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Abstract Research on somatosensory awareness has yielded highly diverse findings with

putative neural correlates ranging from activity within somatosensory cortex to activation of widely

distributed frontoparietal networks. Divergent results from previous studies may reside in cognitive

processes that often coincide with stimulus awareness in experimental settings. To scrutinise the

specific relevance of regions implied in the target detection network, we used functional magnetic

resonance imaging (n = 27) on a novel somatosensory detection task that explicitly controls for

stimulus uncertainty, behavioural relevance, overt reports, and motor responses. Using Bayesian

Model Selection, we show that responses reflecting target detection are restricted to secondary

somatosensory cortex, whereas activity in insular, cingulate, and motor regions is best explained in

terms of stimulus uncertainty and overt reports. Our results emphasise the role of sensory-specific

cortex for the emergence of perceptual awareness and dissect the contribution of the

frontoparietal network to classical detection tasks.

DOI: https://doi.org/10.7554/eLife.43410.001

Introduction
The target detection task is a standard paradigm to study the neural correlates of perceptual aware-

ness. In the near-threshold detection task, participants are presented with stimuli at intensities close

to their individual detection thresholds, resulting in detection rates of ~50%. Neural responses

underlying detected and undetected targets can then be contrasted at identical physical stimulation

parameters to identify the neural correlates of conscious access.

In the somatosensory domain, research on this task has identified a range of areas that correlate

with target detection. These include the thalamus, primary (SI) and secondary (SII) somatosensory

cortices, motor areas, the anterior insular cortex (AIC), anterior cingulate cortex (ACC), as well as

posterior parietal and prefrontal regions (Auksztulewicz et al., 2012; Bastuji et al., 2016;

Allen et al., 2016; Bornhövd et al., 2002; Büchel et al., 2002; de Lafuente and Romo, 2005;

de Lafuente and Romo, 2006; Frey et al., 2016; Hirvonen and Palva, 2016; Jones et al., 2007;

Moore et al., 2013). This diversity of findings parallels results from the visual and auditory modali-

ties (e.g. Carmel et al., 2006; Eriksson et al., 2007; Rees et al., 2002) and underlies the idea that

perceptual awareness emerges when local information is propagated from sensory cortices to higher

order brain regions to elicit a reverberating network of broadcast activity (Baars, 1997;

Dehaene et al., 2006).

While a complex network activation may seem a suitable candidate to explain a complex phe-

nomenon such as perceptual awareness, the functional specificity of the identified regions remains

largely unknown. One problem that complicates the interpretation is that classical target detection

tasks not only probe perceptual awareness but involve a range of correlated cognitive processes

that may confound classical contrastive analyses (Aru et al., 2012; de Graaf et al., 2012). In the
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context of the somatosensory near-threshold detection task, four aspects are particularly problem-

atic: 1. perception of near-threshold stimuli is difficult, and resolution of associated uncertainty and

introspective processes may differ between detected and undetected targets (de Lafuente and

Romo, 2011). 2. Target detection is the explicit behavioural goal of the task and therefore, detected

targets have higher behavioural relevance than undetected targets (Farooqui and Manly, 2018). 3.

Target detection is directly mapped to overt reports that allow for assessment of participants’ trial-

by-trial perception (Tsuchiya et al., 2015). 4. Overt reports are often communicated with button

presses by one hand while stimulation occurs on the other hand, which may affect cortical excitability

in homologue regions of the sensorimotor homunculus (Zagha et al., 2013). All these variables

potentially contribute to the commonly observed network activation and dedicated experimental

paradigms are warranted to scrutinise its functional specificity for target detection and accordingly,

somatosensory awareness.

Here, we used functional magnetic resonance imaging (fMRI) on a novel somatosensory detection

task that explicitly varies stimulus uncertainty and controls for behavioural relevance, overt reports,

and motor responses. To distinguish BOLD responses reflecting target detection from those indicat-

ing concomitant processes, we fit simple behavioural models to our fMRI data, capturing trial-wise

physical stimulus intensity, target detection, detection probability, expected uncertainty, and overt

reports, respectively. We dissociate corresponding representations in the brain by means of Bayes-

ian Model Selection (BMS, Stephan, Penny, Daunizeau, Moran, & Friston, 2009), which determines

which model best explains the data in every voxel of the brain based on model evidence maps.

Building on insights from the visual modality (Farooqui and Manly, 2018; Frässle et al., 2014;

Koch et al., 2016), we hypothesise that BOLD responses associated with target detection are

restricted to somatosensory regions, whereas activity in the frontoparietal network reflects cognitive

processes that follow from task requirements.

Results

Experimental paradigm
Participants performed a two-alternative forced choice somatosensory detection task on electrical

pulses administered to their left median nerves inside the fMRI scanner (see Figure 1 and

Materials and methods for a detailed description of the task design). To vary stimulus uncertainty,

we presented stimuli at ten different intensity levels that were individually adjusted to sample the

full dynamic range of each participant’s psychometric function from 0 to 100% detectability. Accord-

ingly, stimuli presented near individual 50% detection thresholds were expected to be associated

with higher uncertainty (as defined by larger trial-by-trial variability in target detection) than clearly

sub- or supraliminal stimuli. To balance behavioural relevance and overt reports across detected and

undetected targets, instead of directly reporting target detection, participants were required to

match their perception of somatosensory target stimuli against simultaneously presented visual cues

that signalled stimulus presence or absence. As a result, detected and undetected targets could

result in the same overt report (match or mismatch), making them equally relevant for the task.

Finally, to avoid motor response-related activation of cortical hand representations, instead of giving

manual responses, participants responded with saccades to peripheral response cues. We analysed

3T fMRI data of n = 27 participants who performed 4 runs of 100 experimental trials each.

Behaviour
Participants detected 52.25 ± 11.65% (mean ± standard deviation) of targets. Note that targets were

presented on every trial and only the stimulus intensity was individually manipulated to render tar-

gets sub- or supraliminal. Therefore, the detection rate was identical to the hit rate and false alarms

or correct rejections could not occur. As expected, participants’ target detection varied with stimulus

intensity, resulting in characteristic sigmoidal psychometric functions (Figure 2). A Bayesian equiva-

lence of the paired-sample t-test suggests strong evidence for shorter reaction times for detected

than undetected targets (detected: 352.11 ± 50.98 ms, undetected: 363.88 ± 55.97 ms, difference:

11.77 ± 14.84 ms, BF10 = 88.01). To test if the task manipulation successfully dissociated target

detection from overt reports, we computed Bayesian tests of association for all participants and

found that none of the participants showed positive evidence for an association between the two
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variables (all BF10 <.5). In contrast, we found positive evidence for independence for all participants

(BF01 >4) except one (BF01 = 2.62).

fMRI
From our paradigm, we extracted five experimental regressors to identify brain regions that process

the various stimulus and behavioural dimensions of the task: linear stimulus intensity, binary target

detection, detection probability, expected uncertainty, and overt reports (Figure 1B). The shared

variance in some of these regressors (intensity, detection, detection probability) would result in mul-

ticollinearity issues and unstable beta estimates in classical regression analyses. To overcome this

problem, we separated the regressors into different models and performed Bayesian model compar-

ison to determine which regressor best explained the data over and above shared variance. To this

end, the experimental regressors were incorporated in five different general linear models (GLMs) as

parametric regressors on trial onsets, each of which constituted a specific hypothesis of expected

