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Citation: Trzepieciński, T.; Kubit, A.;

Fejkiel, R.; Chodoła, Ł.; Ficek, D.;
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Abstract: The article presents the results of friction tests of a 0.8 mm-thick DC04 deep-drawing quality
steel sheet. A special friction simulator was used in the tests, reflecting friction conditions occurring
while pulling a sheet strip through a drawbead in sheet metal forming. The variable parameters in
the experimental tests were as follows: surface roughness of countersamples, lubrication conditions,
sample orientation in relation to the sheet rolling direction as well as the sample width and height
of the drawbead. Due to many factors that affect the value of the coefficient of friction coefficient,
artificial neural networks (ANNs) were used to build and analyse the friction model. Four training
algorithms were used to train the ANNs: back propagation, conjugate gradients, quasi-Newton
and Levenberg–Marquardt. It was found that for all analysed friction conditions and sheet strip
widths, increasing the drawbead height increases the COF value. The chlorine-based Heavy Draw
1150 compound provides a more effective friction reduction compared to a LAN-46 machine oil.

Keywords: drawbead; coefficient of friction; friction; sheet metal forming; steel sheets

1. Introduction

In order to obtain the required quality of the drawpiece in the sheet metal forming
(SMF) process, it is necessary to properly select the conditions of the sheet forming process,
in which technological aspects should be considered, taking into account the stress and
deformation states occurring in the sheet, as well as the frictional conditions between
the pressed sheet and the tool [1–3]. The phenomenon of friction in sheet metal forming
processes is complex and is not a static phenomenon, but is subject to significant fluctua-
tions depending on the forming conditions [4,5]. A complete description of the frictional
conditions during stamping is very complicated and requires taking into account the prop-
erties of the frictional pair of materials, their surface characteristics such as texture and
roughness, mechanical properties of materials, as well as the quantity and properties of
the lubricant, and finally various kinematic and dynamic process conditions [6–8]. The
selection of appropriate friction conditions is extremely important, not only to ensure
the required quality of the pressed pieces, but also to minimize the wear of the forming
tools [8–10].

Due to the high pressures that occur on contact surfaces, the friction phenomenon
in plastic working processes differs significantly from the friction occurring in machine
parts and has a direct impact on the distribution of stresses and strains in the formed
material [11,12]. The frictional conditions also affect the value of the force necessary for
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deformation, as well as the value of pressure on the working surfaces of the tools, which, in
turn, affects the aspects of tool wear [13,14]. The most common in this type of processes is
adhesive wear, which also includes scuffing [15], another frequently occurring form of wear
is abrasive wear [16,17]. Friction can cause the phenomena of the shaped material sticking
to the working surfaces of the tool, which also accelerates their wear and significantly
affects the surface quality of the products [18].

In a typical sheet metal drawing process, the surface of the sheet is lubricated. The
lubricant changes the contact conditions between the tool and the sheet surface. According
to Gierzyńska [19], in the process of sheet deformation, a lubricant reduces unit pressure
and the coefficient of friction (COF), changes the flow character of the deformed metal and
its topography, and improves the quality of the product surface. The appropriate shape
of the surface of tools, creating conditions for the formation of the so-called oil pockets,
significantly improves lubrication efficiency. Experimental research on this subject was
conducted, among others, by the authors of the works [20–22]. The deformation of the
geometric structure resulting from pressure distribution, with a different sample orientation,
in different ways favours the formation of oil pockets as micro-areas of hydrodynamic
lubrication [23].

In SMF, drawbeads are one way to regulate and control the material flow during
the forming process in order to prevent wrinkling [24]. Drawbeads impede the material
flow of the sheet metal, but also change mechanical properties due to the work hardening
phenomenon. Over the years, many researchers analysed the effect of drawbeads on
material formability in SMF. Samuel [25] investigated the behaviour of metal flow which
passes through different shapes of drawbeads. He concluded that the drawbead restraining
force is affected greatly by friction conditions and bead geometry. Leocata et al. [26] carried
out the strip tensile test to analyse the restraining force for different pressure zones. It
was found that an increased surface roughness leads to a decreased sensitivity of friction
to variations in the amount of lubricant. Zhongqin et al. [27] studied the effect of the
geometrical shape and dimensions of the drawbead on the drawbead restraining force
(DBRF) and material flow. They concluded that the experimental approach to obtain
proper drawbead geometry is not only expensive, but also requires much effort and time.
Lee et al. [28] developed a numerical method to predict the DBRF. Comparisons between
measurements and calculations for SPCC steel showed that hardening behaviour precisely
predicts the DBRF. Murali et al. [29] numerically analysed a circular and rectangular
drawbead position on the die surface and their effect on the thickness distribution over the
formed cup. They found that circular drawbeads are preferred since the thickness reduction
is lesser than when rectangular drawbeads are used. Bassoli et al. [30] developed a handy
simulator to measure the DBRF during the deep drawing of 6014-T4 aluminium alloy metal
sheet. The results show that some geometries of the drawbead enabled nearly invariant
dynamic behaviour, in that the restraining force was almost insensitive to changes in
friction conditions. Schmid et al. [31] modified a strip drawing test to observe the material
behaviour of DC04 steel while passing a drawbead. An overall increase in hardness while
passing the sheet through a drawbead was pointed out. Hardness increases due to an
overlying tensile load and it can be seen that passing a drawbead leads to an increase in
material hardness.

