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Metformin has been used in diabetes for more than 60 years and has excellent safety in
the therapy of human type 2 diabetes (T2D). There is growing evidence that the beneficial
health effects of metformin are beyond its ability to improve glucose metabolism.
Metformin not only reduces the incidence of cardiovascular diseases (CVD) in T2D
patients, but also reduces the burden of atherosclerosis (AS) in pre-diabetes patients.
Vascular smooth muscle cells (VSMCs) function is an important factor in determining the
characteristics of the entire arterial vessel. Its excessive proliferation contributes to the
etiology of several types of CVD, including AS, restenosis, and pulmonary hypertension.
Current studies show that metformin has a beneficial effect on VSMCs function. Therefore,
this review provides a timely overview of the role and molecular mechanisms by which
metformin acts through VSMCs to protect CVD.
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INTRODUCTION

Metformin is a biguanide that is available from extracts of folk medicinal plant Galega officinalis
leaves (Palmer and Strippoli, 2018; Prattichizzo et al., 2018). This medicinal plant has been used for
hundreds of years because of its ability to inhibit bacteria, viruses, and malaria as well as antipyretic
and analgesic (Prattichizzo et al., 2018; Flory and Lipska, 2019; Soukas et al., 2019). Metformin has
been widely used to treat diabetes since the 1950s and was widely used in the United States in 1995,
which greatly promoted the study of application and mechanism of metformin (Nafisa et al., 2018;
Soukas et al., 2019). Metformin is the most common treatment for type 2 diabetes (T2D) in the
world (Rena and Lang, 2018). This is mainly because of its high clinical value and low cost in
controlling blood glucose (Maruthur et al., 2016).
Abbreviations: AMPK, 5'-adenosine monophosphate-activated protein kinase; Akt, protein kinase B; [Ca2+]i, intracellular free
calcium; eNOS, endothelial nitric oxide synthase; HA, hyaluronic acid; IFI16, interferon-inducible protein 16; [K+]i,
intracellular free Potassium; mTOR, the mammalian target of rapamycin; NF-kB, nuclear factor kappa B; NO, nitric oxide;
p27, p53, tumor suppressor protein p53; cyclin-dependent kinase inhibitor 1B; PDK4, pyruvate dehydrogenase kinase 4; PGC-
1a, Peroxisome proliferator-activated receptor g coactivator-1a; PGC-1b, Peroxisome proliferator-activated receptor g
coactivator-1b; PI3K, phosphatidylinositol 3-kinase; PTEN, Phosphatase and tensin homolog; Runx2, Runt-related
transcription factor 2; Skp2, S-phase kinase-associated protein 2.

in.org May 2020 | Volume 11 | Article 6351

https://www.frontiersin.org/articles/10.3389/fphar.2020.00635/full
https://www.frontiersin.org/articles/10.3389/fphar.2020.00635/full
https://www.frontiersin.org/articles/10.3389/fphar.2020.00635/full
https://loop.frontiersin.org/people/517702
https://loop.frontiersin.org/people/113217
https://loop.frontiersin.org/people/578744
https://www.frontiersin.org/journals/pharmacology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/pharmacology#articles
http://creativecommons.org/licenses/by/4.0/
mailto:sazljl@126.com
mailto:tangliqin@ustc.edu.cn
https://doi.org/10.3389/fphar.2020.00635
https://www.frontiersin.org/journals/pharmacology#editorial-board
https://www.frontiersin.org/journals/pharmacology#editorial-board
https://doi.org/10.3389/fphar.2020.00635
https://www.frontiersin.org/journals/pharmacology
http://crossmark.crossref.org/dialog/?doi=10.3389/fphar.2020.00635&domain=pdf&date_stamp=2020-05-08


Deng et al. Metformin, VSMC, and Vascular Diseases
In addition to treating T2D, metformin is also used to treat
pre-diabetes, polycystic ovary syndrome (PCOS), gestational
diabetes, and to treat or prevent of pre-eclampsia, as well as to
prevent weight gain or even weight loss in diabetic patients (Lord
et al., 2003; Syngelaki et al., 2016; Greenhill, 2018). A growing
number of studies have shown that the beneficial effects of
metformin on health exceed the improvement in blood glucose
levels (Bannister et al., 2014; Campbell et al., 2017). Diabetes
patients treated with metformin showed survival benefit even
compared with non-diabetic controls (Bannister et al., 2014;
Campbell et al., 2017). Human observations further support the
role of metformin in preventing aging and cancer (Castillo-Quan
and Blackwell, 2016; Campbell et al., 2017; Pryor et al., 2019).

