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Background. This study aims to develop novel signatures for glioblastoma multiforme (GBM). Methods. GBM expression profiles
from The Cancer Genome Atlas (TCGA) were downloaded and DEGs between tumor and normal samples were identified by
differential expression analysis (DEA). A risk signature was developed by applying weighted gene coexpression network analysis
(WGCNA) andCox regression analysis. Patients were divided into high and low risk group, followed by evaluating the performance
of the signature via Kaplan-Meier curve analysis. In addition, the prognostic significance of the signature was further validated
using an independent validation dataset from Chinese Glioma Genome Atlas (CGGA). DEGs between high and low risk group
were subjected to functional annotation. Results. A total of 748 DEGs were identified between primary tumor and normal samples.
Following WGCNA and Cox regression analysis, 6 DEGs were identified and used to construct a risk signature. The signature
showed high performance in both training and validation dataset. Subsequently, 397 DEGs were identified between high and
low risk group. These DEGs were mainly enriched in terms related to calcium signaling, cAMP-mediated signaling, and synaptic
transmission. Conclusions. The risk signature may contribute to GBM diagnosis in future clinical practice.

1. Introduction

As the most malignant and frequently occurring tumor of
the central nervous system (CNS), glioblastoma multiforme
(GBM) has been considered as a Grade IV glioma according
to World Health Organization (WHO) classification [1–
3]. Prominent features of GBM include enhanced tumor
cell proliferation, migration, and invasion [4]. Recently,
the prognosis of GBM has been gradually improved as
a result of advances in surgical resection, radiotherapy,
and adjuvant chemotherapy [2]. However, GBM remains a
deadly tumor with a median survival of only 15 months
[2, 5].

Gene expression aberrations are universal events in can-
cers and may contribute to cancer development and pro-
gression [6]. For example, amplification and overexpression
of epidermal growth factor receptor (EGFR) is found in
more than 30% of GBM [7]. It has been shown that GBM
tumor cells with EGFR amplification have higher infiltration

ability and inhibition of EGFR activity suppresses tumor
cell growth [8]. In addition, the expression level of inhibitor
of growth family member 4 (ING4), which may inhibit
tumor cell growth by suppressing nuclear factor kappa B
(NF-𝜅B) signaling, has been significantly reduced in GBM
[9].

Recent advancements in bioinformatics and high-
throughput sequencing have led to the identification of
numerous tumor biomarkers, which may allow for more
accurate outcomeprediction and bettermanagement ofGBM
[10, 11]. Sreekanthreddy et al. identified serum osteopontin
(OPN) as a biomarker of GBM [12]. High level of OPN was
confirmed as an indicator of poor outcome of GBM [12].
Colman et al. proposed a 9-gene signature as a predictor
of GBM outcome, which showed a close association with
markers of glioma stem like cells, including nestin and CD13
[13]. Besides, Arimappamagan et al. established a 14-gene
prognostic signature with high accuracy in distinguishing
high risk GBM patients from low risk patients [14]. These
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markersmay be integrated into state-of-the-art diagnosis and
decision-making processes in future clinical practice. Despite
these progressions, more robust prognostic predictors are
still needed for GBM treatment.

In our study, we analyzed the expression data of GBM
from The Cancer Genome Atlas (TCGA) and Chinese
Glioma Genome Atlas (CGGA) and identified differentially
expressed genes (DEGs) by differential expression anal-
ysis. Subsequently, a 6-gene signature was identified by
weighted gene coexpression network analysis (WGCNA)
and Cox regression analysis. The signature showed high
performance in predicting GBM clinical outcome and may
serve as a novel predictor of GBM outcome in future clinical
practice.

2. Materials and Methods

2.1. Data Source. The GBM expression dataset (Illumina
HiSeq 2000 RNA Sequencing) from TCGA (https://portal
.gdc.cancer.gov/) was downloaded in February, 2019. A total
of 173 samples (154 primary tumors, 14 recurrent tumors,
and 5 solid tissue normal samples) were included in the
dataset. Primary tumor and solid tissue normal samples were
selected as training samples for further study. Another GBM
expression dataset under accession code “part D” [15] were
downloaded from CGGA (http://cgga.org.cn/). The dataset
included a total of 272 GBM samples, 138 of which were used
as validation samples.

