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A B S T R A C T

A substantial proportion of participants who are offered internet-based psychological treatments in randomized
trials do not adhere and may therefore not receive treatment. Despite the availability of justified statistical
methods for causal inference in such situations, researchers often rely on analytical strategies that either ignore
adherence altogether or fail to provide causal estimands. The objective of this paper is to provide a gentle
nontechnical introduction to complier average causal effect (CACE) analysis, which, under clear assumptions,
can provide a causal estimate of the effect of treatment for a subsample of compliers. The article begins with a
brief review of the potential outcome model for causal inference. After clarifying assumptions and model spe-
cifications for CACE in the latent variable framework, data from a previously published trial of an internet-based
psychological treatment for irritable bowel syndrome are used to demonstrate CACE-analysis. Several model
extensions are then briefly reviewed. The paper offers practical recommendations on how to analyze randomized
trials of internet interventions in the context of nonadherence. It is argued that CACE-analysis, whenever it is
considered appropriate, should be carried out as a complement to the standard intention-to-treat analysis and
that the format of internet-based treatments is particularly well suited to such an analytical approach.

1. Introduction

The randomized experiment is often the preferred method for
evaluating the efficacy of a specific intervention. Over the last decades
a substantial number of randomized controlled trials has been per-
formed to evaluate psychological treatments delivered via the internet
for a wide variety of health problems (Andersson et al., 2014, 2019;
Andrews et al., 2010). The format of intervention delivery has proven
to be most useful with overall encouraging results in terms of efficacy
and acceptability (see for review, Andersson, 2016). However, some
participants, for one reason or another, do not adhere to the treatment
that they are encouraged to take in internet interventions and may
therefore not receive treatment. Nonadherence is an issue that has re-
peatedly been addressed in the field of internet interventions (e.g.,
Christensen et al., 2009; Donkin et al., 2011; Eysenbach, 2005; Kelders
et al., 2012; Ryan et al., 2018). For example, an individual might drop
out from a trial prior to being exposed to the core treatment compo-
nents. What can be said about the treatment effect in such a scenario
when the individual was never exposed to the treatment? The in-
dividual might have responded to treatment had he or she actually
received treatment, but we simply do not know the outcome in this

counterfactual scenario. Individuals who do not adhere to treatment are
likely to differ on key characteristics from those who actually do ad-
here, making it a challenge to estimate the overall effect of treatment
when some participants do not receive treatment. Thus, nonadherence
to treatment constitutes a threat to the validity of causal claims in
randomized experiments.

Adherence can refer to multiple things in a treatment trial.
Adherence can be related to the overarching term treatment im-
plementation, a concept that, in turn, is related to aspects such as
whether the treatment was delivered as intended, whether the partici-
pant received the treatment and whether the participant actually did
what he or she was expected to do in the treatment (Shadish et al.,
2002). Often these aspects blend together in different definitions. This
is also true for internet interventions where multiple definitions of
adherence have been proposed (Kelders et al., 2012; Ryan et al., 2018).
Importantly, adherence should not be confused with missing data, al-
though they are often related concerns in a clinical trial (Christensen
et al., 2009; Eysenbach, 2005; Jo et al., 2010). With adherence–here the
term compliance is used interchangeably because that is the term most
frequently used in the statistical literature–I refer to the process in
which a participant adheres to the program in such a way that he or she
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receives the treatment as intended, regardless of whether outcome mea-
sures are completed. In certain words, in order to be identified as an
adherer (or complier) in an internet intervention, a person should have
been exposed to the core components or the content of the treatment,
for example by reading certain text-based materials or interacting with
certain web-components which, from the researcher's point of view, are
considered essential for the intervention. This definition is similar to
how others (e.g., Christensen et al., 2009; Eysenbach, 2005) have
conceptualized adherence in internet interventions.

Nonadherence rates can be substantial in internet interventions
(Christensen et al., 2009; Waller and Gilbody, 2009), but rates also vary
widely across studies depending on therapist contact, format of inter-
vention, type of nonadherence etc. (Kelders et al., 2012; van
Ballegooijen et al., 2014). Although evidence available to date does not
suggest that there are large differences in adherence rates between
guided internet-based psychological treatments and face-to-face treat-
ments (van Ballegooijen et al., 2014), it remains unclear whether
format affects adherence due to few direct comparisons. What is clear,
however, is at least to some degree, almost all clinical trials evaluating
psychological treatments, regardless of the delivery format, suffer from
nonadherence. Despite that measures of adherence (e.g., number of
completed modules) have repeatedly been associated with outcomes
following internet-based psychological treatments (Donkin et al.,
2011), we still know little about how adherence rates can reliably be
increased in internet interventions (Christensen et al., 2009). Thus,
nonadherence is a common challenge in the analysis of trials of internet
interventions, leaving researchers within the field with an unanswered
question: How to best handle nonadherence by means of statistical
methods? Although several previous attempts have been made to en-
courage the use of adequate statistical methods for handling missing
data in internet interventions (e.g., Christensen et al., 2009; Hesser,
2015), little has been said about how to properly analyze clinical trials
in which a subsample does not receive or take treatment in internet
interventions. This is surprising because missing data and non-
adherence represent two common problems that both need to be ade-
quately addressed in randomized experiments in order to move from
correlational conclusions into the realm of causal inference (Sagarin
et al., 2014; Shadish et al., 2002).

Intention-to-treat (ITT) analysis is the standard way of analyzing
data from randomized trials (Hollis and Campbell, 1999). ITT-analysis
is based on all individuals who are randomized, regardless of the degree
to which individuals comply with or adhere to the treatment. A less
known fact among applied researchers is that ITT-analysis assumes that
all individuals adhere to the treatment they are offered in order for it to
provide an estimate of the causal effect of the treatment (Imbens and
Rubin, 2015; Little and Yau, 1998). In trials with nonadherence, ITT-
analysis provides, at best, an average unbiased effect of assignment
(Imbens and Rubin, 2015; Little and Yau, 1998). Such an estimate
might be interesting for policy decisions (Shadish et al., 2002), but it
might also misrepresent the effect of the treatment itself. Thus, a sub-
stantive research question in clinical trials, in the presence of non-
adherence, is what effect does treatment have on individuals who ac-
tually receive treatment (Imbens and Rubin, 2015; Jo et al., 2010; Little
and Yau, 1998; Sagarin et al., 2014). ITT-analysis provides no such
information if adherence is less than perfect and can subsequently
misdirect further research efforts. In addition, if nonadherence occur
together with missing data, the estimate obtained from ITT-analysis
might also be biased (Frangakis and Rubin, 1999; Jo et al., 2010).