In patients with T2D, metformin monotherapy has lower
morbidity and mortality associated with cardiovascular disease
compared to sulfonylurea monotherapy, and metformin
combined with sulfonylurea therapy is associated with a
reduced risk of fatal cardiovascular events (Johnson et al.,
2005). Adolescents with T1D exhibit insulin resistance and
impaired vascular health (including increasing ascending and
descending aorta pulse wave velocity and maximal [WSSMAX]
and time-averaged [WSSTA] wall shear stress, and decreasing
ascending aorta and descending aorta relative area change)
(Bjornstad et al., 2018). Metformin can improve body mass
index (BMI), body weight, fat mass, insulin dose, and aortic
and carotid health in T1DM adolescents, thereby improving
insulin resistance (Bjornstad et al., 2018). Metformin is expected
to play a cardioprotective role in T1D (Bjornstad et al., 2018).
Sardu et al. assessed the effects of metformin treatment on
coronary endothelial function (coronary diameter of the left
anterior descending coronary artery [LAD]) and major adverse
cardiac events (MACE) (including heart death, myocardial
infarction, and heart failure) in patients with pre-diabetes with
stable angina pectoris and non-obstructive coronary stenosis
(NOCS) (Sardu et al., 2019). Metformin treatment can reduce
coronary endothelial dysfunction and reduce the risk of MACE
in patients with pre-diabetes (Sardu et al., 2019).

Metformin is a first-line treatment for lowering glucose, and
human and animal studies have shown that metformin can
inhibit gluconeogenesis by blocking mitochondrial redox
shuttles and fructose-1,6-bisphosphatase-1 (FBP1) in the liver
(Hunter et al., 2018; Flory and Lipska, 2019). Metformin is also
an insulin sensitizer and may play a protective role in the
intestinal lumen through a variety of mechanisms (Flory and
Lipska, 2019; Horakova et al., 2019). Metformin can also reduce
low density lipoprotein cholesterol (LDL-C) and total cholesterol
(TC) levels (Xu et al., 2015; Weng et al., 2020); inhibit
inflammatory responses (such as inhibiting the activation of
nuclear factor kappa B [NF-kB] and interleukin-1b [IL-1b])
(Isoda et al., 2006; Deng et al., 2018); improve vascular
endothelial function (activate 5'-adenosine monophosphate-
activated protein kinase [AMPK], increase nitric oxide [NO]
synthesis) (Nafisa et al., 2018; Sardu et al., 2019); inhibit cardiac
remodeling (such as inhibiting cardiomyocytes apoptosis and
cardiac fibrosis) (Sasaki et al., 2009; Chen R. et al., 2018). These
suggest that metformin has a cardiovascular protective effect, but
Frontiers in Pharmacology | www.frontiersin.org 2
a comprehensive understanding of the mechanism of action of
metformin is still lacking (Rena et al., 2017; Flory and
Lipska, 2019).

Vascular smooth muscle cells (VSMCs) are a class of cells that
are highly malleable and multifunctional (Touyz et al., 2018;
Basatemur et al., 2019). The healthy VSMC is located in the
middle of the artery wall and has a fusiform shape that expresses
contractile proteins (such as smooth muscle myosin heavy chain
[SMMHC] and a-smooth muscle actin [aSMA] as well as
secretes ECM macromolecules, including elastin, collagen, and
proteoglycans (Owens et al., 2004; Touyz et al., 2018). VSMCs
play an important role in compliance and elastic rebound when
adapting to changes in hemodynamic conditions (Touyz et al.,
2018; Basatemur et al., 2019; Xu et al., 2019). VSMCs function is
a key factor determining the characteristics of the entire arterial
vascular. Physiological VSMCs are at rest and exhibits low levels
growth (Coll-Bonfill et al., 2016; Basatemur et al., 2019).
Overgrowth of VSMCs contributes to the onset of several types
of CVD, including AS, restenosis, and pulmonary hypertension
(PAH) (Singh et al., 2002; Rudijanto, 2007; Tajsic and
Morrell, 2011).

