration

suggesting an inhibition of phosphatidylcholine synthesis through

inhibition of the enzyme CDP-choline:1,2-diacylglycerol choline-

phosphotransferase (CPT, EC 2.7.8.2) [47]. CPT has an optimum

pH range of 8.0–8.5 [48] and is inhibited by Ca+2 [45,46].

Hypoxic insults to the brain modify nuclear membrane Ca+2 influx

mechanisms (e.g. nuclear membrane IP(3) receptor) leading to

increased intracellular levels of Ca+2 [48]. Results found in this

work might also support the hypothesis of CDP-choline accumu-

lation via CPT inhibition. However, further research is required to

confirm this hypothesis. It is remarkable that under hypoxic

conditions a rise in CDP-choline was observed whereas the other

selected metabolites showed higher concentrations under nor-

moxia. From results depicted in Figures 3 and 4, CDP-choline was

classified as a promising biomarker for hypoxia in retinal

(neuronal-like) tissue. However, validity of CDP-choline has yet

to be confirmed upon resuscitation with further experiments in

hypoxic animals resuscitated with different oxygen concentrations.

Moreover, applicability of CDP-choline in the clinical setting and

especially in the newborn period would request confirmation of its

reliability in non-invasively attainable biofluids such as urine. This

would allow serial measurements without performing invasive

interventions.

Conclusions
The untargeted metabolomic analysis of retina samples

obtained from asphyxiated and control newborn piglets allowed

the selection of eight differentiating metabolites. Results were

statistically validated confirming their significance (p-value,0.01).

Further validation of the results was conducted by targeted UPLC-

MS/MS for the quantification of one of the identified differen-

tiating metabolites (CDP-choline) and two related metabolites

(choline and acetylcholine) confirming the obtained results.

Endogenous CDP-choline could be a promising candidate

biomarker as its key role in phospholipid synthesis as well as

neuroprotective function under hypoxic conditions are well known

and even therapeutic effects are described extensively in literature.

Future studies in larger populations and additional matrices (e.g.

blood, serum or plasma, or urine) are going to be carried out in

order to test the performance of CDP-choline as a biomarker for

hypoxia in retina and its reliability upon resuscitation.

Supporting Information

Figure S1 Instrumental stability during the sample
batch measurement. A) Mass accuracy given as m/z error in

ppm reserpine, lines: mean value +/2 standard deviation; B) peak

area values showed a 13.8% relative standard deviation (RSD).

(TIF)

Figure S2 Repeatability among sample replicates. A)

Histogram of the %RSD values calculated from the replicate

analysis of the retina samples for the set of 112 retained variables;

B) Histogram of the %RSD values calculated from the replicate

analysis of the retina samples using the set of differentiating

metabolites; C) Scatter plot showing the typical correlation found

among replicates of a retina extract. Dotted black line: linear

regression line. Red solid line: theoretical 1:1 diagonal line.

Figure 4. Concentrations of choline, acetylcholine and CDP-choline found by target analysis. Mean concentrations of CDP-choline (A)
choline (B), acetylcholine (C) and (expressed as nmol/mg of tissue) in retina samples as determined by UPLC-triple quadrupole MS/MS.
doi:10.1371/journal.pone.0066540.g004
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(TIF)

Figure S3 Selection of differentiating variables. Mean

regression PLSDA vector obtained from leave one out 2CV and

confidence boundaries calculated during the permutation test for

the identification of discriminant metabolites (solid green circles).

(TIF)

Figure S4 HILIC-UPLC-MS/MS typical chromatograms
of choline, acetylcholine and CDP-choline. Chromato-

grams of choline (A), acetylcholine (B) and CDP-choline (C)

obtained from the injection of a standard solution (concentrations

were 10 mM, 78 nM and 5 mM, respectively) and hypoxic and

normoxic retina samples. Note: chromatographic conditions

described in section Quantitative analysis of choline, acetylcholine and

CDP-choline.

(TIF)
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