BOLD responses. We then estimated the models using the first-level Bayesian GLM estimation as

implemented in SPM12 (Penny et al., 2007). The resulting model evidence maps were subjected to

random effects BMS to obtain one exceedance probability (EP) map per model, indicating the voxel-

Figure 1. Experimental design. (A) Trial design. After a variable intertrial interval of 2.5–7 s, electrical target stimuli and visual matching cues were

presented simultaneously. A white matching cue signalled stimulus presence, a dark grey matching cue signalled stimulus absence. After a short delay,

participants reported a match or mismatch between the cue and their somatosensory percept by selecting one of two colour-coded disks with a

saccadic eye movement. Example: If participants detected the target and saw a white matching cue, they would report a match. Likewise, if they did

not detect the target and saw a dark grey matching cue, they would also report a match, resulting in the same behavioural relevance of detected and

undetected targets and orthogonalisation of target detection and overt reports. (B) Graphical depiction of experimental regressors plotted against

stimulus intensity levels. Five stimulus and behavioural dimensions of our task were specified as parametric regressors on trial onsets: physical stimulus

intensity, target detection, detection probability, expected uncertainty, and overt reports.

DOI: https://doi.org/10.7554/eLife.43410.002
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wise probability that a particular model explained

the data better than any of the other models

(Rosa et al., 2010; Stephan et al., 2009). To

extract only those voxels where one model clearly

outperformed all other models, we thresholded

these maps at EP � .99 and further inspected

only those voxels that exceeded this threshold.

When models are expected to share a lot of

probability mass due to correlated regressors,

they may be too similar in the variance they

explain to outperform each other sufficiently to

exceed a desired EP threshold. To avoid such

model dilution (Hoeting et al., 1999), in a first

step, we combined the intensity, detection, and

detection probability models into a model family

(+family) and performed BMS on the family level

(Penny et al., 2010) to define regions of interest

(ROIs), in which the +family yielded EP � .99.

The +family models were then assessed individu-

ally within these ROIs. The uncertainty and report

models on the other hand were not expected to

share variance with any of the other models and

were therefore assessed in a whole-brain analysis.

The +family defined ROIs in contralateral right

SI extending into right superior parietal lobule

(SPL), bilateral SII extending into posterior insular

cortices, as well as left superior frontal gyrus

(SFG), left inferior parietal lobule (IPL), and left

visual area V3 (Figure 3A). Within these regions,

the intensity model was the best model in the

anterior part of the right SI cluster (peak voxel

[38, �40, 66], peak EP = .96), primarily spanning

areas 3b, 1, and 2. Further intensity representa-

tions were found in regions of bilateral SII, in par-

ticular the most anterior and posterior edges of

the right SII cluster (anterior: peak voxel [54, �6,

4], peak EP = .90; posterior: peak voxel [62, �34, 22], peak EP = .98) and the medial part of left SII

(peak voxel [�46, –34, 22], peak EP = .90). The detection probability model best explained data in

the posterior part of right SI (primarily area 2) extending into SPL (peak voxel [34, �50, 62], peak

EP = .99), as well as large regions of bilateral SII (right: peak voxel [56, �16, 20], peak EP = .99; left:

peak voxel [�60, –36, 20], peak EP = .98). Finally, the binary detection model was the best model in

superior and inferior parts of the right SII cluster (superior: peak voxel [62, �20, 30], peak EP = .95;

inferior: peak voxel [52, �22, 8], peak EP = .96) and in mostly lateral regions of left SII (peak voxel

[�62, –36, 26], peak EP = .93). Further detection-sensitive regions were found in left SFG (peak voxel

[�26, 56, 22], peak EP = 1), left IPL (peak voxel [�50, –58, 46], peak EP = 1), and left V3 (peak voxel

[�12, –80, �16], peak EP = 1). Within SI, the spatial distribution of voxels explained by the intensity

and detection probability models, respectively was found to follow the known cytoarchitectonic sub-

divisions of the anterior parietal cortex (Figure 3—figure supplement 1). In SII on the other hand,

voxels with sensitivity to intensity, detection probability, and detection did not show an apparent

organisation along the cytoarchitectonic subdivisions of the parietal operculum.

Having established regions that were well explained by the +family models, we further examined

the underlying model parameters. To this end, we extracted beta estimates of the respective experi-

mental regressors from individual BMS peaks and computed Bayes factors quantifying the evidence

that these estimates systematically deviated from zero on the group level. Since the model selection

procedure does not account for directionality of the underlying effects (i.e. both positive and nega-

tive parameter estimates may contribute to the model evidence), we imposed this second constraint

Figure 2. Psychometric functions. Logistic functions

were fitted to each participant’s behavioural data

during the main experiment and averaged across runs

to obtain continuous models of individual psychometric

functions. Note that although the shape of the

psychometric function can vary considerably across

participants, due to the individually adjusted stimulus

intensities, the resulting curves were normalised to

span 0–100% detection probability from intensity levels

1 to 10. Red dashed lines show fitted psychometric

functions of five participants that failed to reach �10%

detection probability for intensity level 1 or �90%

detection probability for intensity level 10 (outside the

grey-shaded area) and were therefore excluded from

all further analyses.

DOI: https://doi.org/10.7554/eLife.43410.003

The following source data is available for figure 2:

Source data 1. Target detection rates for all intensity

levels.

DOI: https://doi.org/10.7554/eLife.43410.004
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Figure 3. +family models. (A) BMS results (ROI analysis). EPs of the +family models are displayed within +family

ROIs. RGB values indicate model EPs: The corners of the RGB triangle correspond to EP = 1 signifying a clear

winner of the BMS, whereas intermixed colours indicate similar EPs for respective models. Intensity (green),

P(Detection) (blue), Detection (red). k � 50 voxels. (B) Beta estimates and stimulus response profiles. Left panels:

Beta estimates of the winning models’ experimental regressors were extracted from individual BMS peak voxels.

Figure 3 continued on next page
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on the identified regions to detect systematic variation across participants and thus, systematic asso-

ciation of the behavioural regressors with the observed BOLD activity. To visualise these associa-

tions, we extracted stimulus response profiles (SRPs). SRPs show the fitted activity of a region as a

function of stimulus intensity and can provide a visual representation of the model fit. Regions that

are well explained by models featuring a systematic relationship with stimulus intensity (intensity,

detection, detection probability, uncertainty) were expected to show a response profile visibly

reflecting this relationship. Regions that are explained by models with no such relationship on the

other hand (report) were expected to show no systematic differences in BOLD responses across

stimulus intensities.