In this article, we focus on the effects of metformin on
vascular function by regulating VSMCs function, including
vasoconstriction/PAH, intimal thickening, vascular calcification,
and inflammation.
EFFECT OF METFORMIN ON VASCULAR
FUNCTION/DISEASES

Vascular Tone/Activity
Dilation blood vessels are a commonly used method in the
treatment of clinical hypertension (Mughal and O'Rourke,
2018). Vascular contraction and relaxation are regulated by a
variety of factors, among which vasoactive substances such as
endothelin synthesized and released by vascular endothelial cells
can cause vascular smooth muscle contraction by increasing
intracellular free calcium ([Ca2+]i) levels in vascular smooth
muscle cells (Ali and Khalil, 2015). Vasodilators, such as NO
and prostacyclin (Prostacyclin I2, PGI2), released by vascular
endothelial cells, which have opposite functions to endothelin,
cause vasodilation by reducing the [Ca2+]i concentration in
vascular smooth muscle cells (Ali and Khalil, 2015; Vanhoutte
et al., 2017). [Ca2+]i in vascular smooth muscle cells is mainly
derived from extracellular calcium entering through the cell
membrane calcium channels and intracellular calcium released
from the endoplasmic reticulum of vascular smooth muscle cells
(Guo et al., 2018; Touyz et al., 2018; Manoury et al., 2020). In
addition to calcium channels, there are also K+ channels on the
vascular smooth muscle cell membrane, which affects the
vascular smooth muscle cell membrane potential to regulate
the vasomotor function of the vessels (Manoury et al., 2020).
When external stimulation causes the K+ channel on the cell
membrane to open, the cell membrane potential appears
hyperpolarized, which can inhibit the voltage-dependent
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calcium channel opening on the membrane, reduce extracellular
calcium influx, and promote vasodilation (Zhu et al., 2018;
Manoury et al., 2020). Conversely, the K+ channel is closed,
the cell membrane potential is depolarized, and the Ca2+ entering
the cell through the voltage-dependent calcium channel on the
membrane increases, resulting in vasoconstriction (Zhu et al.,
2018; Manoury et al., 2020).

Diabetic and hyperlipidemia rats exhibit high reactivity in
vasoconstriction at an early stage (Li et al., 2015). Hyperglycemia
and hyperlipidemia directly affect the contractile function of
VSMCs, suggesting that early damage of VSMCs during
metabolic disease may play a key role in vascular dysfunction
(Li et al., 2015). A large proportion of people with diabetes have
high blood pressure (Bohm et al., 2019; Saydah et al., 2019).
Methylglyoxal is a highly reactive dicarbonyl produced in the
metabolism of fructose and glucose, which is also the main
precursor for the formation of glycation end products (AGEs)
(Schalkwijk and Stehouwer, 2020). Methylglyoxal levels are
elevated in the plasma of diabetic patients and hypertensive
rats (Dhar et al., 2013). In VSMCs, methylglyoxal stimulation
can up-regulate protein expression of a1D receptor and AT1
receptor (Dhar et al., 2013). Metformin, a methylglyoxal
scavenger and AGEs inhibitor, attenuates the effects of
methylglyoxal (Dhar et al., 2013).

In VSMCs, insulin and insulin-like growth factor I (IGF-1)
inhibited agonist-stimulated contraction and increased [Ca2+]i
(Dominguez et al., 1996). In hypertensive rats, metformin can
promote the antihypertensive effect of peripheral insulin
(Dominguez et al., 1996). In cultured rat aorta VSMCs,
metformin increased basal tyrosine kinase (TK) activity,
glucose transport, and decreased thrombin-induced [Ca2+]i
elevation (Dominguez et al., 1996). These insulin/IGF-like
effects may be helpful in understanding certain vascular
protection effects of metformin (Dominguez et al., 1996).
Similarly, in cultured VSMCs of rat thoracic aorta, metformin
treatment significantly reduced angiotensin II (ANG II) or
platelet-derived growth factor (PDGF)-stimulated [Ca2+]i,
suggesting metformin exerts its vasodilating effect by inhibiting
agonist-induced [Ca2+]i (Sharma and Bhalla, 1995). In the rat tail
artery, metformin acute relaxation of phenylephrine (PE)-
induced contraction is accompanied by repolarization of the
arterial VSMCs membrane (Peuler et al., 1999). The acute
relaxation of metformin on rat tail artery smooth muscle may
depend on the transmembrane K gradient (metformin fails to
relax the extracellular K-induced contraction) and mediated at
least by 4-aminopyridine (4AP)-sensitive voltage-dependent K+-
channel activation in the arterial VSMCs membrane (Peuler
et al., 1999).