2.2. Screening of DEGs. DEGs between primary tumor and
solid tissue normal groups were screened using the limma
package (version 3.34.7, https://bioconductor.org/packages/
release/bioc/html/limma.htm) of R3.4.1 [16]. The selec-
tion criteria were fold discovery rate (FDR) < 0.5 and
|log
2
FC (fold change)| > 0.5. Based on the expression values

of the DEGs, two-way hierarchical clustering analysis was
performed using pheatmap (version 1.0.8, https://cran.r-
project.org/web/packages/pheatmap/index.html) [17].

2.3. WGCNA. WGCNA is a bioinformatic method based
on high throughput expression data, which is used for the
construction of coexpression network [18]. All the expressed
genes from TCGA dataset were subjected to WGCNA (ver-
sion 1.61, https://cran.r-project.org/web/packages/WGCNA/)
[18]. Specifically, Pearson coefficients were generated for all
pairwise comparisons of genes and the resulting coexpression
matrix was transformed to an adjacency matrix using soft
threshold power. The soft threshold power was the value
where the square of the correlation coefficient between
log
2
k (k, the number of connected nodes) and log

2
p(k)

(p(k), the probability of k connected nodes) reached 0.9.
Subsequently, in order to group genes into different modules,
the dissimilarities between genes in the adjacency matrix
were generated and hierarchical clustering was performed
using the dynamic hybrid tree-cutting method (cutHeight =
0.9; the minimum module size = 50).

TheDEGs were then mapped to theWGCNAmodules. A
hypergeometric algorithm was used to calculate the value of
fold enrichment [19], which was defined as

f (𝑘,𝑁,𝑀, 𝑛) = C (𝑘,𝑀) ∗ C (𝑛 − 𝑘,𝑁 −𝑀)
C (𝑁,𝑀)

, (1)

where 𝑁 indicated the total number of genes analyzed by
WGCNA,𝑀 indicated the number of genes in each module,
𝑛 indicated the number of DEGs and 𝑘 indicated the number
of DEGs mapped to each module. The modules with fold
enrichment > 1 and p < 0.05 were selected as disease
associated modules.

2.4. Identification of GBM Associated Gene Signature. In
order to identify a GBM related signature genes, univariate
and multivariate Cox regression analysis were performed
using the survival package (version 2.41-1, https://cran.r-
project.org/web/packages/survival/index.html) of R3.4.1.The
selection criterion was log-rank p < 0.05. Based on the
expression levels of the signature genes, a risk signature was
then formulated as

risk score = ∑𝛽
𝐷𝐸𝐺
𝑛

× 𝐸𝑥𝑝
𝐷𝐸𝐺
𝑛

, (2)

where 𝛽
𝐷𝐸𝐺
𝑛

indicated the coefficient of 𝐷𝐸𝐺
𝑛
derived from

multivariate Cox regression whereas 𝐸𝑥𝑝
𝐷𝐸𝐺
𝑛

indicated the
expression level of𝐷𝐸𝐺

𝑛
.

The risk score of each sample was calculated according
to the above formula. The median of risk score value was
used as the threshold to divide the training samples into
high and low risk group. The prognostic significance of the
risk signature was assessed by Kaplan-Meier curve analysis
using the survival package. Subsequently, the prognostic
significance of the risk signature was validated using the
CGGA dataset with the same procedure.

2.5. Functional Characterization of the Different Prognosis.
DEGs between high and low risk group of the training dataset
were further screened by limma package. The selection
criteria for DEGs were FDR < 0.5 and |log

2
FC| > 0.5. The

resulting DEGs were subjected to functional annotation
analysis using the clusterProfiler package (http://biocon-
ductor.org/packages/release/bioc/html/clusterProfiler.html)
of R3.4.1 [20]. The selection criterion for GO biological
processes and KEGG pathways was FDR < 0.05.