All regions explained by the intensity model showed strong (R SIa: BF10 = 33.94; L SIIm:

BF10 = 81.58) or very strong (R SIIp: BF10 = 385.13; R SIIa: BF10 = 6114.09) evidence for a positive

regression weight of the intensity regressor indicating a positive relationship of stimulus intensity

and BOLD responses in these regions (Figure 3B, Table 1). This result is reflected in the SRPs of

intensity-sensitive regions, which show a linear response increase with increasing stimulus intensity

(Figure 3C). Likewise, positive regression weights for the detection probability regressor in SI and

SII were confirmed with positive (R SIp: BF10 = 3.04) and very strong evidence (R SII:

BF = 232795.89, L SII: BF = 7961.84) and, correspondingly, these regions show sigmoidal SRPs. For

the binary detection regressor, positive regression weights were exclusively found in bilateral SII (R

SIIs: BF = 8.63; L SIIl: BF = 96.7). Parameter estimates in all other regions explained by the detection

model failed to yield positive evidence for a systematic deviation from zero (R SIIi: BF = 1.36; L SFG:

BF = .31; L IPL: BF = 2.84; L V3: BF = .65), indicating that in these regions the response to target

detection was not systematic across participants. Accordingly, the sigmoidal shape of the SRP that

would be expected from an area showing a categorical response to target detection (recall that tar-

get detection averaged over trials and plotted against stimulus intensity amounts to the psychomet-

ric function) is less pronounced in these regions.

The uncertainty model yielded EP �.99 in bilateral superior medial gyrus (SMG) extending into

ACC (peak voxel [2, 30, 40], peak EP = 1) and bilateral AIC (right: peak voxel [36, 22, -6], peak

EP = 1; left: peak voxel [�34, 18, –8], peak EP = 1) (Figure 4A, Table 1). Very strong evidence con-

firms positive beta estimates in all these regions (SMG/ACC: BF10 = 366797.07; R AIC:

BF10 = 453.09; L AIC: BF10 = 479302.70), and the respective SRPs show a clear inverse U-shaped

function, suggesting that these areas exhibit the strongest activity for targets close to detection

thresholds, when expected uncertainty is highest (Figure 4B).

Finally, the report model fit best in left supplementary motor area (SMA) (peak voxel [�2, 8, 64],

peak EP = 1), right supramarginal gyrus (SMarG) (peak voxel [60, -34, 44], peak EP = 1), and left thal-

amus (peak voxel [�6, –16, 10], peak EP = 1) (Figure 5A, Table 1). Of these, SMA was found to be

the only region showing beta estimates that reliably deviated from zero (SMA: BF10 = 65.14). Beta

estimates extracted from left thalamus and right SMarG did not yield positive evidence for an effect

(L Thal: BF10 = .22; R SMarG: BF10 = .23) and these regions’ sensitivity to overt reports is therefore

considered unsystematic. As expected from the lack of association between overt reports and target

Figure 3 continued

Each coloured circle corresponds to one participant’s beta estimate. Black circles mark group means. Asterisks

indicate evidence for a deviation from zero: *BF >3, **BF >20, ***BF >150. Right panels: beta estimates for

different intensity levels were extracted from regions of interest and plotted to provide SRPs. For visualisation,

fitted representations of the winning models are plotted along with the beta estimates. Error bars represent the

standard error of the mean. Somatosensory regions show representations of stimulus intensity, detection

probability, and binary target detection, which are reflected in their SRPs. Detection-sensitive regions in prefrontal,

posterior parietal, and visual areas do not show systematic relationships with stimulus intensity.

DOI: https://doi.org/10.7554/eLife.43410.005

The following source data and figure supplement are available for figure 3:

Source data 1. Beta estimates for clusters defined by the +family models.

DOI: https://doi.org/10.7554/eLife.43410.007

Figure supplement 1. Distribution of models in cytoarchitectonic subregions of SI and SII.

DOI: https://doi.org/10.7554/eLife.43410.006

Schröder et al. eLife 2019;8:e43410. DOI: https://doi.org/10.7554/eLife.43410 6 of 19

Research article Neuroscience

https://doi.org/10.7554/eLife.43410.005
https://doi.org/10.7554/eLife.43410.007
https://doi.org/10.7554/eLife.43410.006
https://doi.org/10.7554/eLife.43410


detection, SRPs in these areas did not reflect a systematic relationship with stimulus intensity

(Figure 5B).

Discussion
To scrutinise the neural processes underlying somatosensory target detection in humans, we

employed an experimental paradigm that explicitly dissociates target detection from stimulus uncer-

tainty, behavioural relevance, overt reports, and motor responses. Using Bayesian Model Selection

on the acquired fMRI data, we observe a transformation from physical to perceptual representations

as the target is propagated through the somatosensory hierarchy. This transformation primarily

occurred in SI and SII, whereas expected uncertainty was represented in insular and cingulate

regions and overt reports were processed in supplementary motor cortex. Our analysis reveals large

overlap with the previously identified target detection network but assigns functional specificity to

the involved regions.

SI is the first cortical region to receive somatosensory input from the contralateral body side. It is

subdivided into four somatotopic maps, areas 3a/b, 1, and 2, that are organised along an anterior-

Table 1. Brain regions showing EP � .99 for any of the tested models.

For the +family models the .99 EP threshold was applied on the family level and individual peak EPs are reported for every model.

k �50 voxels. Betas of experimental regressors extracted from individual BMS peaks are reported as mean ± SEM. ACC: anterior cin-

gulate cortex, AIC: anterior insular cortex, IPL: inferior parietal lobule, SI: primary somatosensory cortex, SII: secondary somatosensory

cortex, SFG: superior frontal gyrus, SMA: supplementary motor area, SMarG: supramarginal gyrus, SMG: superior medial gyrus. a:

anterior, p: posterior, i: inferior, s: superior, m: medial, l: lateral.

Cluster size Region Peak MNI (x,y,z) Peak EP Beta BF10

Intensity

247 R SIa (BA 3b, 1, 2) 38 �40 66 .96 .09 ± .02 33.94

276 R SIIp 62 �34 22 .98 .18 ± .03 385.13

213 R SIIa 54 �6 4 .90 .20 ± .04 6114.09

212 L SIIm �46 �34 22 .90 .13 ± .03 81.58

Detection probability

71 R SIp (BA 2) 34 �50 62 .99 .08 ± .03 3.04

932 R SII 56 �16 20 .99 .27 ± .04 232795.89

602 L SII �60 �36 20 .98 .17 ± .03 7961.84

Detection

189 R SIIi 52 �22 8 .96 .09 ± .04 1.36

76 R SIIs 62 �20 30 .95 .08 ± .03 8.63

128 L SIIl �62 �36 26 .93 .10 ± .02 96.70

116 L SFG �26 56 22 1 .04 ± .05 .31

66 L IPL �50 �58 46 1 .09 ± .03 2.84

72 L V3 �12 �80 �16 1 �.04 ± .02 .65

Uncertainty

664 SMG/ACC 2 30 40 1 .33 ± .04 366797.07

127 R AIC 36 22 �6 1 .22 ± .03 453.09

70 L AIC �34 18 �8 1 .22 ± .05 479302.70

Report

132 L SMA �2 8 64 1 �.12 ± .03 65.14

71 L Thalamus �6 �16 10 1 �.01 ± .02 .22

51 R SMarG 60 �34 44 1 .02 ± .04 .23

DOI: https://doi.org/10.7554/eLife.43410.008
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posterior axis on the postcentral gyrus and increase in their hierarchical level (Delhaye et al., 2018;