The effect of metformin on relaxing blood vessels is affected
by the type of inducer. For example, in rabbit arteries, metformin
activates AMPK without inhibiting cyclopropazine (CPA)-
induced arterial contraction and does not inhibit [Ca2+]i
(Huang et al., 2017). In addition, in the single cell isolated
from the mesenteric resistance artery of guinea pigs, the
thiazolidinedione derivatives (troglitazone and pioglitazone)
inhibited the contraction induced by 77 mM K+, and its
Frontiers in Pharmacology | www.frontiersin.org 3
potency was similar to that of inhibiting Ca2+ current.
Metformin and bezafibrate have no significant effect on Ca2+

current or high K+ induced contraction (Nakamura et al., 1998).
In VSMCs and pancreatic beta cells, phenformin but not
metformin inhibits many KATP variants (Aziz et al., 2010).

These studies suggest that metformin relaxes vascular smooth
muscle mechanisms: enhances insulin sensitivity, inhibits
methylglyoxal activation of the renin angiotensin system, and
inhibits multiple inducers (including PDGF or ANG II)-
stimulated [Ca2+]i rise, as well as inhibits PE-induced [K+]i
rise. It is precisely because of the antihypertensive effect of
metformin by inhibiting [Ca2+]i and/or [K+]i, so metformin
and bezafibrate have no significant effect on Ca2+ current or
high K+ induced contraction (Nakamura et al., 1998).

In addition, in SHR tail artery tissue (rich in sympathetic
nerve endings [SNE]), the vasodilation effect of metformin on
smooth muscle is attenuated by the presence of SNE (Lee and
Peuler, 2001). Further studies have shown that metformin has an
indirect sympathomimetic effect, which affects its vasodilation
(Lee and Peuler, 2001). Moreover, the indirect sympathomimetic
effect can be amplified by a monoamine oxidase inhibitor (such
as promethazine) and blocked by a NE-carrier inhibitor (such as
desipramine), so that metformin has beneficial vasodilatation in
diabetic patients with hypertension may be affected by
commonly used antidepressants similar to promethazine and
desipramine (Lee and Peuler, 2001).
Vascular Calcification
Vascular calcification (deposition of hydroxyapatite minerals in
the arterial wall) is closely related to the increased risk of stroke,
heart disease, and atherosclerotic plaque rupture (Nicoll and
Henein, 2014; Chow and Rabkin, 2015). Calcification occurs in
the intimal and medial layers of the arteries, both driven
primarily by VSMCs (Schinke and Karsenty, 2000; Chow and
Rabkin, 2015; Durham et al., 2018).

Atherosclerosis-associated calcification is closely related to
plaque rupture (Durham et al., 2018; Mori et al., 2018). Genetic
defects in AMPKa1 but not AMPKa2 promote atherosclerosis
calcification and Runt-related transcription factor 2 (Runx2)
expression (Cai et al., 2016). AMPK activation increases Runx2
instability by promoting small ubiquitin-like modification of
Runx2 (SUMOylation) (Cai et al., 2016). In contrast, long-term
administrat ion of metformin significant ly reduced
atherosclerotic calcification and Runx2 expression in ApoE(-/-)

mice, but less in ApoE(-/-)/AMPKa1(-/-) mice (Cai et al., 2016). At
the same time, AMPKa1 deficiency in VSMCs increases Runx2
expression and promotes atherosclerotic calcification in vivo (Cai
et al., 2016).

Proliferation and migration of VSMCs are significant in the
development of AS and plaque rupture (Durham et al., 2018;
Harman and Jorgensen, 2019). In primary human aortic
myocytes (HASMCs), metformin-induced AMPK activation
inhibits proliferation and migration of HASMC by up-
regulating tumor suppressor protein p53 (p53) and interferon-
inducible protein 16 (IFI16) (Hao et al., 2018). SiRNA-mediated
May 2020 | Volume 11 | Article 635
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knockdown of p53 and IFI16 attenuated AMPK activation and
reversed the inhibition of metformin (Hao et al., 2018). These
findings suggest that metformin may have therapeutic potential
in AS (Hao et al., 2018).