3. Results

3.1. DEGs between Tumor and Normal Samples. Following
differential expression analysis, a total of 748 DEGs (218
upregulated and 530 downregulated) (Figure 1(a)) were
identified between primary tumor and solid tissue normal
samples. Then the specificity of the DEGs was evaluated
by two-way hierarchical clustering analysis. According our
results, primary tumor and solid tissue normal samples were
divided into two clusters, which showed completely different
overall expression patterns (Figure 1(b)).

https://portal.gdc.cancer.gov/
https://portal.gdc.cancer.gov/
http://cgga.org.cn/
https://bioconductor.org/packages/release/bioc/html/limma.htm
https://bioconductor.org/packages/release/bioc/html/limma.htm
https://cran.r-project.org/web/packages/pheatmap/index.html
https://cran.r-project.org/web/packages/pheatmap/index.html
https://cran.r-project.org/web/packages/WGCNA/
https://cran.r-project.org/web/packages/survival/index.html
https://cran.r-project.org/web/packages/survival/index.html
http://bioconductor.org/packages/release/bioc/html/clusterProfiler.html
http://bioconductor.org/packages/release/bioc/html/clusterProfiler.html
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Figure 1: Differentially expressed genes (DEGs) and bidirectional hierarchical clustering. (a) Scatter plot showing gene expression levels.
Upregulated and downregulated DEGs are shown as red and green dots, respectively. Genes with no obvious changes in expression level are
shown as blue dots. (b) Bidirectional hierarchical clustering of samples based on the expression level of DEGs. Tumor and normal samples
are represented as dark and white bar, respectively. Upregulated and downregulated DEGs are shown in red and blue, respectively.

Table 1: Statistical data of WGCNAmodules.

Module Total gene number DEG number Enrichment fold (95% CI a ) Phyper

black 132 4 0.203(0.054-0.535) 1.21E-04
blue 405 150 2.484(2.015-3.053) 2.20E-16
brown 374 12 0.215(0.109-0.383) 7.61E-11
green 211 0 - -
grey 2814 380 0.906(0.792-1.035) 1.52E-01
magenta 78 6 0.516(0.183-1.181) 1.38E-01
pink 101 12 0.797(0.397-1.463) 5.71E-01
purple 67 0 - -
red 140 13 0.623(0.322-1.108) 1.12E-01
turquoise 422 32 0.508(0.341∼0.736) 1.20E-04
yellow 255 136 3.578(2.843-4.489) 2.20E-16
a Confidence interval.

3.2. Disease Related WGCNA Modules and Genes. All the
expressed genes from TCGA dataset were used as input
for WGCNA. The soft threshold power used for matrix
transformation was determined as 18, where the square
of the correlation coefficient between log

2
k and log

2
p(k)

reached 0.9 and the mean connectivity of the co-expression
network was 1.0 (Figures 2(a) and 2(b)). According to the

WGCNA results, totally 10 different disease related modules
were obtained, except for the grey module (Figure 2(c)). The
correlations between WGCNA modules and disease were
shown as heatmap in Figure 2(d).

A total of 745 overlap genes were obtained after mapping
DEGs to WGCNAmodules (Table 1). According to hyperge-
ometric algorithm analysis, DEGs were significantly enriched
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Figure 2: Coexpression modules revealed by weighed gene co-expression network analysis (WGCNA). (a) Determination of soft threshold
for adjacency matrix. The horizontal axis represents the soft threshold power and the vertical axis represents the square of the correlation
coefficient of between log

2
k and log

2
p(k). The red line indicates where the correlation coefficient is 0.9, and the corresponding soft threshold

power is 18. (b) Plots of mean connectivity versus soft threshold. The red line indicates where power is 18, and the corresponding mean
connectivity is 1.0. (c) Gene dendrogram derived from hierarchical clustering. Different modules are indicated by colors underneath the
dendrogram. (d) Module-trait relationships. Along the vertical axis are the modules represented by different colors. Correlation coefficients
are shown as numbers in corresponding positions and p values are shown in brackets along the coefficients. (e) Heatmap of DEGs in blue (left)
and yellow (right) modules. Tumor and normal samples are represented as dark and white bar, respectively. Upregulated and downregulated
DEGs are shown in red and green, respectively.
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Figure 3: Survival analysis based on the risk signature. (a) Kaplan-Meier curves of low (black) and high (red) risk groups in the training
dataset. (b) Kaplan-Meier curves of low (black) and high (red) risk groups in the validation dataset. (c) Receiver operating characteristic
(ROC) curves for training (black) and validation (red) dataset. Area under ROC curve (AUC) is calculated to be 0.908 and 0.808 for training
and validation dataset, respectively.