The challenge with adherence is that the variable is measured after
assignment and may therefore jeopardize a fair comparison of condi-
tions if inappropriately included in the analysis (Imbens and Rubin,
2015; Jo and Muthén, 2001; Sagarin et al., 2014). Commonly used
subpar methods for dealing with nonadherence in clinical trials ignore
the fact that adherence is a post-assignment variable that basically
breaks randomization. For example, as-treated (which reassigns non-
adherers to control) and per-protocol (which removes nonadherers from

the analysis) are two widely used methods. Both approaches make the
comparison unfair by pooling across groups of (potential) adherers and
nonadherers in treatment and control (Jo, 2002a; Jo and Muthén,
2001) and generally do not provide causal estimates (Imbens and
Rubin, 2015). In other words, these comparisons are problematic be-
cause (measured and unmeasured) variables are no longer balanced
among the conditions, resulting in that outcomes for groups with po-
tentially different characteristics are being compared. By simply con-
ditioning on for example number of completed modules, as a proxy for
treatment dosage, will in similar fashion produce biased estimates (c.f.,
Maracy and Dunn, 2011).

However, there are more sophisticated methods that can keep ran-
domization intact, even if you condition on intermediate variables, such
as for example adherence. There has been a growing interest in the
development of such approaches, considering the practical and theo-
retical interest in studying the effects of treatment itself (relative to a
control), not just the effect of assignment or of offering treatment
(Hernán and Robins, 2017; Sagarin et al., 2014; Sobel and Muthén,
2012). In the following article, I will focus on one statistical method to
handle nonadherence in randomized trials: complier average causal
effect analysis (CACE; aka. local average causal treatment effect, LATE)
(Angrist et al., 1996; Little and Yau, 1998). The method provides an
unbiased estimate of the effect of assignment among those who actually
receive treatment, that is, compliers or adherers. In other words, CACE-
analysis compares individuals in the treatment condition who adhere to
treatment with individuals in the control condition who would have
adhered had they been assigned to treatment. Angrist et al. (1996)
showed that, under certain assumptions, we can identify the causal
effect and thus provide the effect of the treatment itself in this sub-
sample of participants. Since then, numerous studies have successfully
applied and expanded the analytical ideas to randomized trials of both
medical and behavioral interventions in the statistical literature
(Imbens and Rubin, 1997; Jo, 2002a; Little et al., 2009; Little and Yau,
1998; Stuart et al., 2008; Yau and Little, 2001) and, generally, these
ideas have proved useful in the analysis of causal effects in the presence
of nonadherence (VanderWeele, 2011). Thus, in order to get at more
complete view of the effect of the treatment in randomized trials, CACE
can, in certain situations, provide complimentary information.

Given that most researchers within the field are unaware of CACE-
analysis and because it is underutilized in clinical trials examining in-
ternet interventions, I will provide a gentle, nontechnical introduction
to CACE-analysis in this paper. Furthermore, I argue that internet in-
terventions, which are generally highly structured treatments and are
primarily based on text-based material with limited therapist involve-
ment (Andersson, 2016), may be particularly well suited to CACE-
analysis. That is, compared to face-to-face treatment it is easier to de-
termine whether an individual has been exposed to the treatment
content, as this is generally not dependent on the behavior of the
therapist (Hesser et al., 2017). To do this in face-to-face psychological
treatments integrity ratings of therapists delivering the treatment are
required and in the vast majority of psychological treatment trials such
ratings are missing (Perepletchikova et al., 2007), potentiality due to
the methodological challenges involved. It could therefore be argued
that the format of internet-based treatments simplifies the process of
determining whether or not an individual has received treatment.

The paper is structured as follows. First, I will briefly present the
potential outcome framework for causality that is of key importance for
understanding CACE-analysis. Second, I will in nontechnical way pre-
sent the basic idea behind CACE-analysis in the latent variable frame-
work in terms of assumptions and model specifications. Third, I will go
through an applied example of CACE-analysis using data from a pre-
viously published randomized trial of an internet-based treatment for
irritable bowel syndrome. Finally, I will present some model extensions
and end with a few recommendations for randomized trials evaluating
internet interventions in the presence of nonadherence.

H. Hesser Internet Interventions 21 (2020) 100346

2



2. Causality within the potential outcome framework

Counterfactual reasoning is at the heart of causal inquires (Mackie,
1974; Morgan and Winship, 2007; Woodward, 2003). That is, the effect
of a cause is the difference between what we did observe under certain
conditions and what we would have observed under similar, but not
identical conditions. The difference in the conditions is the cause. So,
we need to conceive of a possible state of affairs where some action was
not the same as that taken. Consider, for example, a situation in which
John was treated with an internet-based treatment against depression
and we could measure his level of depression after treatment. In order
to view treatment as a potential cause of John's depression level, we
also need to imagine a situation in which Johan had not been treated
and his level of depression would not have been the same. More formally,
if Z is a cause of Y, then if Z occurs then Y occurs, and if Z had not
occurred then Y would not have occurred. The counterfactual is, by
definition, unobserved and this makes causality a challenge. As Holland
(1986) expressed it, this is “the fundamental problem of causal in-
ference” (p. 947).

The potential outcome model (aka. Rubin's causal model; Holland,
1986; Imbens and Rubin, 2015; Rubin, 1974, 2005) has formalized
these general ideas of causality from a statistical point of view using
formal and technical notations. As a broad, generic framework it pro-
vides details on the conditions under which we can expect to get un-
biased estimates of causal effects. It also helps researchers to think
clearly about causality and underlying assumptions of cause and effect
associations in different situations. As such, the model has proven
useful for dealing with post-assignment variables, such as for example
noncompliance, in randomized experiments (Frangakis and Rubin,
2002). Despite these advances and decades of applied work in different
areas, the potential outcome model is still not widespread among ap-
plied researchers, especially among those in the field of psychology.
Before we turn to the issue of noncompliance let me go through the
framework briefly. For a more in-depth treatment of the potential
outcome model readers are referred to other sources (Imbens and
Rubin, 2015; Morgan and Winship, 2007; Rubin, 2005).