In female rat aortic smooth muscle cells (RASMCs),
metformin attenuated b-glycerophosphate (b-GP)-stimulated
alkaline phosphatase activity and calcium deposition, while
r educ ing os t eob la s t - l i k e genes (Runx2 and bone
morphogenetic protein-2) expression and increasing specific
markers of muscle cells (alpha-actin) expression (Cao et al.,
2013). Mechanistic studies indicated that metformin increased
phosphorylation levels of AMPK and endothelial nitric oxide
synthase (eNOS), and nitric oxide (NO) production (Cao et al.,
2013). When pharmacological methods are used to inhibit
AMPK or eNOS, NO production is reduced and metformin-
mediated vascular protection against b-GP-stimulated calcium
deposition is eliminated (Cao et al., 2013). This evidence
indicated that metformin blocks vascular calcification through
the AMPK/eNOS/NO signal pathway and may have therapeutic
potential for vascular calcification in T2D complications (Cao
et al., 2013).

Maintaining mitochondrial homeostasis may be a potential
protective factor for VSMCs to resist osteoblast-like phenotypic
transitions (Jia et al., 2018; Zhu et al., 2019). In VSMCs,
supplementation with metformin restores b-GP-mediated
mitochondrial biogenesis in VSMCs, such as increased
mitochondrial DNA copy number, up-regulated mitochondrial
membrane potential (MMP), and mitochondrial biosynthesis
gene expression (Ma et al., 2019). Metformin inhibits pyruvate
dehydrogenase kinase 4 (PDK4)/oxidative stress-mediated
apoptotic pathway through enhanced mitochondrial biogenesis,
thereby attenuating b-GP-induced phenotype conversion of
VSMCs into an osteogenic phenotype (Ma et al., 2019).

Intimal Thickening
Diabetes is a very important risk factor for CVD, which is closely
related to VSMCs hyperproliferation and intimal thickening
(Torella et al., 2018; Ji et al., 2019). Two types of microRNAs
(miR-221/222) that promote intimal thickening were found in
the inner mammary artery (IMA) segment of 37 subjects who
underwent coronary artery bypass grafting (Coleman et al.,
2013). These patients included non-diabetic patients (ND),
diabetic patients who took metformin (DMet+), and diabetic
patients who did not take metformin (DMet−) (Coleman et al.,
2013). Compared to the ND and DMet+ groups, the DMet−
group showed an up-regulation of miR-221/222 and a down-
regulation of their downstream target p27 mRNA (Coleman
et al., 2013). The level of miR-221/222 was inversely related to
the dose of metformin. The proliferation rate of VSMCs isolated
from the IMM of the DMet− group was faster than that of the
ND and DMet+ groups (Coleman et al., 2013).

Proliferation of VSMCs caused by vascular injury plays an
important role in the formation of vascular lesions (Durham
et al., 2018; Zhang C. et al., 2018). Peroxisome proliferator-
activated receptor g coactivator-1 (PGC-1) is a very important
regulator of many biological processes such as energy
Frontiers in Pharmacology | www.frontiersin.org 4
metabolism (Islam et al., 2018; Lee et al., 2019). PGC-1b
expression was decreased in the carotid artery of rats with
balloon injury (Guo et al., 2013). Overexpression of PGC-1b in
vivo significantly inhibits neointimal formation and significantly
reduces proliferation of VSMCs (Guo et al., 2013). Furthermore,
metformin can inhibit the proliferation of VSMCs by up-
regulating the expression of PGC-1b (Guo et al., 2013). In a
rat model of insulin resistance formed by high fructose diet for 4
weeks, the rat carotid artery was damaged by balloon catheter.
Metformin treatment significantly attenuates neointimal
hyperplasia by inhibiting VSMCs proliferation, migration, and
inflammation, and improving insulin signaling pathways
(Lu et al., 2013). In addition, hyaluronic acid (HA) is an
extracellular matrix glycosaminoglycan that is involved in a
variety of biological processes such as cell proliferation,
inflammation, and vascular thickening (Vigetti et al., 2011;
Chen L. H. et al., 2018). Metformin greatly reduces HA
synthesis by activating AMPK. The reduction in HA reduces
the ability of human aortic smooth muscle cells (HASMCs) to
proliferate, migrate, and recruit immune cells, thereby reducing
the atherogenic HASMCs phenotype (Vigetti et al., 2011).

The above studies indicate that metformin has therapeutic
potential neointimal thickening after arterial injury. However,
some studies do not support this conclusion. For example, in a
rat carotid balloon injury model, metformin enhanced insulin
sensitivity but had no significant effect on neointimal thickness
in normal or high-fat diet-fed rats (Guo et al., 2017). Similarly,
metformin (10 mmol/L) activated AMPK and inhibited VSMCs
proliferation only in undamaged blood vessels, while metformin
(2 mmol/L) had no effect (Guo et al., 2017). These results show
that although metformin increases systemic insulin sensitivity, it
does not reduce intimal growth after arterial injury in rats (Guo
et al., 2017). Abnormal arterial SMCs proliferation is associated
with AS and intravascular restenosis, which is common in
diabetic patients (Peuler et al., 1996). One study compared the
direct effects of glibenclamide, pioglitazone, thiazolidinediones,
and metformin on the proliferation of cultured arterial SMCs
(Peuler et al., 1996). The results indicate that pioglitazone may be
more useful than glibenclamide and metformin (Peuler
et al., 1996).