Table 2: DEGs identified by multivariate Cox regression.

ID 𝛽DEG HR a 95% CI b p
BPIFB2 -0.0881 0.9157 0.8598-0.9753 0.00619
XIRP2 -0.1441 0.8658 0.7746-0.9677 0.01112
LRRC10 -0.0614 0.9404 0.8926-0.9908 0.02095
SDR16C5 0.0945 1.0991 1.0077-1.1989 0.03299
HOXA13 -0.0854 0.9182 0.8468-0.9955 0.03847
NELL1 0.1510 1.1630 1.0032-1.3482 0.04526
a Hazard ratio.
b Confidence interval.

in blue and yellowmodule (fold enrichment > 1 and p< 0.05),
each containing 150 and 136 DEGs, respectively (Table 1).
The expression level of these DEGs in primary tumor and
solid tissue normal samples were shown as heatmaps in
Figure 2(e).

3.3. GBM Associated Risk Signature. In total, 152 of the
primary tumor samples had clinical prognosis information
and were used for subsequent screening of signature genes
from DEGs in the blue and yellow module. Univariate
and multivariate Cox regression analysis were performed
sequentially. A total of 27 DEGs were obtained by univariate
Cox regression, among which 6 DEGs were further identified
as prognosis associated genes by multivariate Cox regression
(Table 2). The 6 DEGs were BPI fold containing family B
member 2 (BPIFB2), Xin actin binding repeat containing
2 (XIRP2), leucine rich repeat containing 10 (LRRC10),
short chain dehydrogenase/reductase family 16C member 5
(SDR16C5),Homeobox A13 (HOXA13), and neural EGFL like
1 (NELL1).

The 6 DEGs were signature genes and were used to
develop a tumor associated risk signature. According to the

𝛽 values (Table 2) and the expression levels of these genes,
risk score could be defined as

risk score = −0.0881 ∗ 𝐸𝑥𝑝
𝐵𝑃𝐼𝐹𝐵2
− 0.1441

∗ 𝐸𝑥𝑝
𝑋𝐼𝑅𝑃2
− 0.0614 ∗ 𝐸𝑥𝑝

𝐿𝑅𝑅𝐶10

− 0.0945 ∗ 𝐸𝑥𝑝
𝑆𝐷𝑅16𝐶5
− 0.0854

∗ 𝐸𝑥𝑝
𝐻𝑂𝑋𝐴13
− 0.151 ∗ 𝐸𝑥𝑝

𝑁𝐸𝐿𝐿1
.

(3)

Risk score of each sample was calculated based on the above
formulation. The median risk score was used as the cutoff
to separate samples in TCGA dataset into high and low risk
group. According to the Kaplan-Meier survival curve, the
prognosis of low risk group was significantly better than that
of high risk group (Figure 3(a); p < 0.05).The performance of
the signature in predicting prognosis was further validated in
the validation dataset using the same procedure. Consistent
with the result of training dataset, low risk group also showed
a significantly better prognosis than high risk group in the
validation dataset (Figure 3(b)). Moreover, the validation
dataset also showed a high area under the receiver operating
characteristic curve (AUC), close to that of the training
dataset (Figure 3(c)).
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3.4. Functional Annotation of Feature Genes. A total of 397
DEGs (371 upregulated and 26 downregulated) between low
and high risk group of the training dataset were screened by
differential expression analysis (Figure 4(a)). The expression
patterns of theseDEGswere shown as heatmap in Figure 4(b).

In order to interpret the biological functions and
pathways perturbated by the signature genes, the DEGs
between low and high risk group were used as inputs for
GO and KEGG analysis. The enriched KEGG pathways
were “hsa04080: Neuroactive ligand-receptor interaction”
and “hsa04020: Calcium signaling pathway” (Figure 4(c)).
The main enriched GO biological processes included
“GO:0019933∼cAMP−mediated signaling” “GO:0006811∼
ion transport” “GO:0007268∼synaptic transmission” and
“GO:0019226∼transmission of nerve impulse” (Figure 4(c)).