Central concepts in the model are units, treatments and potential
outcomes as well as assignment mechanisms (Imbens and Rubin, 2015).
Consider a randomized trial, where treatment has two levels, treatment
and control, and each individual, or unit, prior to being exposed to one
of the conditions has a potential outcome under each condition at a
particular point in time. Any unit exposed to treatment could have been
exposed to control and vice versa. More formally this can be expressed
with a treatment assignment status variable Zi, where Zi = 1 if the
individual i is randomly assigned treatment, and Zi = 0 if assigned to
control; likewise let Yi(1) denote the potential outcome for individual i
when assigned to treatment and Yi(0) when assigned to control. The
individual causal effect can then be defined as the difference in po-
tential outcomes under these two conditions, Yi(1) − Yi(0). It is im-
portant to note that the causal effect is defined as a difference in two
hypothetical outcomes under a treatment and control treatment and it
is therefore relative to and dependent on the type of control. Once the
individual has been exposed to one of the two treatments (treatment or
control) only one of the two potential outcomes is realized (Holland,
1986; Imbens and Rubin, 2015). In essence, causal inference is viewed
as a missing data problem, where the assignment mechanism, known or
unknown by the researcher, determines which one of the two potential
outcomes that is observed (Rubin, 1974). Subsequently, the causal ef-
fect can be defined at the individual level, but since the two outcomes
can never be observed jointly for any unit, this causal effect can never
be observed in practice (without assuming a constant treatment effect
over multiple units) (Holland, 1986).

We can, however, learn about the causal effect using multiple units
and by averaging over units that have been exposed to different treat-
ment conditions (Imbens and Rubin, 2015; Rubin, 1974). The average
causal effect (ACE) is the difference in potential outcomes between

treatment and control, averaged over the entire population of units
(Imbens and Rubin, 2015). Using expectations, we get the following
general expression,

=ACE E Y Y[ (1) (0)].i i (1)

Eq. (1) makes it clear that the potential outcome model is not re-
stricted to any particular outcome, but for simplicity we can make use
of a continuous outcome and a mean difference as the causal estimand of
interest. Let μ1 denote the population potential mean outcome when
assigned to the treatment condition (Z = 1), and μ0 when assigned to
the control condition (Z= 0). The ITT effect, averaging over all units as
randomized, can then be defined as,

= =ITT µ µ .1 0 (2)

Once we have determined the ACE of primary interest, we can es-
timate the effect using a number of different analytic methods. For
example, we can use a regression model to estimate τ for one con-
tinuous outcome measured post-treatment and a binary indicator
variable for treatment assignment and any other pre-treatment variable
that is related to the outcome (Imbens and Rubin, 2015) (e.g., pre-
treatment value of the outcome, ANCOVA approach). A standard linear
regression model is,

= + + +Y Z X e ,i i i i0 1 2 (3)

where Zi is a binary treatment indicator, Xi a covariate assessed at
pretreatment, and ei is a normally distributed residual. The treatment
effect β1 is of primary interest in the model. Randomization of units to
conditions ensures, in expectation, that the assignment mechanism is
independent of the potential outcome of Yi and the pretreatment
chacteristics. In other words, units randomized to treatments will have
identical distributions of covariates and (potential) outcomes, making
the groups comparable in expectation (Shadish et al., 2002). The power
of randomization will create what is known as a strongly ignorable
assignment mechanism in Rubin's terminology (Imbens and Rubin,
2015; Rubin, 1974). Whenever the assignment mechanism is not en-
forced by the experimenter, but instead chosen by the individual con-
founding is a potential problem. For example, when individuals can
self-select into a treatment, motivation can be an unobserved variable
affecting both the assignment mechanism and the potential outcomes.
In such a scenario the assignment mechanism is said to be confounded
(Imbens and Rubin, 2015). The same is true for adherence or com-
pliance in randomized trials because participants can choose whether or
not to comply with treatment after it has been offered, and this opens
up for unmeasured variables. Thus, the same analytical regression
model (Eq. (3)) used to estimate ACE could be biased if we condition on
an intermediate variable. Thus, randomization – or more generally an
ignorable assignment mechanism – is the key and provides the basis for
a fair comparison across treatment and control groups (Imbens and
Rubin, 2015; Rubin, 1974).

In addition to an ignorable assignment mechanism (often accom-
plished through randomization of units), Rubin (Imbens and Rubin,
2015, pp. 11–13; Rubin, 2005) has specified the so-called Stable Unit
Treatment Value Assumption (SUTVA) that, in turn, can be broken down
into two aspects:

1. “No interference between units”: the potential outcome for any unit
does not depend on the assignment of any other unit.

2. “No hidden variations of treatments”: for each unit, there is no
different versions of treatment conditions that lead to other poten-
tial outcomes.

As one example of a violation of SUTVA, some participants in the
control condition could get access to the text-based material of a guided
internet-based psychological treatment via participants in the treatment
condition and therefore receive a subpar version of the treatment
without therapist guidance. Thus, there are now two forms of active
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treatments, one of which was not part of the manipulation (i.e., treat-
ment without therapist guidance), and we would therefore have three,
rather than two, potential outcomes. Another example would be a si-
tuation in which husband and wife are both included in the same
treatment trial examining an individual-based psychological treatment.
In such situation, their outcomes are likely to be influenced by their
interaction (regardless of whether they are assigned the same or dif-
ferent conditions).

When SUTVA holds in randomized experiments, mean difference
between treatment and control, = y y1 1 2, is an unbiased estimate of
τ. To include pre-treatment covariates that are related to the outcome
will lead to a gain in precision (Imbens and Rubin, 2015). In a rando-
mized trial it is also possible to get an unbiased estimate of τ conditional
on such pre-treatment covariates (Imbens and Rubin, 2015). For ex-
ample, we could be interested in the average effect of treatment for
female participants only (i.e., ITT|female). However, as previously
discussed, conditioning on an intermediate variable in similar fashion
could bias the estimate. This is where principal stratification, and
specifically, CACE-analysis comes in.