Artificial neural networks (ANNs) are one of the most frequently used methods of
solving problems in friction testing and analysis of wear. The prospects for the use of
artificial intelligence in tribology have been discussed in the paper of Rosenkranz et al. [32].
Lemu et al. [33] applied radial basis function (RBF) ANNs to create a mathematical model
of friction behaviour based on the results of the strip drawing test. They found that the
back propagation algorithm is the most efficient learning algorithm. Trzepieciński and
Szpunar [34] built an empirical model of friction of Ti-6Al-4V titanium sheets with the
use of RBF ANNs. It was concluded that an increase in the number of radial neurons in
the hidden layer caused an increase in the value of the determination coefficient and a
reduction in the standard deviation ratio. Otero et al. [35] investigated the use of ANNs
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for the prediction of the COF in elastohydrodynamic lubrication point contacts. It was
highlighted that special care is needed when using ANN models for prediction since they
are accompanied with the loss of relevant information, or intermediate results of interest.
Boidi et al. [36] employed the RBF for predicting the COF in lubricated contacts with
textured and porous surfaces. Prajapati and Tiwari [37] demonstrated the potential of
ANN in the prediction of roughness parameters, COF and wear coefficients in pin-on-disk
tribotesting. A very good agreement of the results suggested that a well-trained ANN is
capable of predicting the parameters in the wear process. Argatov et al. [38] applied a
multilayer perceptron for data-driven modelling of the wear coefficient in sliding wear
under constant testing conditions. They provided examples of the use of the approach
developed on the basis of the experimental data published recently. In the last two decades
in particular, the areas of successful incorporation of ANNs have been constantly expanding
in tribological research and cover such diverse applications as erosion of polymers [39],
brake performance [40,41], tool wear [42], wear of journal bearings [43], wheel and rail
wear [44], the microabrasion-corrosion process [45] and wear of polymer composites [46,47].
Neural networks optimised by genetic algorithms can be also used for the design of
lubricant formulations in tribology [48,49]. Humelnicu et al. [50] also analysed the use
of ANNs to design lubricants with significantly lower COFs. Predictions of COFs for
optimised mixtures of vegetable oils aligned well with the experimental results. Examples
of ANN applications in tribological studies were discussed by Argatov [51]. Sha and
Edwards [52] recommended suitable guidelines for the proper handling of ANNs to reveal
their potential for effective modelling and analysis of tribological problems. The potential
applications of ANNs in the field of tribology have been reviewed by Frangu and Ripa [53].

Most studies in the literature only determine the influence of selected geometric
parameters of the friction process arising in a drawbead during SMF. Moreover, the vast
majority of results presented in the literature are based on the pulling of a strip of sheet
metal of the same width. On the basis of preliminary tests, it was found that the width of
the sheet significantly affects the deformation of the sheet while passing the sheet strip
through a drawbead, and thus, the value of the coefficient of friction. Therefore, it was
decided to prepare and present the results of extensive friction investigations in this paper.
In experimental tests a friction simulator was used to determine the influence of lubrication
conditions, the height of the drawbead as well as the sample width and its orientation on
the value of the COF. Based on the results of experimental research, an analytical model of
friction was built using artificial neural networks trained with various training algorithms.
The influence of particular parameters of the friction test on the COF value was presented
and discussed. Based on experimental results, the qualitative comparison of the ANN
model was carried out.

2. Materials and Methods
2.1. Material

As test material a 0.8 mm-thick cold rolled low carbon steel DC04 was used. The
research material meets the requirements of EN 10130: 2009 [54]. This grade is suitable
for high deformation requirements and is commonly used in the automotive industry. In
order to determine basic mechanical properties, strength tests were carried out on the
universal testing machine Zwick Roell Z030 according to the EN ISO 6892-1: 2016-09 [55]
standard. In the experimental tests of friction, the strips cut along the rolling direction
RD (α = 0◦) and transversely to this direction (α = 90◦) were tested. Therefore, uniaxial
stretching tests were performed for these two directions. The mean values of basic material
parameters (Table 1) were determined as the mean values of five measurements. Values
of strain hardening parameters were determined by approximating the relationship true
stress-true strain relationship obtained in the uniaxial tensile test using the Hollomon
equation σ = K·εn, where σ is true stress, K is the strengthening coefficient, ε is the true
strain and n is the strain hardening exponent. Figure 1 shows load-elongation curves from
a tensile test.
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Table 1. Basic mechanical parameters of the DC04 sheet metal (±standard deviation).