Inflammatory Response
Cytokine and chemokine-stimulated VSMCs accelerate the
inflammatory response and migrate to the damaged
endothelium during AS progression (Das et al., 2018).
Phosphatase and tensin homolog (PTEN) play a negative
regulatory role in inflammation (Sisti et al., 2018; Tang et al.,
2018). In VSMCs, metformin inhibits tumor necrosis factor-a
(TNF-a)-stimulated inflammatory response (inhibition of
nuclear factor [NF]-kB) activation, and expression of inducible
nitric oxide synthase (iNOS) and cyclooxygenase (COX)-2 via
AMPK-induced PTEN expression (Kim and Choi, 2012).

Increased vascular cell oxidative stress is associated with the
pathogenesis of AS (Forstermann et al., 2017; Tawakol and Jaffer,
2018). Reactive oxygen species (ROS) stimulate vascular
inflammation through the pro-inflammatory cytokine/NF-kB
May 2020 | Volume 11 | Article 635
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pathway (Kim et al., 2007; Zhong et al., 2019). Peroxisome
proliferator activated receptor g coactivator-1-alpha (PGC-1a)
plays a very important role in the regulation of intracellular ROS
levels (Garcia-Quintans et al., 2014; Garcia-Quintans et al.,
2016). TNF-a plays a major pro-inflammatory role in vascular
inflammation, and it increases NADPH oxidase activity and
mitochondrial ROS level (Kim et al., 2007; Blum and Adawi,
2019). PGC-1a overexpression in endothelial cells (HAECs) and
HASMCs inhibits TNF-a-induced mitochondrial ROS
production, NADPH oxidase activity, NF-kB activity, and
monocyte chemotactic protein-1 (MCP-1) and VCAM-1
expression (Kim et al., 2007). Expression of PGC-1a in
HASMCs and HAECs can be enhanced by AMPK activators,
such as metformin, rosiglitazone, and alpha-lipoic acid (Kim
et al., 2007). Therefore, metformin may prevent the development
of AS by stimulating PGC-1a expression in the vasculature (Kim
et al., 2007).

In addition, metformin dose-dependently inhibited the
production of pro-inflammatory cytokines IL-6 and IL-8 in IL-
1b-induced VSMCs, macrophages (Mphis), and endothelial cells
(ECs) (Isoda et al., 2006). Metformin exerts a direct vascular
anti-inflammatory effect by blocking the phosphatidylinositol 3-
kinase (PI3K)/protein kinase B (Akt) signaling pathway and
subsequently inhibiting NF-kB activity (Isoda et al., 2006). This
direct anti-inflammatory effect of metformin may partly explain
the significant reduction in clinical cardiovascular events by
metformin, which is not entirely due to its hypoglycemic effect
(Isoda et al., 2006).

In addition to its anti-inflammatory effects in VSMCs,
metformin inhibits lipopolysaccharide (LPS)-induced NF-kB
activation, expression and secretion of cytokines and
chemokines (including TNF-a, IL-1a, T cell activation gene-3
[TCA-3], macrophage colony-stimulating factor [M-CSF]) in
mouse colonic SMCs (CSMCs) (Al-Dwairi et al., 2018). The
anti-inflammatory effect of metformin in CSMCs suggests that it
can be used as adjunctive therapy for patients with inflammatory
bowel disease (a recurrent inflammation of the intestine and the
structure and function of intestinal SMCs are significantly
affected) (Al-Dwairi et al., 2018).

Atherosclerosis (AS)
AS is the formation of plaques containing lipids, cells, debris, and
scar tissue in the arterial intima (Zhang L. et al., 2018; Feng et al.,
2019a; Feng et al., 2019b). Endothelial dysfunction, smooth
muscle cell proliferation and migration, monocyte adhesion
and macrophage inflammation, cholesterol accumulation to
form foam cells, and platelet aggregation are all important
links in the pathogenesis of AS (Feng et al., 2019b; Feng et al.,
2020). It causes major pathological processes of stroke, angina
pectoris, myocardial infarction, and heart failure and is now the
leading cause of death worldwide (Zhang L. et al., 2018;
Basatemur et al., 2019; Feng et al., 2019a; Feng et al., 2019b).
The excessive proliferation and migration of VSMCs are
important factors that cause neointimal hyperplasia and lumen
stenosis after vascular injury (Feng et al., 2019b).