3. CACE-analysis: assumptions

CACE analysis is an extension of classic ITT-analysis. In CACE
analysis, we aim to estimate the causal effect of assignment, that is the
average difference in outcomes between treatment and control, but
only within the subgroup of compliers (i.e., ITT|compliers). Similar to
ITT, the causal effect at the individual level cannot be observed, but
CACE can be estimated on the average under certain assumptions. For a
continuous outcome, the population ACE for individuals in the sub-
group of compliers is,

= =CACE µ µ ,c c c1 0 (4)

where μ1c denotes the potential mean outcome for compliers when as-
signed to the treatment condition (Z= 1), and μ0c denotes the potential
mean outcome for compliers when assigned to the control condition
(Z = 0). We can also view our overall ITT effect, τ, as the total effect
consisting of the population average treatment effect among both
noncompliers and compliers (Little and Yau, 1998). That is,
τ = πcτc+ (1 − πc)τn, where the proportion for the compliers is πc, and
the average treatment effect among noncompliers is τn. If we solve for
the treatment effect among compliers (i.e., CACE) we get,

= (1 ) .c
c n

c (5)

This seems simple enough, but the problem is that only one part of
the information is observed in Eqs. (4) and (5): we have access to the
proportion of compliers and the outcome for the compliers in the
treatment condition, but the same information is missing in the control.
This is because those randomized to control never got access to treat-
ment so we do not know how they would have responded under
treatment. Given unobserved information on compliers membership
and associated outcomes in control, if we wish to compare treatment
and control for this subsample of participants we need to make addi-
tional assumptions. Angrist et al. (1996) have clarified the assumptions
in the case of binary compliance, all or nothing compliance, using
principal stratification. In principal stratification, individuals are clas-
sified on the basis of potential values of an intermediate variable, such
as compliance status, under all treatment conditions (Frangakis and
Rubin, 2002). The method allows researchers to estimate ACE within
principal strata and this ensures that the variable, in this case com-
pliance, does not influence treatment assignment and can therefore be
treated as any other pre-treatment characteristics in a randomized trial
(Frangakis and Rubin, 2002). In other words, a principal stratum is a
homogeneous subgroup of individuals with regard to their potential
outcomes.

In this particular case, we can now classify individuals into principal

strata based on both binary assignment status (Zi) and binary com-
pliance status (Ti). That is, individuals can be classified according to
whether they were assigned to treatment or not (Zi = 1, treatment,
Zi = 0, control) and whether they complied with treatment or not
(Ti = 1, complier, Ti = 0, noncomplier). Let then indicator Ti = Ti(Zi)
be the indicator of compliance status, where Ti(1) is the compliance
status for individual i when assigned to the treatment condition, and Ti
(0) is the compliance status for individual iwhen assigned to the control
condition. Individuals can then be classified into four categories.
Angrist et al. (1996) labeled these compliers, never-takers, always-ta-
kers, and defiers:

• Compliers are those that do what they are assigned to do, that is,

= =T T(1) 1 and (0) 0;i i

• never-takers do not take the treatment even when they are assigned
to treatment, that is,

= =T T(1) 0 and (0) 0;i i

• always-takers take the treatment regardless of what they are as-
signed, that is,

= =T T(1) 1 and (0) 1;i i

• defiers do the opposite what they are assigned, that is,

= =T T(1) 0 and (0) 1.i i

In addition to randomization and SUTVA, there are two critical
assumptions for CACE (Angrist et al., 1996):

1. Monotonicity: There are no defiers.
2. Exclusion restriction: There is no direct effect of treatment assign-

ment among never-takers and always-takers. This also means that
the outcomes among noncompliers are the same regardless of which
conditions they have been randomized.

In trials where participants are prohibited by design from receiving
a different condition than the one they were assigned, the number of
noncompliance classes can be reduced to one: never-takers. In such
situations, the monotonicity assumption also holds automatically be-
cause there are no defiers. In the current paper, I will focus on this form
of noncompliance, so-called one-sided noncompliance (Imbens and
Rubin, 2015). For simplicity, I will henceforth label the never-takers as
noncompliers. The exclusion restriction assumption is still of im-
portance and might be violated in trials evaluating psychological
treatments where methods (e.g., blinding) to conceal assignment are
not possible to use (Jo, 2002a). A commonly used example of a viola-
tion is when individuals who are randomized to treatment and who do
not take the treatment are demoralized due to a missed opportunity.
Such an effect is not observed under control because these individuals
did not have access to treatment. In other words, there is a (psycholo-
gical) effect of assignment among noncompliers (never-takers).

If the exclusion restriction assumption holds, the potential outcomes
for noncompliers are the same regardless of assignment. In other word,
there is no effect of treatment assignment among noncompliers, that is,
τn = 0. In such situations CACE (Eq. (5)) equals,

= .c
c (6)

Eq. (6) is known as the instrument variable estimator of CACE
(Bloom, 1984; Imbens and Rubin, 1997; Little and Yau, 1998) and both
quantities in Eq. (6) can be estimated using sample statistics (assuming
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that the denominator in Eq. (6) is above zero). The proportion of
compliers in the population can be estimated, given that we have the
sample proportions of compliers and noncompliers in the treatment
condition, and on the basis of randomization, we can assume the same
proportions in the control condition (Jo, 2002a). Thus, under these
assumptions (SUTVA, Monotonicity, Exclusion restriction), CACE is
identified in randomized experiment and can be estimated with ob-
served data.

4. CACE estimation in the latent variable framework

Broadly categorized, there are two commonly used methods for
estimating CACE: the instrument variable approach, which is simply the
overall ITT effect divided by the proportion of compliers (Eq. (6)), and
maximum-likelihood (ML) estimation approach (Jo, 2002a; Jo and
Muthén, 2001; Little and Yau, 1998). I will focus on the latter, speci-
fically, on a more recent approach to CACE estimation that is carried
out within the framework of structural equation modeling using latent
variables. I will do so for two main reasons. First, ML estimation is
known to be more efficient than the IV approach (Imbens and Rubin,
1997; Little and Yau, 1998). Second, the latent variable approach using
ML estimation is more flexible in terms of various extensions of CACE
models (e.g., inclusion of covariates, growth models, multiple out-
comes) (Jo and Muthén, 2001).

Within the latent variable framework for CACE estimation, com-
pliance status is treated a finite mixture of subpopulations that can have
different model parameters and distributions (Jo and Muthén, 2001).
The principal strata of compliers membership all belong to a single
latent class variable with proportions that sum up to 1, where the
probability that an individual belongs to a certain class is to be esti-
mated. Indeed, since the principal strata cannot be observed, it is nat-
ural to regard each stratum as belonging to a latent, unobserved, class
variable (Jo and Muthén, 2001). In the cases of binary compliance, the
latent class variable Ci contains two principal strata, or latent classes,
compliers (Ci = c) and noncompliers (Ci = n). Compliers will recevie
treatment, but only when they are assigned to treatment, whereas
noncompliers will never receive treatment (i.e., never-takers) regard-
less of assignment. More formally,

=
= =
= =

C
complier T T
noncomplier T T

( ) if (1) 1 and (0) 0
( ) if (1) 0 and (0) 0.i

c i i

n i i (7)