Specimen
Orientation

Yield Stress Rp02,
MPa

Uniaxial Tensile
Stress Rm, MPa Elongation A50, % Strengthening

Coefficient K, MPa
Strain Hardening

Exponent n

0◦ 184.5 ± 3.0 303.9 ± 6.2 23.0 ± 0.6 490.4 ± 5.8 0.205 ± 0.003
90◦ 176.1 ± 0.5 296.0 ± 0.7 22.8 ± 0.3 465.7 ± 3.9 0.169 ± 0.002

Figure 1. Load-elongation curves for specimens cut (a) parallel and (b) transversely to the sheet
rolling direction.

The surface roughness of the sheets tested was measured before the friction process
with the Talysurf CCI Lite 3D scanning profilometer according to the EN ISO 25178-6 [56]
international standard. The surface topography of the DC04 sheet metal and basic surface
roughness parameters are shown in Figure 2 and Table 2, respectively.



Materials 2021, 14, 5887 5 of 24

Figure 2. Topography of the DC04 steel sheet.

Table 2. Basic surface roughness parameters of the DC04 sheet.

Sa,
µm

Sq,
µm

Sp,
µm

Sv,
µm

Sz,
µm

Sal,
mm Str Sdq Ssk Sku

1.32 1.54 10.48 10.31 20.79 0.05 0.93 0.15 −0.13 2.11

2.2. Friction Test

The curvature of the metallic sheet passing through the drawbead model is changed
several times; the sheet is alternately bent and straightened. Thus, the direction of the
friction force changes along the curvature and does not coincide with the direction of the
pulling force that is measured. The idea behind the method is to provide the ability to
separate the deformation resistance of the sheet from the friction. In the DBT, the values of
the pulling force and the clamping force are measured when pulling the strip over fixed
and rotatable rollers.

The value of the COF while passing the sheet strip through the drawbead was deter-
mined using a special tribological simulator (Figure 3). The tested strip of sheet metal is
bent, unbent and reverse bent many times passing between rolls 1, 2 and 3. A symmetrical
guidance of the sheet in relation to the middle roll 2 is provided by the supporting roller 4.
It also prevents the sheet end from bending when it enters the working roller 3. The device
was mounted on a Zwick/Roell Z100 testing machine (Zwick/Roell GmbH & Co. KG,
Ulm, Germany. One end of the sheet strip was mounted in the upper gripper of the testing
machine. The force values were recorded at a frequency of 50 Hz using the Lab View DAQ
program integrated with the NI 9237 measurement card.

According to the idea of separating the sheet deformation resistance from friction
resistance, two tests should be carried out: (i) with rotating rollers and (ii) with fixed rollers.
The value of the friction coefficient is determined from the relationship [57]:

µ =
Fcn − Fco

Fdn

sinθ

2θ
(1)

where Fco is the pulling force obtained with the freely rotating rolls, Fcn is the pulling force
obtained with the fixed rolls, Fdn is the clamping force obtained with the fixed beads, Θ is
the half contact angle of the strip over the middle roller.
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Figure 3. (a) diagram and (b) 3D model of the test device: 1—frame; 2—vertical tension member;
3—specimen; 4—working rolls; 5—supporting roll; 6,7—load cells; 8—horizontal tension member;
9—pin, 10—nut.

The clamping force of the central roller Fdn was measured using strain gauge 8
(Figure 3), and the pulling forces Fco and Fcn were measured using strain gauge 7 (Figure 3).
The strain gauges were calibrated using a Zwick Roell Z100 professional uniaxial testing
machine (load capacity Fnom = 100 kN, stiffness of the load frame 500 kN/mm). Force
measurement accuracy with a load cell was equal to Class 1 for loads from 0.4 to 100%Fnom
and Class 0.5 for loads from 2 to 100%Fnom (the accuracy is 0.5% of the reading under
full load) [58]. The effect of calibrating the strain gauge sensors are graphs showing the
dependence of the recorded tension force values and excitation voltage [59]. The force
measured by strain gauges shows linear agreement with the indications of the Zwick
Roell Z100 professional testing machine. The excitation voltages were registered with an
accuracy of 0.00001 V using the NI 9237 strain/bridge input module and transferred into
forces according to the regression functions shown in Figure 4.

Figure 4. Calibration curves for strain gauge sensors measured for (a) pulling and (b) clamping forces.