Felleman and Van Essen, 1991). Our analysis suggests that during somatosensory target detection,

contralateral areas 3b, 1, and anterior parts of area 2process the physical stimulus intensity, whereas

more posterior parts of area 2, extending into adjacent SPL, represent the probability to detect a

target. Previous research has been ambiguous regarding the role of SI for target detection. Some

studies found no difference in SI responses for detected and undetected targets (de Lafuente and

Romo, 2005; Schubert et al., 2006; Wühle et al., 2010; Wühle et al., 2011) and are in line with a

representation of physical stimulus properties. Others have reported stronger SI evoked magneto-/

electroencephalography responses for detected compared to missed stimuli (Hirvonen and Palva,

2016; Jones et al., 2007; Palva et al., 2005). Interestingly, most studies reporting early detection-

related effects in SI used the classical near-threshold detection task, whereas those that did not find

effects in SI typically used alternative approaches (varying stimulus intensities: de Lafuente and

Romo, 2005; de Lafuente and Romo, 2006; backward masking: Schubert et al., 2006; paired-

pulse paradigms: Wühle et al., 2010, Wühle et al., 2011). As target detection at perceptual thresh-

old changes with fluctuations in cortical excitability (Boly et al., 2007; Frey et al., 2016;

Moore et al., 2013; Schubert et al., 2009; Weisz et al., 2014), this dissociation raises the question,

whether differentiable SI responses for detected and undetected near-threshold stimuli are in fact

markers of stimulus awareness or rather the result of background processes that may facilitate or

attenuate target detection depending on pre-stimulus brain states (Schubert et al., 2006). In our

data, we do observe a transformation of stimulus representations in SI as the stimulus is propagated

up the local hierarchy. However, although the detection probability model captures some perceptual

properties of the stimulus and may constitute a first step towards perceptual readout, it does not

explicitly differentiate between detected and undetected trials and importantly, predicts the same

Figure 4. Uncertainty model. (A) BMS results (whole-brain analysis). Voxels with EP �.99 for the uncertainty model

are displayed. Expected uncertainty best modelled data in bilateral SMG/ACC and bilateral AIC. k �50 voxels. (B)

Beta estimates and stimulus response profiles. Beta estimates of the winning models’ experimental regressors (left

panels) and SRPs (right panels) are displayed as in Figure 3. *BF >3, **BF >20, ***BF >150. SMG/ACC and AIC

show positive beta estimates and clear inverse U-shaped SRPs, confirming a representation of stimulus uncertainty.

DOI: https://doi.org/10.7554/eLife.43410.009

The following source data is available for figure 4:

Source data 1. Beta estimates for clusters defined by the uncertainty model.

DOI: https://doi.org/10.7554/eLife.43410.010
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level of activation for threshold stimuli, regardless of whether they were perceived or not. Therefore,

our results do not support detection-sensitivity in SI.

Responses in bilateral SII mirror the transformation from stimulus intensity to detection probabil-

ity in SI and importantly, they also show an effect of binary target detection in adjacent regions. The

distribution of these effects did not align with the cytoarchitectonic subdivisions of the parietal oper-

culum, whose distinct functional roles remain largely elusive. The less pronounced somatotopy and

large interindividual variability in SII (Eickhoff et al., 2006a; Sanchez Panchuelo et al., 2018) may

have concealed the exact organisation of the observed effects and further studies are needed to

ascertain the specific functional topology. Nonetheless, the relevance of region SII for somatosen-

sory target detection is well documented in the literature. It exhibits stronger somatosensory evoked

potentials (Auksztulewicz et al., 2012; Wühle et al., 2010; Wühle et al., 2011), increased spike

rates (de Lafuente and Romo, 2006), stronger BOLD-signal changes (Moore et al., 2013), and

increased network integration (Weisz et al., 2014) when stimuli are detected compared to when

they are missed. Our findings are in line with intracortical recordings in monkeys (de Lafuente and

Romo, 2006) showing that SII neurons are the first to be predictive of perceptual decisions. Previous

studies have further shown that SII integrates information from different body parts (Goldin et al.,

2018), indexes unexpected somatosensory stimuli (Chen et al., 2008) and stimulus omissions

(Andersen and Lundqvist, 2019), and can adapt to task requirements (Romo et al., 2002). In com-

bination with the observed shift from physical to perceptual representations in our study, evidence

suggests that SII might be a central relay point at which behaviourally relevant stimuli are trans-

formed into perceptual outcomes.

Figure 5. Report model. (A) BMS results (whole-brain analysis). Voxels with EP �.99 for the report model are

displayed. Overt reports best modelled data in left SMA, left thalamus, and right SMarG. k �50 voxels. (B) Beta

estimates and stimulus response profiles. Beta estimates of the winning models’ experimental regressors (left

panels) and SRPs (right panels) are displayed as in Figure 3. *BF >3, **BF >20, ***BF >150. L SMA is the only

report region that shows beta estimates that systematically deviate from zero. None of the identified report

regions show systematic relationships with stimulus intensity, as expected from the lack of association between

overt reports and target detection.

DOI: https://doi.org/10.7554/eLife.43410.011

The following source data is available for figure 5:

Source data 1. Beta estimates for clusters defined by the report model.

DOI: https://doi.org/10.7554/eLife.43410.012
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Expected uncertainty, here defined as susceptibility to perceptual fluctuations, best explained the

data in SMG/ACC and AIC. These regions are commonly referred to as the salience network, which

is involved in conflict monitoring, reorienting of attention, and introspective processes (Menon and

Uddin, 2010) and, interestingly, was found to be sensitive to perceptual ambiguity

(Lamichhane et al., 2016). Importantly, both ACC and insular cortex have previously been implied

in somatosensory target detection (Bastuji et al., 2016; Boly et al., 2007; Büchel et al., 2002;

Hirvonen and Palva, 2016; Moore et al., 2013). The insula in particular has been assigned a pivotal

role in interoceptive inference (Seth, 2013) and awareness (Craig, 2009; Critchley et al., 2004),

although recent research suggests that activity in AIC might reflect interoceptive sensitivity and

learning rather than subjective experience per se (Canales-Johnson et al., 2015). In light of our

results and given the fact that interoceptive signals, such as the heartbeat, are often faint signals,

future research may benefit from combining measures of perceptual uncertainty (e.g.

Garfinkel et al., 2015) with neuroimaging techniques to reconcile interoceptive processing with

insular response properties. With regard to its role in somatosensory perception, the AIC has further

been demonstrated to show strengthened backward connectivity with somatosensory cortex upon

mismatch detection (Allen et al., 2016). Considering that in our study AIC particularly activated for

hard-to-detect stimuli, these findings suggest that – although it does not generally reflect target

detection – AIC may exert top-down modulation on somatosensory cortex to facilitate somatosen-

sory processing.