Compared to a conventional latent class analysis, or mixture model,
where latent classes are unobserved subpopulations and classes are
empirically derived (Lubke and Luningham, 2017; Muthén and
Shedden, 1999), each class in CACE corresponds to a principal stratum
that is a prior determined. That is, the classes are not affected by the
treatment assignment and can be viewed as categories of an (un-
observed) pre-treatment characteristics. In addition, the class variable
is not completely unobserved; compliance class is observed in inter-
vention but missing in the control. The incomplete information on
compliance type can thus be viewed as a missing data problem (Little
and Yau, 1998). The model uses the available information on class
membership status from the intervention and the incomplete informa-
tion on compliance status in control is handled as missing data using the
EM algorithm. Similar to how missing data is handled in other situa-
tions of ML-EM estimation with incomplete data (see for an non-
technical explanation of ML-EM with missing data, Enders, 2010), all
available information in the model (e.g., observed compliance in-
formation in the intervention as well as other observed auxiliary in-
formation in the model) is used to get ML estimates. For more technical
details on ML-EM estimation in mixture modeling, and specifically in
the context of CACE-analysis, the readers are referred to other sources
(e.g., Jo and Muthén, 2001; Little and Yau, 1998; Muthén and Shedden,
1999).

Given that compliance type is unobserved in the control condition,

only the overall mean μ0 for the control is observed. Thus, the dis-
tribution of the population mean for the control condition can be seen
as a mixture of two unobserved distributions, compliers and non-
compliers. (Jo et al., 2010; Jo and Muthén, 2001). In the binary com-
pliance case, the mixture is, μ0 = (1 − πc)μ0n + πcμ0c, where the
proportion for the compliers is πc, and the potential outcome mean for
noncompliers in the population is μ0n. Solving for the population mean
of compliers in the control μ0c yields, μ0c = (μ0 − (1 − πc)μ0n)/πc.
Under the exclusion restriction assumption that noncompliers are not
affected by assignment and should therefore have same population
means in treatment and control (i.e., μ1n = μ0n), CACE (Eq. (4)) can
now be rewritten as,

= µ
µ µ(1 )

.c c
c n

c
1

0 1

(8)

All parameters in Eq. (8) are directly estimable from the observed
data and can be estimated using ML (Jo et al., 2010).

CACE for a single continuous outcome Y for individual i within la-
tent class k can then be evaluated using the following linear model (Jo
and Muthén, 2001),

= + +Y Z ,ik k Zk i ik (9)

where αk is the mean for the control group within compliance class k,
and γZk is the treatment effect within class k. The residual term ϵik
within each class k has a variance σk2 that is normally distributed with a
mean of zero. The class variable C contains two levels (K), or classes
(k = 1, for compliers, k = 2, for noncompliers), where the proportion
for the compliers is, π1, and the proportion for noncompliers is,
1 − π1 = π2. As previously discussed, compliance is observed in the
treatment condition but missing in the control. Just as ordinary re-
gression we can obtain the mean for the control and treatment within
each compliers class. The means for control and treatment among
noncompliers are, μ0, k=2 = α2 and μ1, k=2 = α2 + γZ2, respectively.
Similar, the means for control and treatment among compliers are μ0,
k=1 = α1 and μ1, k=1 = α1 + γZ1, respectively.

As we only have the overall mean in the control, note that the two
means for compliers and noncompliers, α1 α2, in control group are
unobserved. Thus, we need the exclusion restriction assumption for
identification. As per the exclusion restriction assumption, the treat-
ment assignment effect among noncompliers (k = 2) is constrained to
zero γZ2 = 0, making the mean among noncompliers in control equal to
the mean of noncompliers in treatment, that is, α2 = μ1, k=2. CACE (Eq.
(8)) can now be re-expressed in terms of known quantities as,

= = =
=µ

µ µ(1 )
.c Z k

k
1 1, 1

0 1 1, 2

1 (10)

The model (Eq. (9)) can easily be extended by including covariates
that predict outcome. A natural extension is to include the baseline
value of the outcome as a covariate in the model, making it to an
ANCOVA model. Any other pre-assignment covariate that is related to
the outcome could also be included to increase precision. The effects of
the covariates can be constrained to be the same across both classes or
we can relax this assumption and allow effects of covariates to vary
across classes. The CACE model with a covariate Xi is,

= + + +Y Z X ,ik k Zk i Xk i ik (11)

where γXk represents the effect of the covariate within class k.
In addition, we can also include covariates to predict compliance

status. This is of substantive interest as we might want to know which
participants are likely to be compliers in a study. In addition, this can
increase power in CACE and decrease bias due to model misspecifica-
tions (Jo, 2002a; Stuart and Jo, 2015). With only two classes, the model
is a logistic regression model examining the probability of being a
complier (π1i) as a function of a set of covariates xi, logit
(π1i) = β0 + βixi, where β0 is a logit intercept and βi a vector of logit
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coefficients (Jo, 2002a; Jo and Muthén, 2001).
Although the model may seem complicated, it can be readily im-

plemented in a structural equation program (e.g., Mplus) and every-
thing is estimated jointly using ML estimation. Fig. 1 depicts the model
with a covariate (X) predicting both outcome (Y) and compliance status
(C). In the figure, squares represent observed variables and the circle is
the latent class variable containing information about compliance
status. Solid lines from observed variables correspond to regressions
among variables. Specifically, the path from Z (binary treatment vari-
able) to Y (outcome) represents the treatment effect. The dotted lines
that originate from the latent class variable (C) to the regression of the
observed variables (Z, X) on the outcome signify that the effects on the
outcome are allowed to vary across compliance class. The solid line
from the latent class variable to the outcome indicate that the means for
the noncompliers and compliers are allowed to be different.

The model can be estimated in Mplus and the input file for the
model in Fig. 1 is provided in Appendix 1 (for more details on Mplus
syntax see the user manual, Muthén and Muthén, 2017). To be able to
specify that the classes are known in intervention but missing in con-
trol, the TRAINING option in Mplus is used together with two observed
variables (c1, c2) containing information on complier class member-
ship. Individuals in the treatment are assigned values of 1 for c1 and 0
for c2 if they are noncompliers and 0 for c1 and 1 for c2 if they are
compliers. Individuals in the control group are assigned values of 1 for
both c1 and c2 to indicate that that their class membership is unknown.
The CLASSES command specifies the name of the latent class variable,
c, with the number of classes to be used in parenthesis (i.e., 2) with
mixture modeling, that is, TYPE = MIXTURE. The model estimated in
both classes are provided under the %OVERALL%. Here, the outcome y
is regressed on the binary treatment variable (z) and an additional
covariate (x). The compliance status (c) is also regressed on the cov-
ariate. The class-specific effects are presented under c#1 and c#2. The
effect of treatment is fixed to zero in the noncompliers class (c#1),
whereas it is freely estimated in the compliers class (c#2). The means
(intercepts) of the outcome, the effect of the covariate on the outcome
and the residual variance are all freely estimated in each class, that is to
say, they are allowed to vary across class. The effect of the covariate
and residual variance can be constrained to be equal across classes by
removing the class-specific statements in the input file.