Angle Θ can be determined on the basis of the arrangement of rolls simulating the
drawbead (Figure 4):

θ =
π

2
− 2arc tg

(
2R + g + h

2R + c

)
(2)

where g is the sheet thickness, R is the radius of roller, h is the drawbead height and c is the
side clearance.
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During the tests, an adequate side clearance c (Figure 5) should be ensured between
rolls in order to prevent the sheet strip from blocking between rollers [60]. At high angles
of contact, the sample may even break. On the other hand, applying an excessive side
clearance between rolls can adversely change the way the sheet is deformed [61]. In
preliminary tests, the value of the side clearance c was experimentally determined as 1.5 of
the sheet thickness.

Figure 5. Geometric parameters of the drawbead.

The tests were carried out under dry friction conditions and lubrication with LAN-46
machine oil and chlorine-based Heavy Draw (HD) 1150 synthetic stamping and drawing
compound. The viscosity of the HD 1150 compound is η = 1157 mm2·s−1, while the
viscosity of the LAN-46 oil is η = 43.9 mm2·s−1. The strip specimens were lubricated using
a teflon shaft [11,62]. The amount of lubricant applied to each of the two surfaces of the
samples was 2 g/m2 [11,62]. During the test the lubricant is squeezed out between the
countersample surface and the sheet surface. Moreover, the thickness of oil is not uniform
along the total area of contact. The load is carried on roughness asperities where the
lubricant thickness is equal to zero, and in the rest of the area, the thickness of the lubricant
layer depends on the volume of valleys in the surface topography.

The rest of the test conditions are as follows:

• Surface roughness of countersamples Ra 0.32, 0.63 and 1.25 µm;
• Specimen orientations α = 0◦ and α = 90◦;
• Specimen widths w: 7, 14 and 20 mm;
• Drawbead heights h: 6, 12 and 18 mm.

During sheet metal forming the hardness and strength of the tool material is many
times greater that the hardness and strength of the workpiece material. Due to this fact
and the fact that the values of specific forces registered during the test do not exceed
1500 N, it was assumed that the elastic deformation of the tool steel is negligibly small.
Taking account of the analysis of recent developments and trends in friction testing for
conventional sheet metal forming [63], the majority of researchers testing friction in sheet
metal forming focus on producing a device with appropriately high stiffness. The elastic
strains of the countersamples themselves are not considered in the macroscopic analysis of
the friction forces [64–68].

2.3. Surface Characterization

The surfaces of the sheets after friction tests were examined using Phenom ProX
scanning electron microscope (Nanoscience Instruments, Phoenix, AZ, USA).

2.4. Artificial Neural Networks

Due to a large number of parameters influencing the value of the COF determined in
the drawbead friction test, it is difficult to determine the synergistic relationship between
input parameters and the value of COF. ANNs, by simulating the flow of information in
the human brain, are able to model a problem of any complexity [69,70]. Therefore, this
article uses ANNs to determine the model of variation in COF during the drawbead test.
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To ensure the quality of the neural network, it is necessary to provide a training data set.
The following set of variables was selected as input signals to the network:

• Average surface roughness of countersamples;
• Lubrication conditions;
• Orientation of the sheet metal strip with respect to the sheet rolling direction;
• Drawbead height;
• Sample width.

The aim of the training process is to select weights in individual neurons in order
to minimise a global error of the ANN. As a result of the learning process, ANNs can
acquire the ability to predict output signals based on the sequence of input signals and the
corresponding output signals. The task of the learning algorithm is to select the weight
values and threshold values of all neurons in such a way as to ensure the minimisation
of error in network operation. The learning algorithm, starting from the initial random
system of weights and threshold values, modifies these values in a manner that tries to
reach the overall minimum. All the training datasets are presented to the network during
each iteration. The error value is determined from the difference between the values of the
output signals and the standards.

The set of data (input signals and the corresponding COF value) obtained from
experimental friction tests was used to train the ANN. Basic learning algorithms were
used to train the network: back propagation (BP), conjugate gradients (CG), quasi-Newton
(q-N) and Levenberg–Marquardt (LM). As a result of the learning process, the trained
neural network acquires the ability to predict the value of the output signal based on
the sequence of input signals and the corresponding output signals presented during the
learning process. The task of the training algorithm is to select the threshold values and
weights of neurons in order to minimise the global error of the ANN.

Each neuron consists of two modules. The first one adds the products of the weighting
factors and the input signals. In the second module, the output signal from the first module
is processed by the neuron activation function. The signal e (Figure 6) is the output signal
of the adder, while y = f(e) is the output signal of the non-linear element. The signal y
is also the output signal of the neuron. Training the network with the back propagation
algorithm is an iterative process. In each iteration, the neuron weight factors are modified
using new data from the training dataset. Each learning step (epoch) begins with forcing
all input signals from the training set. After this stage, the values of the output signals are
determined for each neuron in each network layer.