The primary objective of the target detection task is to uncover neural processes underlying the

emergence of perceptual awareness. Our results identify responses in somatosensory cortex as the

best correlates of perceptual awareness and are in line with previous research emphasising the role

of dedicated sensory regions for both visual (Boehler et al., 2008; Hurme et al., 2017; Pascual-

Leone and Walsh, 2001; Ress et al., 2000) and somatosensory awareness (Auksztulewicz et al.,

2012; Jones et al., 2007). However, this view is not unopposed and especially the role of prefrontal

cortex (PFC) remains a topic of intense debate. While opponents argue that activity in PFC is an

artefact of report requirements and behavioural relevance (Boly et al., 2017; Brascamp et al.,

2015; Farooqui and Manly, 2018; Frässle et al., 2014; Koch et al., 2016; Pitts et al., 2014;

Tsuchiya et al., 2015), proponents uphold that PFC has been demonstrated to code perceptual

content even in passive paradigms (Panagiotaropoulos et al., 2012) and that null-findings in PFC

may be the result of insufficient sensitivity in the methods (Odegaard et al., 2017). Ours is the first

study to explicitly dissociate stimulus awareness from overt reports and behavioural relevance in the

somatosensory domain and while we can only draw conclusions to the extent of the stimuli and

methods used in this study, our findings do not support reliable representations of somatosensory

awareness in PFC.

Importantly, we did not find strictly detection-related responses in posterior parietal cortex

either, a result that conflicts with the ‘posterior hot zone’ theory of conscious perception

(Koch et al., 2016) but is in line with an earlier finding suggesting that posterior parietal activation is

related to goal completion but not stimulus awareness (Farooqui and Manly, 2018). Given that we

controlled for goal completion effects in our study by equating behavioural relevance across

detected and undetected targets, we may conclude that the correlates of target detection are

largely restricted to dedicated sensory processing sites when controlled for common task

requirements.

The aim of the current study was to experimentally dissociate target detection from four poten-

tially confounding processes and hence, preclude these processes as root causes of detection-

related neural activity. 1. Stimulus uncertainty: By varying stimulus intensities across trials, we implic-

itly tested for specific response profiles that occur in regions reflecting target detection. Specifically,

these regions were expected to show low activity for low, subthreshold stimulus intensities and high

activity for high, suprathreshold stimulus intensities. Since uncertainty, no matter if subjective or

objective uncertainty measures are used, decreases for high-intensity stimuli, we can exclude uncer-

tainty related processes as the driving force of activity in regions showing such a response profile. 2.

Behavioural relevance: In order to perform the task, participants had to report a match or mismatch

between their target perception and a visual matching cue. Since detected and undetected targets

were found to occur equally often for match and mismatch reports, the two perceptual outcomes

were equally relevant for the task and thus, differences in behavioural relevance are unlikely to have

caused the observed detection-related activity. 3. Overt reports: As mentioned in point 2, overt
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reports were independent of target detection and are therefore unlikely to have caused detection-

related effects. However, participants might still form a covert but explicit decision regarding the

presence or absence of the target prior to making the match/mismatch decision, which could poten-

tially confound the observed detection effects. Two reasons speak against this interpretation: First,

the task imposed a time constraint that required participants to form their decisions fast. Therefore,

the task could best be solved by directly comparing the two input modalities without engaging inter-

mediate steps, a strategy, that was verbally confirmed by a majority of participants after the experi-

ment. Second, the only areas that showed reliable and systematic covariation with target detection

were regions in bilateral SII. An explicit internal decision regarding the absence or presence of a tar-

get stimulus would be expected to involve supramodal processes (because the same decision can

be made on stimuli from different modalities) and therefore recruit higher order association cortices.

Since this was not the case, we consider it unlikely that the detection effects observed in SII were

induced by explicit perceptual decisions. Nonetheless, rapid low-level perceptual decision processes

cannot be completely excluded and alternative approaches, such as no-report paradigms

(Tsuchiya et al., 2015), may aid in disentangling their impact. 4. Motor responses: Participants gave

their reports by making saccades to peripheral response cues. None of the observed detection

effects overlap with regions commonly observed during saccadic eye movements (Ettinger et al.,

2008; Kimmig et al., 2001) and effects in SI were localised to hand areas and far removed from eye

representations in the somatosensory homunculus. Changes in cortical excitability due to motor

responses are therefore unlikely to have affected the results. In conclusion, we consider the detec-

tion-related responses observed in bilateral SII to be largely free of the addressed experimental

confounds.

A theoretical framework that accommodates awareness-related responses in sensory cortices is

the recurrent processing hypothesis of conscious perception, which argues that perceptual aware-

ness emerges when feedforward signals from early sensory cortex are consolidated by re-entrant

feedback (Lamme, 2006). Such a mechanism might account for the early transformation from stimu-

lus intensity to detection probability that we observed in SI and in fact, previous research on somato-

sensory target detection suggests that stimulus awareness is best captured in recurrent interactions

between SI and SII (Auksztulewicz et al., 2012; Cauller and Kulics, 1991; Kwon et al., 2016;

Yang et al., 2016). However, these earlier studies have used simpler versions of the detection task

and studies employing methods with high temporal resolution in combination with rigorous experi-

mental control are warranted to scrutinise the functional specificity of recurrent processing for

somatosensory awareness.

Another open question concerns the relationship between target detection and subjective experi-

ence. Clearly, subjective experience of a detected target at near-threshold intensities is not identical

to that of a stimulus at much higher intensities and thus, it is not well modelled by the detection

model. Likewise, subjective experience can vary for stimuli at identical physical stimulus intensities

and thus, it is not well modelled by the intensity or detection probability models. To address the

subjective dimensions of our task, we would require trial-by-trial awareness ratings (and likewise,

confidence ratings to evaluate metacognitive aspects of uncertainty). In the current investigation, we

did not acquire such ratings because, although they would endow us with a better model of subjec-

tive experience, they would also reintroduce the requirement for explicit reports on the stimuli and

result in higher relevance of detected compared to undetected targets. However, building on the

results of the current study and the opportunities offered by the Bayesian analysis approach, incor-

porating such subjective reports and probing underlying neural responses may be a promising ave-

nue for future research. In fact, it has been shown that subjective somatosensory awareness is

parametrically encoded in connectivity patterns between somatosensory and higher order regions

(Auksztulewicz and Blankenburg, 2013). This line of research could potentially consolidate experi-

mental findings arguing for local versus global perspectives.

In summary, our findings dissect the functional contribution of different regions in the target

detection network and advocate more complex experimental paradigms to dissociate neural

responses reflecting conscious access from those supporting collateral functions. Note, however,

that this is not to say that frontal and posterior parietal areas do not contribute to the full phenome-

nal experience of the task. We should keep in mind that although the somatosensory detection task

allows for an operationalisation of basic stimulus awareness, detection of simple electrical targets is

a simplistic reduction of what constitutes the richness of our everyday conscious perception.
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Certainly, cognitive processes such as attention and introspection considerably influence our experi-

ence and may even alter perceptual contents and likewise, detection of more complex stimuli, such

as tactile motion or objects may require additional cognitive resources further downstream the

somatosensory hierarchy. Having said that, when it comes to the perceptual integration of somato-

sensory stimuli as simple as electrical pulses to the wrist, our data suggest that activity in secondary

somatosensory cortex is the best correlate of perceptual success.