5. CACE-analysis: illustrative example

To demonstrate CACE estimation, data from a previously published
guided internet-based psychological treatment for irritable bowel syn-
drome (IBS) (Ljótsson et al., 2014) will be used. In this study, in-
dividuals (N= 309) were randomly assigned to treatment and an active
control condition. The study was designed to isolate a core component
(exposure therapy to IBS symptoms and situations) of a previously well-
validated psychological treatment for IBS (Ljótsson et al., 2011). The
only difference between the two conditions was that in the treatment
condition individuals received the full treatment package, whereas in
the control one of the core treatment components was removed. We
could record whether any individual in the intervention received access
to the treatment module of primary interest in the trial. Thus, in the
study a complier was defined as a person who had gained access to the
treatment module containing the text describing the treatment com-
ponent that was isolated in the trial. Using this definition, 55% of in-
dividuals were classified as compliers in the treatment condition. As
individuals randomly assigned to control were not given access to the
isolated treatment component, never-takers were the only type of
noncompliance that was possible in the trial. Previously reported ITT-
analysis showed that the effect favored the treatment at post-treatment
assessment with a small-to-moderate effect size, but a re-analysis using
CACE-analysis demonstrated that this effect was substantially under-
estimated (Hesser et al., 2017).

The analytical model used here to demonstrate CACE is the

regression model (as in Eq. (11); depicted in Fig. 1), where the post-
outcome measure of IBS-symptoms was regressed on a binary-treatment
variable and the pre-treatment values of the same outcome measure
(similar to ANCOVA). To be able to compare ITT, per-protocol and
CACE-analysis, a model implied unstandardized mean difference and an
effect size (d) at endpoint were computed for each model. The effect
size was the mean difference between conditions divided by the esti-
mated standard deviation (from the ITT-analysis). The ITT analysis
provides an overall causal effect of assignment, but ignores the fact that
almost half of the participants did not receive the treatment component
that was actually tested in the trial. As such, it may have under-
estimated the effect of treatment. The per-protocol analysis used the
same model as the ITT, but included only individuals who were clas-
sified as compliers in the treatment and compared results with all in-
dividuals in the control (N = 240). The estimate is not causal in the
same sense as ITT or CACE, but the analysis is performed to be able to
contrast the results from the other models. Finally, the CACE analysis
used the same overall model as the ITT, but this model also took into
account compliance status by incorporating a latent class variable in the
regression model. The effect of assignment among noncompliers (never-
takers) was constrained to zero (as per the exclusion restriction as-
sumption), whereas the effect among compliers was freely estimated.
To make CACE comparable to the other models, the effect of the cov-
ariate on outcomes was constrained to be the same in both classes. All
models were estimated within the structural equation modeling fra-
mework using Mplus (Muthén and Muthén, 2017) and full information
maximum likelihood estimation with non-normality robust standard
errors.1 Table 1 shows the primary results of these models.

As can be shown in Table 1, CACE analysis was almost twice the size
of ITT (effect size 0.76 vs. 0.42) and also substantially higher than per-
protocol (effect size = 0.58). These estimates were similar to those
reported in the earlier publications, but differed slightly given analy-
tical models (ANCOVA vs growth models) and covariates in the model
(see Hesser et al., 2017). More importantly, the difference in results
between CACE and ITT demonstrate the importance of performing
CACE analysis. In other words, different conclusions in terms of effects

Fig. 1. CACE analysis of a continuous outcome (Y) regressed on a binary
treatment indicator (Z) and an additional covariate (X).

1 There was a small amount of missing data at post-assessment across con-
ditions (n = 17). To be able to incorporate all individuals in the models, the
variance of the pre-treatment value of the outcome was brought into the model.
Mplus treats this variable as any other dependent variable in the model and
thus returns ML estimates with incomplete data under the missing at random
assumption and multivariate normality (Muthén et al., 2016).
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were reached depending on the analytical model, CACE or ITT.
Additional covariates can be included in CACE-analysis to examine

possible associations with outcome and compliance type. As stated
earlier, the motivation for inclusion of covariates in the model are
multiple. First, by regressing the outcome of a set of baseline covariates
that are strongly related to outcome there is a gain in precision. Second,
this allows us to examine separate associations between baseline
characteristics and outcome within the class of compliers and non-
compliers. Third, by regression compliance class membership on a set
of covariates statistical power can be increased and bias due to model
misspecifications can be reduced. Fourth, this logistic regression on
compliance types allows us to examine which characteristics that are
associated with being a complier.

To demonstrate how this is accomplished, I re-estimated the CACE
model with an additional set of covariates; for demonstration purposes
only with four demographic variables (employment, female, age, uni-
versity education). These covariates were allowed to influence both
outcome and compliance status and the effects of the covariates on
outcome were allowed to vary across compliers and noncompliers. The
results are presented in Table 2. As can be observed, only two predictors
were statistically significant among compliers. University education
and age were both negatively associated with the outcome, suggesting
that having a university education and higher age were associated with
better treatment outcome (i.e., lower IBS-symptoms), but only within
the subgroup of compliers. None of the covariates in logistic regression
could predict the probability of being a complier. The estimate of CACE
was similar to the one from the previous model that only included the
pre-treatment value of the outcome as the covariate.

6. Model extensions and analytical considerations

Although it is beyond the scope of this paper to provide the specific
details, there are a number of possible model extensions given a high

degree of flexibility when estimating CACE within the latent variable
framework. Analytical models can accommodate multiple outcomes in
the same model, non-continuous outcomes (e.g., categorical outcomes),
and outcomes measured repeatedly over time (Jo and Muthén, 2001).
For example, the re-analysis of the IBS-trial employed a growth models
as the primary analytical model for CACE estimation (Hesser et al.,
2017). Thus, instead of having to rely on a single endpoint value, re-
peated assessments of the outcome during the treatment phase allowed
us to compare growth trajectories across conditions during qualitative
distinct phases of the trial, prior to and following implementation of the
specific treatment module that was examined in the IBS-trial. In addi-
tion to providing greater details on the effects of treatment, such aux-
iliary information (e.g., growth trajectories) can also increase the pre-
cision of CACE estimates (Jo and Muthén, 2003). In fact, whenever
more than two measures are available the use of growth models is a
natural extension of CACE-analysis. This is readily accomplished in the
latent variable framework by including continuous latent variables,
random effects that stipulate person-specific trajectories of change
(Hesser, 2015; Muthén and Curran, 1997), in addition to the categorical
latent class variable (i.e., this combination of continuous and catego-
rical latent variables is often referred to as growth mixture models).