Figure 6. Structure of an individual neuron.

The Levenberg–Marquardt algorithm is a fast-convergent algorithm. Its computational
complexity is not very large and its implementation is simple [71]. The work principle
of the LM algorithm is based on the least-squares method [72]. The LM algorithm, also
known as the damped least-squares method, works without computing the exact value
of the Hessian matrix of the error function. The LM regularization method consists of
replacing the Hessian matrix with its approximation based on gradient calculations with a
properly selected regularization factor. The algorithm of the LM method approximates the
Hessian of the error function by means of an appropriate transformation of the residual
matrix and Jacobian. Jacobians (derivatives of the outputs with respect to the network
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weights and with respect to the inputs) are used to determine the sensitivity of the network
outputs [73].

In the quasi-Newton method, the Hessian of the minimized error function is approxi-
mated by analysing successive gradient vectors. The variable-metric method assumes that
the error function can be approximated by a quadratic function in the neighbourhood of
the local optimum. The fact that the Hessian satisfies the condition of positive definiteness
at each step of the ANN’s training makes the qN method one of the best methods for
optimizing multivariable functions. Due to the high computational complexity related to
the necessity to calculate n2 elements of Hessian, this method is recommended for relatively
not very complex neural networks.

The conjugate gradient algorithm is an iterative method of ANN training. In the
CG algorithm [74,75], the direct use of the Hessian matrix for the construction of a new
direction of the minimum search is abandoned. This method is based on the assumption
that in order to ensure the correct training process, the direction of the search for the
minimum error function should be coupled to the previous gradient value [76].

Among all training pairs (162 input signals and the corresponding output signal),
10% [33,77] were randomly selected and included in the validation set. The moment the
RMS error value of the validation set no longer decreases was adopted as the criterion for
completing the network training process [33,77]:

RMS =

√
∑N

i=1(zi − yi)
2

N
(3)

where zi is the expected signal of the output neuron for the i -th pattern, yi is the signal of
the output neuron for the i -th pattern, N is the number of vectors in the training set.

The normalization of values of all input data to the range [Nmin (0), Nmax (1)] was
performed using the min-max method:

D′ =
(D−min)
max−min

(Nmax − Nmin) + Nmin (4)

where D is the value of the variable subjected to normalization and (min, max) is the range
in which the original data are contained.

In the Statistica Neural Networks (SNNs) program, a number of ANNs models were
built for a different number of neurons. The number of neurons in the input layer was
determined by the number of input parameters. At the output of the network there was
one neuron responsible for the COF value.

3. Results and Discussion
3.1. The Effect of Drawbead Height

Increasing the drawbead height increases the value of the friction coefficient
(Figures 7 and 8). Such a dependence occurs for all friction conditions and the widths
of the sheet strip. First of all, it should be explained why different sheet widths were used
in the tests. The shape of the cross-section of the bent sheet strip depends on the ratio of
the strip width to its thickness. The larger this parameter, the more the sheet has a concave
shape, which was observed in previous research [78] while bending the same sheet as used
in research presented in this manuscript. The sheet metal passed through the drawbead
takes on a concave shape in the middle part (Figure 9), which limits the real contact area.
So, the width of the sheet strip determines the different manner of deformation, and thus,
the different real contact area of the sheet with the countersamples. The results presented
in Figure 7 clearly confirm that the width of the sheet strip tested determines the change in
COF. The above conclusions can be extended to the sample orientation of 90◦ (Figure 8).
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Figure 7. The effect of the drawbead height on the value of COF for specimens cut along the RD (orientation 0◦): (a) dry
friction, (b) LAN-46 oil lubrication, (c) HD 1150 compound lubrication.

Figure 8. The effect of the drawbead height on the value of COF for specimens cut transverse to the RD (orientation 90◦):
(a) dry friction, (b) LAN-46 oil lubrication, (c) HD 1150 compound lubrication.

Figure 9. Deflection of the sheet strip (w = 20 mm) after passing the drawbead.

Proof that the contact area has an influence on COF in the drawbead test is the
work of Nanayakkara et al. [57]. They conducted experiments with different drawbead
penetrations h. The change in drawbead penetration h changes the contact area between
the sheet and the countersamples. COF was not constant for a wide range of drawbead
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heights. In a similar manner to changing the contact area by changing the bead penetration,
the width of the sample also plays an important role. The method of deformation of the
sheet depending on its width changes the proportions between the pulling and clamping
forces measured during the test and, consequently, the COF value. This phenomenon has
been studied numerically in a recent paper of the authors [79].