Materials and methods

Participants
Thirty-two healthy, right-handed volunteers with normal or corrected-to-normal vision completed

the experiment. Data of five participants were excluded from the sample because they did not show

stable psychometric functions (for more details see Behavioural data analysis and Figure 2), leaving

data of 27 participants that entered the analyses (18 females, nine males, age range: 19–38). All par-

ticipants gave written informed consent prior to the experiment and received a monetary reimburse-

ment for their participation. The study was approved by the local ethics committee at the Freie

Universität Berlin and complied with the Human Subjects Guidelines of the Declaration of Helsinki.

Procedure
All participants completed a 30-min training to familiarise with the electrical stimulation and ensure

full understanding of the task. In the beginning of the fMRI scanning session, individual psychometric

functions were determined to obtain appropriate stimulus intensities for the main task (see Stimulus

intensities). Following this ~9 min procedure, all participants completed four runs of the target

detection task, each lasting 12.6 min. On each run, 100 experimental trials were presented in ran-

dom order, interspersed with 10 null events, in which participants fixated throughout the trial with-

out visual or electrical stimulation. The number of trials presented at each intensity level followed a

normal distribution to maximise the number of trials with intensities close to detection threshold.

This procedure resulted in a total of 400 experimental trials per participant with 64 trials each for the

threshold intensity levels 5 and 6, and 16 trials each for the lowest and highest intensity levels 1 and

10.

Trial design
Each trial was preceded by a variable fixation period of 2–7.5 s, during which participants fixated on

a central fixation point, surrounded by a grey disk (Figure 1A). The trial started with the presenta-

tion of an electrical pulse at one of ten predetermined stimulus intensity levels, which was either

detected or missed by the participant. Simultaneously, the grey fixation disk changed its luminance

to either white or dark grey, serving as the visual matching cue. A white disk signalled stimulus pres-

ence, a dark disk stimulus absence. The two luminance levels of the matching cues as well as the

intermediate luminance level presented during fixation were clearly discernible and lasted for 0.8 s.

Participants compared their somatosensory percepts (target detected or missed) to the visual match-

ing cues (signalling stimulus presence or absence) and decided on a match or mismatch between the

two modalities (Figure 1A, inset). After a delay of 0.3 s, participants reported their decision by mak-

ing a saccade to one of two peripherally presented, colour-coded disks, representing a match or

mismatch, respectively. If participants failed to give their responses within 0.9 s, the fixation disk

briefly turned red signalling a missed trial.

Importantly, the matching cues were counterbalanced over intensity levels and randomised across

trials, resulting in about 50% match and 50% mismatch reports for each intensity level. As a result,

any associations of overt reports with stimulus intensity or stimulus detection were eliminated. Like-

wise, the specific sides on which the colour-coded response cues were presented alternated over tri-

als and were counterbalanced over intensity levels and matching cues to preclude systematic

lateralisation of the motor responses. The specific colour code (i.e. the mapping between pink/cyan

colours and match/mismatch reports) was counterbalanced across participants.
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Stimulus intensities
Stimulus intensities for the target detection task were drawn from individual psychometric functions

that were determined prior to the main experiment. While lying in the MRI scanner, participants

were presented with 15 stimulus intensities differing by increments of 0.1 mA and centred on initial

estimates of individual 50% detection thresholds (obtained by testing several intensities manually).

Each intensity level was repeated 20 times resulting in a total of 300 pulses that were presented in

random order. On each trial, participants indicated if they had felt the stimulus or not by pressing

one of two buttons. A logistic function with two parameters (50% detection threshold and slope at

detection threshold) was fitted to the data yielding a continuous model of the individual psychomet-

ric function (Wichmann and Hill, 2001). This model was used to obtain estimates of the stimulus

intensities resulting in 1% detection probability (T01), 50% detection probability (the individual

detection threshold, T50), and 99% detection probability (T99). The 10 stimulus intensities used in

the main experiment were spaced equidistantly around T01 (set as intensity level 2) and T99 (set as

intensity level 9). This procedure accommodates individual variation in the shape of psychometric

functions and was used to ensure a complete sampling of each participant’s dynamic range even in

case of small drifts in detection thresholds. On average, the procedure yielded initial thresholds of

T01 = 1.84 ± .53 mA, T50 = 2.40 ± .69 mA, and T99 = 2.96 ± .92 mA (mean ± standard deviation).

Stimuli and materials
Electrical stimuli were generated as analogue voltage signals using a waveform generator (DT-9812,

Data Translation, Bietigheim-Bissingen, Germany) controlled with Matlab (The MathWorks, Inc,

Natick, MA, RRID:SCR_001622). A bipolar constant current stimulator (DS5, Digitimer, Hertfordshire,

UK) converted the voltage signal into direct current monophasic square wave pulses of 200 ms dura-

tion and administered the stimuli to the left median nerve via MR-compatible adhesive electrodes

(GVB-geliMED GmbH, Bad Segeberg, Germany). Responses were recorded using an MR-compatible

eye tracker (EyeLink 1000, SR Research Ltd, Mississauga, Ontario, Canada, RRID:SCR_009602). Gaze

direction was evaluated online and a response was registered as soon as the gaze remained within

the response area for 200 ms. Stimulation and response collection were implemented in Matlab

using the Psychophysics (Brainard, 1997, RRID:SCR_002881) and EyeLink (Cornelissen et al., 2002)

toolboxes.

fMRI scanning procedure
All participants were scanned at the Center for Cognitive Neuroscience Berlin using a 3T Siemens

Tim Trio MRI scanner equipped with a 32-channel head coil. T2*-weighted images were acquired

using an echo-planar imaging (EPI) sequence (TR = 2000 ms, TE = 30 ms, voxel size = 3�3�3 mm3,

matrix = 64�64, 37 slices, 20% gap, flip angle = 70˚). 378 volumes were obtained on each experi-

mental run. T1-weighted structural images were acquired for coregistration using a 3D MPRAGE

sequence (TR = 1900 ms, TE = 2.52 ms, voxel size = 1�1�1 mm3, FOV = 256�256 mm2, 176 slices,

flip angle = 9˚). Including preparation time, estimation of the psychometric function, four experimen-

tal runs, and the structural scan, scanning time summed up to approximately 1.5 hr.