In Intimal Thickening, Inflammatory Response, and
Atherosclerosis (AS), we have summarized that metformin can
Frontiers in Pharmacology | www.frontiersin.org 5
improve the intimal thickening, vascular calcification, and
inflammation by affecting the function of VSMCs, all of which
are important pathological features of AS. Recently, Jenkins et al.
have summarized randomized clinical trial reports on the effects
of metformin on the markers of atherosclerotic vascular disease,
including carotid intima-media thickness (CC-IMT), vascular
reactivity and calcification in patients with type 1 diabetes (T1D)
and T2D (Jenkins et al., 2018). These studies generally indicate
that metformin has a protective effect on vascular disease in
young and adults with T1D, and in adults with pre-diabetes and
T2D (Jenkins et al., 2018).

The effect of metformin on AS, from the perspective of
VSMCs, includes: reduction of intimal thickening, reduction of
inflammation and oxidative stress, prevention of atherosclerosis
calcification. In addition, metformin can also improve
endothelial dysfunction (including inhibition of oxidative stress
and inflammatory response, inhibition of ECs senescence and
apoptosis, and improvement of ECs NO production and
endothelium-dependent vasodilation) (Nafisa et al., 2018).

Pulmonary Arterial Hypertension (PAH)
Pulmonary arterial hypertension (PAH) is a debilitating disease
associated with increased pulmonary arterial pressure, decreased
lung function and exercise capacity, and progressive right heart
failure (Pullamsetti et al., 2014; Yuan et al., 2019). Endothelial
dysfunction, vasoconstriction, pulmonary vascular remodeling
caused by smooth muscle cell hyperplasia and hypertrophy,
muscleization of the anterior capillaries, and distal vascular
loss are key pathophysiological processes of PAH (Tuder et al.,
2013; Sundd and Kuebler, 2019). PAH causes increased
pulmonary vascular resistance and increased right ventricular
afterload, and promotes right ventricular failure, which is the
main cause of death of patients with PAH (Thenappan et al.,
2018). Current treatments, including calcium channel blockers,
anticoagulants, endothelin receptor antagonists, type 5
phosphodiesterase inhibitors, and prostacyclin analogs, have
limited efficacy (Thenappan et al., 2018). Vascular occlusion
caused by excessive proliferation of VSMCs is an important
feature of pulmonary hypertension (Uhrin et al., 2018). In
addition to dilating blood vessels, it is also necessary to inhibit
the inflammatory response and reverse pulmonary vascular
remodeling (Uhrin et al., 2018).

Pulmonary artery vascular smooth muscle (PAVSM) cell
proliferation is an important pathological process of PAH
vascular remodeling (Krymskaya et al., 2011; Kudryashova
et al., 2016). Metformin has relaxed blood vessels and anti-
proliferative properties (Agard et al., 2009). In hypoxic and
monocrotaline-induced rat PAH models, metformin is
resistant to vascular remodeling (including improved
endothelial function, vasodilation, and anti-proliferative effects)
and resistance to PAH (Agard et al., 2009). Similarly, in the
sugen 5416/hypoxia-induced PAH rat model, metformin
inhibited right ventricular systolic pressure and hypertrophy,
as well as reduced pulmonary vascular remodeling (Dean et al.,
2016). This may be related to inhibition of aromatase activity,
estrogen synthesis and cell proliferation in PAVSM cells (Dean
et al., 2016). In the hypoxic experimental PAH rat model,
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metformin (100 mg/kg/day) treatment for 3 weeks also inhibited
hypoxia-induced pulmonary vascular remodeling, collagen
deposition, and PAVSM cells proliferation by activating AMPK
and inhibiting autophagy (Liu et al., 2019).