3.2. Effect of Countersample Roughness

The influence of average surface roughness Ra of countersamples on the value of
COF depends on the width of the test sample. Lubrication of the sheet surface using the
HD 1150 compound while testing samples with a width of 7 mm (Figure 10) produced a
favourable effect at Ra = 0.63 µm. At this roughness, the lubricant provides the lowest COF
value. The beneficial effect of the volume of the lubricant pockets and the high viscosity of
the HD 1150 lubricant is clearly visible.

Figure 10. Effect of countersample roughness on the value of COF for specimens with a width of w = 7 mm cut along the
rolling direction (orientation 0◦): (a) h = 6 mm, (b) h = 12 mm, (c) h = 18 mm.

Undeniably, the HD 1150 compound provides a more effective reduction in COF values
compared to LAN-46 machine oil. When pulling strips twice the width (Figure 11), the HD
1150 compound provided the greatest reduction in COF at an average surface roughness of
countersamples Ra = 0.32 µm. Increasing the roughness of the countersamples also reduces
lubrication efficiency. This conclusion can also be made on machine oil, however only for a
drawbead height of h = 6 mm (Figure 11a) and h = 12 mm (Figure 11b).
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The tests with the drawbead height of h = 18 mm (Figure 11c) did not show a significant
effect of the drawbead height on the lubrication efficiency of LAN-46 machine oil. As in
the dry friction conditions (Figure 11b,c), the COF value is similar in terms of the analysed
countersample roughnesses. A clear tendency to increase the COF when increasing the
countersamples’ surface roughness was observed when testing samples with the largest
width w = 20 mm (Figure 12) only under dry friction conditions in the whole range of the
analysed drawbead heights.
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3.3. The Effect of the Sample Orientation

Although the sheets tested exhibit anisotropic material properties in relation to yield
stress and strain hardening parameters (Table 1), the effect of specimen orientation on
the value of COF is quite complicated. Values of the COF for the two analysed sample
orientations did not differ by more than 0.025 (Figures 13–15). However, in most of the
analysed cases, the COF value was higher for the sample orientation 90◦. As mentioned in
Section 2.1, the sheets tested were fabricated in a cold rolling process. It is well known that
this process induces directional microstructure in the material. The grains are elongated in
shape in the direction of the rolling process. Resistance to multiple bending, unbending
and reverse bending of the sheet while passing through the drawbead is lower for samples
oriented transversely to the sheet rolling direction. Moreover, flat specimens cut along
the rolling direction show higher values of spring back while bending than samples cut
transversely to the sheet rolling direction [80].

3.4. The Effect of Friction Conditions

The HD 1150 compound reduced the value of the COF to the greatest extent
(Figures 16 and 17). This lubricant most significantly reduced COF during tests with the
highest analysed drawbead height h = 18 mm (Figure 16c or Figure 17c). With an in-
crease in the drawbead height, lubrication efficiency decreases. For a drawbead height of
h = 6 mm, lubrication with machine oil and the HD 1150 compound reduces the COF value
by 11.19–27.75% and 26.74–54.65%, respectively. For a drawbead height of h = 18 mm, lubri-
cation with machine oil and the HD 1150 compound reduces the COF value by 5.94–12.67%
and 19.97–44.97%, respectively. The relations presented in Figures 14 and 15 refer to the
roughness of countersamples Ra = 0.32 µm. However, similar qualitative conclusions can
be drawn for the rest of the analysed surface roughness of countersamples.
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3.5. Friction Mechanisms

In SMF processes, there is a movement of a plasticized metal of relatively low hardness
over the surface of the tool with a higher hardness. The forming load acts only on the
roughness asperities which results in a higher degree of surface flattening and thus, a higher
fraction of real contact area. Changes in the properties of the surface layer of the deformed
material are related to the change of friction conditions. The basic friction mechanisms
observed during the tests were flattening, roughening and adhesion. Adhesive wear is a
form of wear characterized by high wear rates and a high unstable coefficient of friction.
Frictional joints are quickly destroyed as a result of adhesive wear, and in extreme cases,
sliding movement may be impossible as a result of seizure.

The three dominating flattening mechanisms during SMF are: flattening due to normal
loading, (ii) flattening due to normal load and (iii) flattening due to sliding. Flattening
manifests itself in regions with flattened asperities of surface roughness (Figures 18 and 19).
Flattening increases the real area of contact, resulting in a higher COF value. Flattened
regions carry the entire load of the tool and are surrounded by valleys, where the surface
remains in an “as received” state. These areas constitute a reservoir of lubricant known
as "oil pockets". The lubricant existing in closed oil pockets (Figure 19b) is pressurized
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while forming under load and increases its hydrostatic pressure [81]. Open oil pockets
(Figure 19a) are connected to the edge of the surface and do not contain lubricant, which
escapes when increasing the normal load.
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Figure 18. The specimen surfaces tested in lubricated conditions using LAN-46 machine oil
(Ra = 0.32 µm, h = 6 mm, w = 14 mm, orientation 90◦) at different magnifications: (a) ×600 and
(b) ×960.
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Figure 19. The specimen surfaces tested in dry friction (Ra = 0.32 µm, h = 6 mm, w = 14 mm,
orientation 90◦) at different magnifications: (a) ×920 and (b) ×1800.