Data analysis
Behavioural
Behavioural data analysis was performed with Matlab. Models of individual psychometric functions

were obtained by fitting logistic functions to the behavioural data of all runs. An average psychomet-

ric function was determined for each participant by taking the mean of the fitted detection thresh-

olds and slopes for individual runs. From these average psychometric functions, each participant’s

fitted detection probabilities for intensity levels 1 and 10 were determined. Five participants, whose

detection probabilities were >10% for intensity level 1or <90% for intensity level 10, were excluded

from further analysis because for these participants, sampling of the full dynamic range of their psy-

chometric functions was not successful (potentially due to pronounced drifts in detection thresholds,

changes in response criteria, or inaccurate reports) (Figure 2). Differences in reaction times between

detected and undetected targets were assessed using a Bayesian equivalent of the paired t-test

(Krekelberg, 2019), and the Bayes factor quantifying the evidence for a mean deviation from zero

(BF10) is reported. To test if target detection and match/mismatch reports were indeed
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independent, we calculated Bayesian tests of association (Johnson and Albert, 2006) between

these two variables for every participant and report Bayes factors for association (BF10) and inde-

pendence (BF01). Following the guidelines by Kass and Raftery (1995) we consider 1 < BF < 3 neg-

ligible, 3 < BF < 20 positive, 20 < BF < 150 strong, and 150 < BF very strong evidence.

FMRI
FMRI preprocessing and data analysis were performed with SPM12 (www.fil.ion.ucl.ac.uk/spm, RRID:

SCR_007037) and custom Matlab scripts. Functional images were realigned using six parameter rigid

body transformation to account for head motion, corrected for differences in slice acquisition time,

and normalised to standard MNI space using SPM’s unified segmentation. Structural images were

coregistered to the mean functional image and white matter (WM) and cerebrospinal fluid (CSF)

masks were stored for later analysis. Spatial smoothing was not performed prior to the first-level

analysis because the Bayesian GLM approach estimates the smoothness of experimental effects

from the data using spatial priors (Penny et al., 2005) (for information on smoothing of evidence

maps and beta images, see below).

Five trial-wise experimental regressors were extracted from the paradigm: 1. The linear stimulus

intensity modelling physical stimulus properties, 2. binary target detection as inferred from partici-

pants’ reports and the presented matching cues modelling an all-or-nothing response to detected

targets, 3. detection probability as modelled by individual psychometric functions, 4. expected stim-

ulus uncertainty modelled as the slope of individual psychometric functions (an inverse u-shaped

function), and 5. binary match/mismatch responses as a model of overt reports (Figure 1B). Five dif-

ferent GLMs were then constructed, each incorporating one of the five experimental regressors:

each GLM contained one onset regressor modelling all trial onsets. This onset regressor was para-

metrically modulated by a z-scored experimental regressor. Z-scored reaction times were added as

a further parametric regressor to ensure that differences in model fit could not result from variations

in reaction times. Temporal derivatives, motion parameters, as well as the first five principal compo-

nents explaining variance in the white matter and cerebrospinal fluid signals, respectively were

added as nuisance regressors. All models were fitted to each participant’s fMRI data using the first-

level Bayesian estimation procedure as implemented in SPM12. As spatial prior, we used the recom-

mended Unweighted Graph Laplacian prior, which softly constrains effects to be similar in neigh-

bouring voxels (where the strength of the constraint for each regressor is estimated from the data).

With this procedure, we obtained posterior probability maps (Penny et al., 2005) for every partici-

pant and model, along with free energy approximations to the model evidence in the form of whole-

brain voxel-wise log evidence maps (Penny et al., 2007). These evidence maps were smoothed with

an 8 mm FWHM Gaussian filter, resampled to 2�2�2 mm3 voxel size, and subjected to voxel-wise

random effects BMS resulting in one EP map per model for group-level inference (Rosa et al., 2010;

Stephan et al., 2009). Voxels showing EP �.99 for any model were considered voxels of interest.

Since the models were identical except for their experimental regressors, differences in model evi-

dence could only arise from differences in the experimental regressors. Note that we did not include

an explicit null model because voxels that were not well explained by any of the models would sim-

ply not yield high EPs.

To prevent model dilution for models explaining shared variance, we combined the intensity,

detection, and detection probability models into one model family, which adjusts their prior expec-

tation. We call this family the +family because their respective experimental regressors correlate

positively with stimulus intensity. We then performed family-level BMS (Penny et al., 2010) on

the +family, the uncertainty model, and the report model using the .99 EP threshold. Voxels in which

the +family explained the data with high probability were defined as ROIs and stored as a +family

mask. We then reran the BMS procedure on voxels within the +family mask, this time only compar-

ing the intensity, detection, and detection probability models to determine their individual contribu-

tions to the model family fit. To assess the impact of the employed spatial prior and smoothing

parameters on the overlap of effects, we repeated the analyses, once using a global shrinkage prior

(which does not constrain the smoothness of the data) in the GLM estimation, and once using a 4

mm FWHM smoothing kernel on the evidence maps used for BMS. Neither of these methods consid-

erably reduced the overlap of effects and we report the results using the original parameters. Since

we were interested in the behaviour of well-defined regions, we only considered clusters of k �50

voxels as regions of interest in all analyses.
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Next, we tested the beta estimates of the winning models’ experimental regressors for systematic

deviation from zero. For this purpose, we obtained one group mask for each ROI from the group

level EP maps. For the +family models, these masks included all voxels within the .99 EP family clus-

ters in which the respective model scored higher EPs than the other +family models. For the uncer-

tainty and report ROIs, masks were extracted at the .99 EP level. Within each group mask, we

determined the subject-level probability peak of the model defining that ROI for every participant

(calculated as the ratio of model evidence for that model over the summed model evidence across

all models). We then extracted individual beta estimates from these peaks using the beta images of

the respective winning models that were previously obtained from the first-level Bayesian GLM esti-

mation and tested their deviation from zero using the Bayesian equivalent of a one-sample t-test

(Krekelberg, 2019).

To extract SRPs, we defined a new GLM with ten onset regressors, one for each intensity level.

Again, the model contained reaction times and all nuisance regressors from the main analysis and

was fit to the fMRI data using the first-level Bayesian estimation scheme. The resulting beta images

were smoothed at 8 mm FWHM and resampled to 2�2�2 mm3. For each ROI (as defined by the

main analysis), beta estimates for the ten intensity regressors were then extracted from 4 mm radius

spheres, centred on the previously identified individual model probability peaks. For each intensity

level, the mean beta estimate across the sphere was saved for every participant and the mean beta

estimates across participants were plotted as a function of intensity level, yielding SRPs for each

region. This way of defining individual spheres ensures their centres lie within the ROI while accom-

modating individual variation in exact peak locations.

Finally, we examined the distribution of voxels best explained by the different models of

the +family across the known cytoarchitectonic subregions of primary and secondary somatosensory

cortex (Eickhoff et al., 2006b; Geyer et al., 1999; Grefkes et al., 2001). To this end, we deter-

mined which of the +family models yielded the highest exceedance probability in the group level

BMS for each voxel within the identified SI and SII ROIs. For each cytoarchitectonic subregion (BA

3b, 1, 2, OP1-4), we then determined the proportion of voxels labelled by the respective +family

models to obtain a descriptive summary of the BMS results across regions.