By using covariates in the model, the exclusion restriction as-
sumption can also be relaxed and tested (Jo, 2002b). As stated earlier,
the exclusion restriction is a key assumption for model identification,
but could be violated in trials of psychological treatments. Sensitivity
analysis is often recommended and this is readily done within the
structural equation modeling framework by allowing treatment as-
signment to have an nonzero effect in the noncompliers class, under
other identifications than the exclusion restriction assumption (for
more information on alternative identifications of CACE see, Jo,
2002b).

An interrelated aspect of adherence is missing data. The models
used here for demonstration of CACE-analysis assumed that missing
data was ignorable conditioning on the other observed variables in the
model (i.e., missing at random [MAR]; Enders, 2010). The MAR as-
sumption is a fairly reasonable one and maximum likelihood estimation
is often recommended method for handling missing data in clinical
trials (Enders, 2010; Hesser, 2015; Salim et al., 2008). In fact, this is
another advantage of using CACE within a structural equation modeling
framework as ML-EM estimation is the default in most structural
equation modeling software (e.g., Mplus). In addition, where re-
searchers suspect that the MAR assumption is not tenable, alternative
model specifications for CACE, with non-ignorable missing data as-
sumptions, have been developed and implemented in the latent variable
framework (Jo et al., 2010). It should be noted that in such scenarios
the ITT-effect is also biased as the analysis need to take into account
principal strata based on both compliance and missing data (Frangakis
and Rubin, 1999).

Finally, in this demonstration of CACE I focused on binary com-
pliance status, all-or nothing compliance. In some cases we may suspect
varying degree of compliance and models have also been developed for
such situations (Jin and Rubin, 2008), but, as far as I am aware, they
have not been adopted to trials evaluating psychological treatments. In
view of this, one alternative is to use and test multiple definitions of
adherers based on different dosages of treatment exposure and compare
results. Mixture modeling, latent class analysis, could also be used, in a
conventional way, as an exploratory device to identify latent discrete
classes based on observed adherence behavior in treatment in a first
step, and these empirically derived groups can then form groups in
CACE-analysis in a second step (see, Jo and Muthén, 2003). In addition,
methods have also been developed that focus on further dividing the
subgroup of compliers into more than one effect-class (Sobel and
Muthén, 2012).

Table 1
Treatment effects from estimated models.

Analysis Estimate Standard error z-Value p-Value Effect size

ITT −4.09 1.145 −3.571 <0.01 0.417
Per-protocol −5.651 1.271 −4.446 <0.01 0.577
CACE −7.483 2.293 −3.264 <0.01 0.764

Note. CACE = complier average causal effect; ITT = intention-to-treat.

Table 2
Results from CACE-analysis with covariates.

Predictor Estimate Standard error z-value p-value

Regression on outcome
Noncomplier
Z 0a

Employment 2.397 2.166 1.106 0.269
University education 2.215 2.751 0.805 0.421
Age −0.003 0.069 −0.048 0.962
Female −1.784 2.072 −0.861 0.389

Complier
Z −7.581 2.499 −3.034 0.002
Employment −3.071 1.96 −1.567 0.117
University education −5.877 2.466 −2.383 0.017
Age −0.131 0.066 −2.007 0.045
Female −0.951 2.214 −0.43 0.667

Regression on class (complier vs. noncomplier)
Employment 0.131 0.369 0.354 0.723
University education −0.567 0.397 −1.429 0.153
Age −0.002 0.013 −0.143 0.886
Female −0.322 0.379 −0.851 0.395
Effect size, CACE 0.774

a Constrained to zero as per the exclusion restriction assumption. Z is the
binary treatment variable.
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7. Final recommendations

The objective of the paper was to promote an analytical method that
permits causal inference in randomized trials in the context of a very
common problem in internet interventions, nonadherence. The paper
was written as a gentle introduction to applied researchers to encourage
the use of CACE-analysis in the field. CACE-analysis is an analytical
method for researchers to answer substantive research questions. Most
importantly, it provides an estimate of the effect of the treatment itself
among a subsample of participants who take the treatment when it is
offered (and do not take it otherwise) and may therefore provide in-
formation on the effect of the treatment itself or treatment recipient,
not just the effect of offering treatment or assignment of treatment
(Imbens and Rubin, 2015; Sobel and Muthén, 2012; Stuart et al., 2008).
It should be noted that I am not arguing against performing ITT-analysis
in randomized trials. Rather, both analytical models have important,
albeit different, roles to play. In fact, while the ITT-effect remains ag-
nostic about postassignment variables such as adherence, it would still
constitute the primary estimate in an RCT given that modern sophisti-
cated methods, such as CACE, require considerably stronger assump-
tions than ITT (Sagarin et al., 2014).

A number of aspects should be taken into account before using
CACE as a complimentary tool. First, as usual with any analytical
method, careful consideration should be given to the plausibility of the
underlying assumptions, since they cannot be empirically verified. This
also applies to ITT-analysis (and causal inference more generally), but
CACE has additional assumptions that may not be plausible. In many
situations that involve complex trials, such as psychological interven-
tions, plausibility of model assumptions are often controversial (see for
a discussion regarding SUTVA in psychological treatments, Shadish,
2010). As previously stated, the exclusion restriction assumption can be
violated and subsequently bias the estimate. Violations can result from
an imperfect measure of compliance, partial compliance or psycholo-
gical effects of assignment. The assumption is potentially especially
problematic for non-medical trials, where blinding is often not feasible
(Imbens and Rubin, 2015; Little et al., 2009). When one suspects vio-
lations, sensitivity analyses to assess the extent to which violations
might bias the estimate are warranted. Indeed, sensitivity analyses are
commonly regarded as essential component of causal inference with
intermediate variables more generally as such inference is always based
on unverified assumptions (Stuart and Jo, 2015; VanderWeele, 2015).
In many situations, it may be necessary to compare results with dif-
ferent identification strategies and model assumptions to arrive at valid
conclusions and methods have been developed that can provide in-
formative bounds of causal effects by jointly considering alternative sets
of identifying assumptions (Jo and Vinokur, 2011).