Under conditions of lubricating the sheet surface (Figures 18 and 19) and during
dry friction (Figures 19 and 20), at a drawbead height of 6–12 mm, the surface after
friction was characterized by a mixed proportion of flattened regions and valleys. The
low roughness of the tools results in a large contact surface and the intensification of wear
on the sheet surface at the level of surface asperities. In contrary, the high roughness of
the tool provides less real contact surface but increases the contribution of the ploughing
mechanism (Figures 21 and 22). On the surfaces of the sheets tested with countersamples
with a roughness of Ra = 0.63 and 1.25 mm, deep scratches with wear products are visible
(Figure 21).
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Figure 20. The specimen surfaces tested in lubricated conditions using LAN-46 machine oil
(Ra = 0.63 µm, h = 12 mm, w = 14 mm, orientation 90◦) at different magnifications: (a) ×970 and
(b) ×530.
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The surface layer of the tested sheets while passing through the drawbead with a
height of h = 18 mm in dry friction conditions is characterized by a strong strain hardening,
however, the degree of deformation of individual micro-areas in the sheet surface is quite
varied. It proves the occurrence of different unit pressures in individual micro-contact
areas. In regions that initially transferred load, together with repeated bending, unbending
and reverse bending of the sheet strip material, the greatest strengthening is achieved,
which reduces the formability of the material. At the same time, as a result of high pressure,
the phenomenon of adhesion increases. This may create a grid of cracks (Figure 20).

3.6. Artificial Neural Networks

The Intelligent Problem Solver module built in the SSNs program is used to determine
the appropriate structure of the neural network. This module enables the construction and
evaluation of a large number of neural networks with a different structure of the hidden
layer. The highest quality was characterized by the 5:5-8-1:1 network with 8 neurons in the
hidden layer (Figure 23).
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The training process carried out with the use of four algorithms was characterized
by a continuous decrease in the RMS error of the training and validation set (Figure 24).
The most effective algorithm for quickly reaching the minimum network error is the
conjugate gradients algorithm (Figure 24b), which only required about 300 learning epochs.
In contrast, the quasi-Newton algorithm took about 1900 epochs to reach the minimum
value of the network response error (Figure 24c). It is worth noting that, in the whole
training phase, the RMS error for the validation set was greater than the RMS error for the
training set.

From the point of view of network quality, the lowest RMS error value for the training
set is characteristic for the network trained with the quasi-Newton algorithm (Table 3). The
network trained with the Levenberg–Marquardt algorithm is characterized by a slightly
greater error, and the largest error for both data sets was shown by the network trained
with the back propagation algorithm.

Table 3. Values of RMS error for training (T) and validation (V) sets.

Back Propagation
Algorithm

Conjugate Gradients
Algorithm

Quasi-Newton
Algorithm

Levengerg-Marquardt
Algorithm

T V T V T V T V

0.0316 0.0576 0.0286 0.0531 0.0158 0.0499 0.0195 0.0437
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Special attention should be paid to the Standard Deviation (SD) ratio and the correla-
tion coefficient R2 [82]. The most important regression statistics of the training set and the
validation set are presented in Table 4. The correlation coefficient of COF values presented
at the network output during the training process and the values obtained as a result of the
operating the neural network trained with the quasi-Newton method was approximately
0.996 (Table 4). This is the highest R2-value for the training set among all the training
algorithms used. At the same time, for this data set, the SD ratio was the smallest and
equalled about 0.0813.

Table 4. Basic regression statistics for training (T) and validation (V) sets.

Parameter
Back Propagation

Algorithm
Conjugate Gradients

Algorithm
Quasi-Newton

Algorithm
Levenberg–Marquardt

Algorithm

T V T V T V T V

Data mean 0.4553 0.4235 0.4553 0.4235 0.4553 0.4235 0.4553 0.4235
Data SD 0.1961 0.1981 0.1961 0.1981 0.1961 0.1981 0.1961 0.1981

Error mean −0.0003 0.006 8.7 × 10−5 0.0054 4.5 × 10−5 0.0129 3.08 × 10−6 0.0032
Error SD 0.0318 0.0537 0.0287 0.0536 0.0159 0.0490 0.0195 0.0443

Abs error mean 0.0249 0.0415 0.0227 0.0419 0.0123 0.0404 0.0159 0.0361
SD ratio 0.1621 0.2710 0.1465 0.2708 0.0813 0.2473 0.0998 0.2238