All anatomical coordinates are provided in MNI space. We used the SPM Anatomy Toolbox

(Eickhoff et al., 2005, RRID:SCR_013273) for anatomical reference where possible and MRIcron

(www.mccauslandcenter.sc.edu/mricro/mricron, RRID:SCR_002403) to display fMRI results.
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Schröder et al. eLife 2019;8:e43410. DOI: https://doi.org/10.7554/eLife.43410 18 of 19

Research article Neuroscience

https://doi.org/10.1093/cercor/bhm147
http://www.ncbi.nlm.nih.gov/pubmed/17728263
https://doi.org/10.1016/j.cortex.2017.09.004
https://doi.org/10.1093/cercor/1.1.1
https://doi.org/10.1523/JNEUROSCI.4403-13.2014
https://doi.org/10.1523/JNEUROSCI.4403-13.2014
http://www.ncbi.nlm.nih.gov/pubmed/24478356
https://doi.org/10.1038/srep20805
http://www.ncbi.nlm.nih.gov/pubmed/26864304
https://doi.org/10.1016/j.biopsycho.2014.11.004
https://doi.org/10.1016/j.biopsycho.2014.11.004
http://www.ncbi.nlm.nih.gov/pubmed/25451381
https://doi.org/10.1006/nimg.1999.0440
https://doi.org/10.1006/nimg.1999.0440
https://doi.org/10.1038/s41467-018-06585-4
https://doi.org/10.1038/s41467-018-06585-4
http://www.ncbi.nlm.nih.gov/pubmed/30282992
https://doi.org/10.1006/nimg.2001.0858
https://doi.org/10.1002/hbm.23033
http://www.ncbi.nlm.nih.gov/pubmed/26485310
https://doi.org/10.1016/j.neuroimage.2017.02.060
http://www.ncbi.nlm.nih.gov/pubmed/28254455
http://www.ncbi.nlm.nih.gov/pubmed/28254455
https://doi.org/10.1523/JNEUROSCI.0482-07.2007
http://www.ncbi.nlm.nih.gov/pubmed/17913909
https://doi.org/10.1080/01621459.1995.10476572
https://doi.org/10.1007/s002210100844
http://www.ncbi.nlm.nih.gov/pubmed/11713630
https://doi.org/10.1038/nrn.2016.22
http://www.ncbi.nlm.nih.gov/pubmed/27094080
https://www.github.com/klabhub/bayesFactor
https://doi.org/10.1038/nn.4356
https://doi.org/10.1038/nn.4356
http://www.ncbi.nlm.nih.gov/pubmed/27437910
https://doi.org/10.1089/brain.2015.0392
http://www.ncbi.nlm.nih.gov/pubmed/27177981
https://doi.org/10.1016/j.tics.2006.09.001
http://www.ncbi.nlm.nih.gov/pubmed/16997611
https://doi.org/10.1007/s00429-010-0262-0
http://www.ncbi.nlm.nih.gov/pubmed/20512370
https://doi.org/10.1162/jocn_a_00315
http://www.ncbi.nlm.nih.gov/pubmed/23198890
https://doi.org/10.1523/JNEUROSCI.3217-16.2017
https://doi.org/10.1523/JNEUROSCI.3217-16.2017
http://www.ncbi.nlm.nih.gov/pubmed/28978696
https://doi.org/10.1523/JNEUROSCI.0141-05.2005
http://www.ncbi.nlm.nih.gov/pubmed/15917465
https://doi.org/10.1016/j.neuron.2012.04.013
https://doi.org/10.1016/j.neuron.2012.04.013
http://www.ncbi.nlm.nih.gov/pubmed/22681695
https://doi.org/10.7554/eLife.43410


Pascual-Leone A, Walsh V. 2001. Fast backprojections from the motion to the primary visual area necessary for
visual awareness. Science 292:510–512. DOI: https://doi.org/10.1126/science.1057099, PMID: 11313497

Penny WD, Trujillo-Barreto NJ, Friston KJ. 2005. Bayesian fMRI time series analysis with spatial priors.
NeuroImage 24:350–362. DOI: https://doi.org/10.1016/j.neuroimage.2004.08.034, PMID: 15627578

Penny WD, Flandin G, Trujillo-Barreto N. 2007. Bayesian comparison of spatially regularised general linear
models. Human Brain Mapping 28:275–293. DOI: https://doi.org/10.1002/hbm.20327, PMID: 17133400

Penny WD, Stephan KE, Daunizeau J, Rosa MJ, Friston KJ, Schofield TM, Leff AP. 2010. Comparing families of
dynamic causal models. PLOS Computational Biology 6:e1000709. DOI: https://doi.org/10.1371/journal.pcbi.
1000709, PMID: 20300649

Pitts MA, Metzler S, Hillyard SA. 2014. Isolating neural correlates of conscious perception from neural correlates
of reporting one’s perception. Frontiers in Psychology 5:1078. DOI: https://doi.org/10.3389/fpsyg.2014.01078,
PMID: 25339922

Rees G, Kreiman G, Koch C. 2002. Neural correlates of consciousness in humans. Nature Reviews Neuroscience
3:261–270. DOI: https://doi.org/10.1038/nrn783, PMID: 11967556

Ress D, Backus BT, Heeger DJ. 2000. Activity in primary visual cortex predicts performance in a visual detection
task. Nature Neuroscience 3:940–945. DOI: https://doi.org/10.1038/78856, PMID: 10966626

Romo R, Hernández A, Zainos A, Lemus L, Brody CD. 2002. Neuronal correlates of decision-making in secondary
somatosensory cortex. Nature Neuroscience 5:1217–1225. DOI: https://doi.org/10.1038/nn950, PMID: 1236
8806

Rosa MJ, Bestmann S, Harrison L, Penny W. 2010. Bayesian model selection maps for group studies.
NeuroImage 49:217–224. DOI: https://doi.org/10.1016/j.neuroimage.2009.08.051, PMID: 19732837

Sanchez Panchuelo RM, Besle J, Schluppeck D, Humberstone M, Francis S. 2018. Somatotopy in the human
somatosensory system. Frontiers in Human Neuroscience 12:235. DOI: https://doi.org/10.3389/fnhum.2018.
00235, PMID: 29950980

Schubert R, Blankenburg F, Lemm S, Villringer A, Curio G. 2006. Now you feel it–now you don’t: erp correlates
of somatosensory awareness. Psychophysiology 43:31–40. DOI: https://doi.org/10.1111/j.1469-8986.2006.
00379.x, PMID: 16629683

Schubert R, Haufe S, Blankenburg F, Villringer A, Curio G. 2009. Now you’ll feel it, now you won’t: eeg rhythms
predict the effectiveness of perceptual masking. Journal of Cognitive Neuroscience 21:2407–2419.
DOI: https://doi.org/10.1162/jocn.2008.21174, PMID: 19199408

Seth AK. 2013. Interoceptive inference, emotion, and the embodied self. Trends in Cognitive Sciences 17:565–
573. DOI: https://doi.org/10.1016/j.tics.2013.09.007, PMID: 24126130

Stephan KE, Penny WD, Daunizeau J, Moran RJ, Friston KJ. 2009. Bayesian model selection for group studies.
NeuroImage 46:1004–1017. DOI: https://doi.org/10.1016/j.neuroimage.2009.03.025, PMID: 19306932
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