Up-regulation of mammalian target of rapamycin (mTOR)
activity and activation of mammalian target of rapamycin
complex 1 (mTORC1) and mTORC2 are important for the
proliferation of PAVSM cells stimulated by chronic hypoxia in
vitro and in vivo (Krymskaya et al., 2011). In PAVSM cells,
metformin activates AMPK, inhibits mTOR activity, and
reverses the up-regulation of S-phase kinase-associated protein
2 (Skp2) and down-regulation cyclin-dependent kinase inhibitor
1B (p27), thereby inhibiting PDGF or endothelin-1 (ET-1)
induced proliferation (Wu et al., 2014; Song et al., 2016). These
studies suggest that metformin has potential value in the
prevention and treatment of PAH by negatively regulating
pulmonary vascular remodeling (Wu et al., 2014; Song et al.,
2016). Metformin is currently used to treat patients with
diabetes, so it should be easier to assess its use as a treatment
for PAH in diabetic patients (Agard et al., 2009).

MOLECULAR TARGETS OF METFORMIN

In general, metformin reduces vascular remodeling (by
inhibiting VSMCs proliferation, migration, calcification, and
inflammation), and dilates blood vessels (by enhancing insulin
Frontiers in Pharmacology | www.frontiersin.org 6
sensitivity and inhibiting the rise of intracellular [Ca2+]i and [K+]
i). Although the exact molecular mechanism of metformin is still
not well defined, many secondary molecular targets have been
identified so far. Here, we summarize the molecular targets of the
action of metformin on VSMCs (Figure 1).

CONCLUSION AND PERSPECTIVES

In this article, we focus on the role of metformin in CVD,
including AS and PAH, and clarify that metformin plays a
beneficial role in the above CVD by improving the function of
VSMCs. In general, metformin inhibits proliferation,
calcification, and inflammation of VSMCs. However, more
research is needed to support the beneficial effects of
metformin on VSMCs. In addition, we summarized the
mechanism of action of metformin on VSMCs (Figure 1).

Metformin has been used in diabetes for more than 60 years
(Flory and Lipska, 2019). Newer drugs, including glucagon-like
peptide 1 (GLP-1) receptor agonists and sodium glucose
cotransporter 2 (SGLT-2) inhibitors, also show cardiovascular
benefits (Association A D, 2019). However, the safety of long-
term application of these new drugs remains to be confirmed by
further studies, such as SGLT-2 inhibitors may cause diabetic
ketoacidosis and amputation, and GLP-1 agonists may cause
acute pancreatitis (Association A D, 2019). In contrast,
metformin's clinical experience and safety data are much better
FIGURE 1 | Role of metformin in VSMCs dysfunction. Metformin exerts its function of improving the function of VSMCs by regulating the expression and function of
genes or proteins closely related to VSMCs proliferation and migration, calcification, contraction, and inflammation. ↑indicates increase or activation, and ↓indicates
decrease or suppression. Metformin inhibits VSMCs proliferation: 1. Activates AMPK, inhibits mTOR, down-regulates Skp2 while up-regulates p27. 2. Up-regulates
expression of PGC-1b. 3. Activates AMPK, reduces HA synthesis. 4. Activates AMPK, up-regulates P53 and IFI16. Metformin inhibits vascular calcification: 1.
Activates AMPKa1 and inhibits Runx2 expression. 2. Activates the AMPK-eNOS-NO pathway. 3. Enhances mitochondrial biogenesis and inhibits PDK4/oxidative
stress-mediated apoptotic pathway. Metformin inhibits smooth muscle contraction: 1. Enhances insulin sensitivity and inhibits methylglyoxal activation of renin
angiotensin system. 2. Inhibits the rise of [Ca2+]i and [K+]i in VSMCs. Metformin inhibits inflammation: 1. Activates AMPK and up-regulates PTEN expression. 2.
Inhibits PI3K-Akt and NF-kB activation. 3. Up-regulates the expression of PGC-1a.
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(UK Prospective Diabetes Study [UKPDS] Group, 1998; Knowler
et al., 2002). In fact, the common gastrointestinal side effects of
metformin are usually transient, and the only serious adverse
reaction is lactic acidosis, which occurs nine times per 100,000
person-years (Stang et al., 1999; Triggle and Ding, 2017).

Given the safety, effectiveness, and significant cost advantages
of metformin, it remains the first-line therapy for most T2D
patients (Flory and Lipska, 2019). In addition, it is clinically
possible to control the dose of metformin, use sustained-release
and delayed-release preparations, and manage patients to
alleviate the common side effects of metformin (Flory
and Lipska, 2019). In the future, relying on modern
pharmacological methods, human and animal studies will
further promote the rational use of metformin and reveal the
mechanism of action of metformin.
Frontiers in Pharmacology | www.frontiersin.org 7
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