Correlation 0.9867 0.9651 0.9892 0.9660 0.9966 0.9717 0.9950 0.9760

Good regression properties of the ANN are reflected in a very good fit of coefficients
of friction determined by the neural network to the experimental data represented by the
training set (Figures 25 and 26). The ability of the network to adapt to the training data
having a clearly non-linear course is visible.
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Figure 27 shows the response surfaces for the 5:5-9-1:1 ANN model, at different
combinations of input parameters. The analysis of these surfaces allows the following
conclusions to be drawn:

• The greater the drawbead height, the smaller the value of the COF (Figure 27a);
• An increase in the width of the sample leads to an increase in the value of the COF

(Figure 27b);
• The greater the width of the sample, the greater the increase in the value of the COF

(Figure 27b);
• Increasing the average surface roughness of countersamples increases the value of

the COF, at low drawbead height values the increase is very fast, while the higher the
drawbead height, the more equal the COF values are (Figure 27c).

The conclusions obtained on the basis of response surfaces are in line with the conclu-
sions obtained on the basis of experimental research. The condition for a correct prediction
of ANN is that the values of signals on the basis of which the network predicts the value
of the COF fall within the range of parameters used to train the network. The neural
network is able to extrapolate the dependence of the process parameters and the value
of the COF beyond the range of the training data, however, the prediction error may
increase significantly. The improvement of the prediction can be obtained by extending the
training set.
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The advantage of the model of the neural network applied is the possibility of deter-
mining non-linear relationships between many parameters of the friction process and the
COF value. At the same time, it is not necessary to know the nature of the relationships
between the network inputs and the predicted results [83,84]. A multilayer perceptron with
an appropriate number of layers and neurons can model functions of any complexity [85].
A neural network is a black box in the sense that while it can approximate any function,
studying its structure will not give you any insights into the structure of the function
being approximated.

The application of the approach for predicting the technological parameters of the
process using neural network methods is a modern method. Nevertheless, this approach
only helps to find answers to local research problems. This method does not reveal the
physical features of the process and does not allow the use of the results of the study for
similar processes.

The limitation of the ANN model is that it only has the ability to model changes in the
friction coefficient in the range of input parameter change values. Moreover, the accuracy
of the ANN model prediction depends primarily on the data set that was taken into account
during the training process. It should also be noted that too extensive a structure of the
neural network used to model a given problem may lead to its overfitting, and thus, loss
of the ability to generalise data. Each change of the training database, increasing the
training set for example, requires additional training of the network or the creation of
a new network taking into account the entire training set. The network structure must
be re-selected to ensure the minimum value of network error. Moreover, the training
process must be repeated. More data does not mean that a given network will have better
predictive capabilities. It depends on whether the data will be determined or noisy. Of
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course, as long as possible, training set is desirable. However, the training data should
evenly cover the range of values of input parameters. If the amount of training vectors is
sufficient, several parameters can be set at the network output.

4. Conclusions

The conducted experimental studies and ANN modelling of COF of DC04 steel sheets
in the drawbead region in SMF allow the following conclusions to be drawn:

• The width of the sheet strip tested in the drawbead simulator determines its behaviour
during deformation, and thus, the real contact area of the sheet with countersamples.
An increase in the width of the sample leads to an increase in the value of the COF.

• The chlorine-based HD 1150 compound was more effective in reducing COF than
LAN-46 machine oil.

• Increasing the surface roughness of the countersamples reduces lubrication efficiency.
• The tests with the highest analysed drawbead height (h = 18 mm) did not show any

significant influence of height on lubrication efficiency of the LAN-46 machine oil.
• Although the values of the COF for the two analysed sample orientations did not

differ by more than 0.025, in most of the analysed cases, the COF value was higher for
the sample orientation 90◦.

• Analysis of the specimen surfaces after friction tests revealed that the main friction
mechanisms while testing DC04 steel sheets are flattening, roughening and adhesion.
The surface layer of the tested sheets while passing through the drawbead with the
height h = 18 mm in dry friction conditions is characterized by severe adhesion, which
leads to a grid of cracks.

• The most effective algorithm for the ANN training process was the quasi-Newton
algorithm. The correlation coefficient of COF values presented at the network output
during the training process and the values obtained as a result of the operation of the
network 5:5-8-1:1 trained with this algorithm was approximately 0.996.

• Conclusions made on the basis of the response surfaces of ANN are in good agreement
with the experimental results.
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60. Kręcisz, D. The Study of the Flange Resistance Caused by the Action of Draw Beads in the Sheet Metal Forming. Ph.D. Thesis,
Wroclaw University of Technology, Wrocław, Poland, 2005.

61. Meinders, V.T. Developments in Numerical Simulations of the Real-Life Deep Drawing Process. Ph.D. Thesis, University of
Twenty, Enschede, The Netherlands, 2000.
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