4. Discussion

GBM is the most malignant brain tumor, efficient man-
agement of which requires robust biomarkers [11]. In the
present study, we first analyzed the expression dataset of
GBM and identified DEGs between primary tumor and solid
tissue normal samples. Based on the DEGs, we successfully
developed a risk signature, which was efficient and reliable in
predicting the clinical outcome of GBM.

Signatures composed ofmultiple genes are generallymore
robust and more accurate than single-gene biomarker in
predicting tumor outcome [14]. The risk signature developed
in our study consisted of 6 genes, including BPIFB2, XIRP2,
LRRC10, SDR16C5, HOXA13, and NELL1. GBM samples
could be divided into high and low risk group by applying the
signature. As expect, our results indicated that low risk groups
showed significantly better overall survival than high risk
groups in both training and validation dataset. Consequently,
the 6-gene signature may provide useful information for
clinical practice if incorporated into future decision-making
processes.

Among the signature genes,HOXA13 is aHomeobox gene
overexpressed in multiple cancers and has been shown to be
associated with the progression of hepatocellular carcinoma,
pancreatic cancer, esophageal squamous cell carcinoma and
GBM [21]. It has been reported that HOXA13 may promote
GBM progression through activation of Wnt/beta-catenin
and TGF-𝛽 signaling pathway, whereas downregulation of
HOXA13 may suppress GBM cell invasion and decrease
tumor growth [22]. Though few studies have investigated
roles of BPIFB2, XIRP2 and NELL1 in GBM, all the three
genes may have potential roles in other cancers. BPIFB2 has
been reported to be overexpressed in gastric cancer, which
may result in expression alteration of epithelial-mesenchymal
transition (EMT) markers [23], and XIRP2 has been shown
to be frequently mutated in lung adenocarcinoma [24].
As a gene encoding a secreted protein regulating skeletal
ossification [25],NELL1 has also been proposed to be a tumor
suppressor gene in colon cancers [26]. Therefore, dysregu-
lation of the BPIFB2, XIRP2 and NELL1 may also underly
GBM tumorigenesis. While the roles of the remaining two
signature genes in GBM tumorigenesis remains unclear,

both genes have important physiological roles. LRRC10 is
required for early heart development [27, 28] and SDR16C5
encodes a retinol dehydrogenase, which may be essential for
retinoic acid biosynthesis [29]. Considering their important
physiological roles, they may also potentially be involved in
GBM tumorigenesis.

Dysregulation of cancer related pathways and functions is
common in cancers [30]. Our functional annotation analysis
showed that DEGs between high and low risk group were
significantly enriched in pathways and functions related
to synaptic transmission, indicating that synaptic function
in GBM patients may be deregulated. In addition, DEGs
were also enriched in calcium signaling and cAMP-mediated
signaling. Ca2+ is an essential regulator for neurogenesis and
synaptic transmission, and the deregulation of Ca2+ signaling
may advance GBM progression [31, 32]. It has been proposed
that manipulating Ca2+ signaling may benefit the manage-
ment of GBM [31]. Suppression of cAMP signaling pathway
has been shown to be a common feature in tumorigenesis
and activation of cAMP signaling in GBMmay inhibit tumor
cell growth and induce cell apoptosis [33]. Considering the
prognostic differences between high and low risk group,
we speculated that deregulation of calcium signaling and
cAMP-mediated signaling may play important roles in the
development and progression of GBM.

One main advantage of our study was that a robust
GBM risk signature was developed through a combination
of WGCNA and Cox regression analysis. The signature was
efficient and reliable for both training and validation dataset
when applied in outcome prediction. In addition, we also
identified BPIFB2, XIRP2, NELL1, LRRC10, and SDR16C5 as
novel GBM biomarkers, as they have never been reported
to be associated with GBM development and progression.
However, we also noticed some limitations in our study.
The samples included in our study was insufficient and
more samples are required in future studies. Additionally,
experimental studies should be designed and performed to
confirm the involvement of the novel biomarkers in GBM
and to provide an insight into corresponding molecular
mechanisms.

5. Conclusion

In conclusion, we analyzed the expression profiles of GBM
and identified DEGs between primary tumor and solid
tissue normal samples. A 6-gene risk signature consisting of
BPIFB2,XIRP2, LRRC10, SDR16C5,HOXA13, andNELL1was
further developed for outcome prediction.The signature may
contribute to future decision-making processes in clinical
practice.
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