In this context, it should also be noted that CACE-analysis is not the
only approach to handle nonadherence in randomized experiments and
other methods may be more appropriate in certain circumstances (see
for review, Sagarin et al., 2014). For instance, it was recently argued
that the instrument variables methods, such as CACE, may be a viable
alternative when examining a single intervention at single time point,
but may not be appropriate in more complex treatment studies which
require sustained adherence over time (Hernán and Robins, 2017). In
the latter case, statistical adjustment for observed variables using other
statistical techniques (e.g., G-estimation methods) could be an option.
On the other hand, the validity of such methods requires data on all
preassignment and postassignment prognostic factors predictive of ad-
herence which may not be available in a trial and these “modern” per-
protocol analyses have not systematically been compared with classic
instrument variables methods (Hernán and Robins, 2017). Which ap-
proach that should be taken will depend on the questions of substantive
interest and which assumptions that are more plausible in a specific
setting. This in turn relies heavily on subject-matter knowledge, in-
cluding treatment theory and design-aspects. In general, CACE appears
most useful in settings where one well-defined treatment is compared

with a control at specific time point, compliance is binary and careful
restriction of treatment access is guaranteed, but CACE has also been
used in more complex situations (e.g., Jo and Muthén, 2003; Little
et al., 2009; Stuart et al., 2008).

Moreover, and more importantly, it is crucial to consider the
broader context in which any analytical data choice is made. In order
words, researchers need to consider design aspects that can reduce
threats to internal and external validity. For instance, the type of con-
trol condition used in an RCT will determine what kind of alternative
explanations that are ruled out (Shadish et al., 2002). Indeed, within
the potential outcome framework, the causal effect is always relative to
the outcome under control, as the effect is defined as the difference
between the two causes (Holland, 1986). Thus, the framework offers a
way to solve a causal identification problem that involves unobserved
counterfactuals, but researcher still need to think carefully about what
kind of a “causal question” their study can answer and the specific
counterfactual under consideration. In this context, it should also be
noted that CACE-analysis does normally not answers questions about
how or why change occur in treatments (i.e., mediation), although
principal stratification has been adopted to statistical mediation ana-
lysis (Jo, 2008). VanderWeele (2012, 2015) provided an in-depth dis-
cussion on the differences between principal stratification applied to
noncompliance and mediation analysis in the form of natural direct and
indirect effects. It also important to remember that we normally test for
average causal effects in the context of considerable individual het-
erogeneity and average effects may not be easily – or at all – extra-
polated to the individual. At the end of the day, no single study can
provide definitive proof of a causal association nor the degree to which
it can be generalized. Rather, the investigation of causal effects requires
a multifaceted pattern of evidence obtained from multiple studies
(Shadish et al., 2002). Viewed in this light, any data analytical ap-
proach can only make a small contribution to a complex scientific task.
Still, given the amount of effort and time involved in conducting an
RCT, researcher should be advised to extract as much relevant in-
formation as possible and appropriate analyses that take into account
adherence may be informative. At the same time, researchers should be
aware of these methods limitations.

Notwithstanding these important specific and general considera-
tions, CACE, carried out within the latent variable framework, is
probably one of the most flexible approaches, and if used correctly can
provide valuable complementary information in certain settings.
Despite its potential value, CACE-analysis is underutilized in trials on
psychological treatments. One reason could be that it is difficult to
define what constitutes an adherer in a psychological treatment.
Indeed, an accurate measure of adherence is a prerequisite for CACE to
be of value. This is potentially the most challenging aspect of CACE-
analysis. I recognize that this is not an easy thing to do in any trial, but,
as discussed earlier, it is often trickier in face-to-face treatments to
determine whether a participant has been exposed to the treatment
content, because it relies on that we know what therapists are doing in
treatment. In internet interventions we often have more control over
the content of the treatment and what participants are exposed to as the
therapist often only have a supportive role (or no role at all in pure self-
help treatments). We should therefore be able to determine more easily
whether or not a participant has received treatment as intended.

It should be noted that the definition of adherence used in the
current paper is based on what participants receive in treatment or
what content they are exposed to, not on what they actually do in
treatment, in terms of, for example, exercises and assignments.
Participants may, for example, log in and read the treatment text in an
internet-based psychological treatment, but this does not automatically
mean that they are also engaged in treatment (see e.g., Bendelin et al.,
2011). The degree to which participants are engaged in treatment is of
course another important aspect of adherence in internet interventions
(Donkin et al., 2013; Kelders et al., 2012), although arguably a more
challenging one from a methodological standpoint. Here, the format of
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internet-based treatment may also have an advantage over traditional
means of delivering treatment given the many objective measures that
are regularly collected in internet interventions, such as number of log
ins, time spent online, number of completed activities etc. (Donkin
et al., 2013). With more advanced assessment technology (e.g., ecolo-
gical momentary assessment) being incorporated into internet inter-
ventions we may also be able to get a more fine-grained picture of this
kind of adherence. Such information, coupled with for example data-
intensive methods such as machine learning (e.g., Mikus et al., 2018),
could be used to identify adherers. In this context, it should be noted
that CACE-analysis is, of course, not limited to the current con-
ceptualization of adherence and various sources of information could
be used to classify participants. There is often no single, best way to
determine adherence in a treatment trial and, in most situations, re-
searchers should entertain multiple definitions and compare results
across models with different definitions. CACE-analysis, within the la-
tent variable framework, provides the analytical tools to do just that.

Let me end with a final set of recommendations when dealing with
nonadherence in internet interventions:

• Per-protocol and as-treated analysis are not recommended as the
methods do not provide causal estimands. The same applies to
simpler but commonly used methods examining dose-response ef-
fects in internet interventions, such as, for example, estimating the
correlation between the number of completed modules with the
outcome or conditioning on any other post-assignment variable
measuring the degree of exposure to treatment.
• Researchers should, whenever possible, a prior define an adherer in
a particular intervention. Measures of adherence should be collected
in the trial so that participants can be classified according to this
predetermined definition. Whenever continuous measures of ad-
herence are dichotomized, sensitivity analyses can be carried out
using different thresholds to see how choices of cut-off impact the
findings.
• CACE-analysis, whenever it is considered appropriate, should be
carried out as complement to ITT-analysis in randomized trials with
a control condition. Sensitivity analysis of the exclusion restriction
assumption should be performed to test whether any violations alter
the overall conclusions. Pre-treatment characteristics that are re-
lated to the outcome or compliance should be included in the model
to increase precision and power and decrease bias due to model
misspecifications.

Supplementary data to this article can be found online at https://
doi.org/10.1016/j.invent.2020.100346.
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