organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

3-[(E)-4-Methoxybenzylidene]-1-methylpiperidin-4-one

D. Gayathri,^a D. Velmurugan,^a* R. Ranjith Kumar,^b S. Perumal^b and K. Ravikumar^c

^aCentre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India, ^bDepartment of Organic Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai 625 021, India, and ^cLaboratory of X-ray Crystallography, Indian Institute of Chemical Technology, Hyderabad 500 007, India

Correspondence e-mail: d_velu@yahoo.com

Received 21 January 2008; accepted 30 January 2008

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.003 Å; R factor = 0.045; wR factor = 0.128; data-to-parameter ratio = 11.1.

The piperidone ring of the title compound, C₁₄H₁₇NO₂, adopts a half-chair conformation. The crystal packing is stabilized by intermolecular C-H···O interactions, which generate a C(8)chain running along the b axis.

Related literature

For related literature, see: Abignente & Biniecka-Picazio (1977); Angle & Breitenbucher (1995); Cremer & Pople (1975); Nardelli (1983); Wang & Wuorola (1992).

Experimental

Crystal data C14H17NO2 $M_r = 231.29$

Orthorhombic, P212121 a = 7.5212 (7) Å

b = 12.4097 (11) Å c = 13.5062 (12) Å V = 1260.6 (2) Å³ Z = 4

Data collection

Bruker SMART CCD area-detector diffractometer Absorption correction: none 10874 measured reflections

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.044$ $wR(F^2) = 0.128$ S = 1.111729 reflections

Table 1 Hydrogen-bond geometry (Å, °).

D

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C10-H10\cdots O1^i$	0.93	2.54	3.419 (3)	157
Symmetry code: (i) -	$x, y + \frac{1}{2}, -z + \frac{3}{2}$			

Mo $K\alpha$ radiation

 $0.24 \times 0.22 \times 0.21$ mm

1729 independent reflections

1577 reflections with $I > 2\sigma(I)$

H-atom parameters constrained

 $\mu = 0.08 \text{ mm}^{-1}$

T = 293 (2) K

 $R_{\rm int} = 0.019$

156 parameters

 $\Delta \rho_{\rm max} = 0.28 \text{ e} \text{ Å}^-$

 $\Delta \rho_{\rm min} = -0.13 \text{ e} \text{ Å}^{-3}$

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 and PARST (Nardelli, 1995).

DG thanks the Council of Scientific and Industrial Research (CSIR), India, for a Senior Research Fellowship. Financial support from the University Grants Commission (UGC-SAP) and the Department of Science & Technology (DST-FIST). Government of India, is acknowledged by DV for providing facilities to the department.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT2673).

References

Abignente, E. & Biniecka-Picazio, M. (1977). Acta Pol. Pharm. 34, 241-242.

- Angle, S. R. & Breitenbucher, J. G. (1995). In Studies in Natural Products Chemistry; Stereoselective Synthesis, edited by Atta-ur-Rahman, Vol. 16, Part J, pp 453-502. New York: Elsevier.
- Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.

Nardelli, M. (1983). Acta Cryst. C39, 1141-1142.

Nardelli, M. (1995). J. Appl. Cryst. 28, 659.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

Wang, C.-L. & Wuorola, M. A. (1992). Org. Prep. Proced. Int. 24, 585-621.

supplementary materials

Acta Cryst. (2008). E64, o552 [doi:10.1107/S1600536808003280]

3-[(E)-4-Methoxybenzylidene]-1-methylpiperidin-4-one

D. Gayathri, D. Velmurugan, R. R. Kumar, S. Perumal and K. Ravikumar

Comment

Substituted 4-piperidones are important synthetic intermediates for the preparation of various pharmaceuticals (Wang & Wuorola, 1992). 4-Piperidones are also widely prevalent in natural products such as alkaloids (Angle & Breitenbucher, 1995). Derivatives of 4-piperidones have been found to exhibit spasmolytic activities (Abignente & Biniecka-Picazio, 1977). Since, the title compound is pharmacologically important, the crystal structure of the title compound has been determined by X-ray diffraction.

The sum of the bond angles around N1 [331.4 (6)°] indicate the sp^3 hybridization. The torsion angles around C10—C11—O2—C14 [179.4 (2)°] and C12—C11—O2—C14 [-0.8 (3)°] indicate that the methoxy group is planar with the phenyl ring.

The piperidone ring adopts a half-chair conformation with the puckering parameters (Cremer & Pople, 1975) and the smallest displacement asymmetry parameters (Nardelli, 1983) being $q_2 = 0.366$ (3) Å, $q_3 = 0.361$ (3) Å, $Q_T = 0.515$ (3)Å and $\theta = 45.4$ (3)°. The molecular conformation is stabilized by weak C—H…O intramolecular interactions. The crystal packing is stabilized by C—H…O intermolecular interactions generating a chain C(8) running along *b* axis.

Experimental

A mixture of 1-methyl-4-piperidone (1 mmol) and pyrrolidine (1.2 mmol) was taken in a glass tube, mixed well and kept aside for 5 min at ambient temperature. To this mixture, 4-methoxybenzaldehyde (1 mmol) was added, mixed thoroughly and the tube containing the mixture was partially immersed in a silica bath placed in a microwave oven and irradiated at 4 power level for 8 minutes. The progress of the reaction was monitored after every 1 min of irradiation by TLC with petroleum ether:ethyl acetate (1:2 v/v mixture) as eluent. After each irradiation, the reaction mixture was cooled to room temperature and mixed well. The maximum temperature of the silica bath, measured immediately after each irradiation was over by stirring the silica bath with the thermometer, was found to be 65 °C. After completion of the reaction as evident from the TLC, the product was purified by column chromatography using petroleum ether:ethyl acetate (7:2 v/v) mixture and crystallized from ethyl acetate.

Refinement

In the absence of anomalous scatterers Friedel pairs had been merged prior to refinement. All H-atoms were refined using a riding model with d(C-H) = 0.93 Å, $U_{iso}=1.2U_{eq}$ (C) for aromatic C atoms, 0.97 Å, $U_{iso}=1.2U_{eq}$ (C) for methylene and 0.96 Å, $U_{iso}=1.5U_{eq}$ (C) for methyl groups.

Figures

Fig. 1. The molecular structure of title compound, showing 30% probability displacement ellipsoids.

Fig. 2. The molecular packing of the title compound, viewed down the a axis.

3-[(E)-4-Methoxybenzylidene]-1-methylpiperidin-4-one

Crystal data	
C ₁₄ H ₁₇ NO ₂	$F_{000} = 496$
$M_r = 231.29$	$D_{\rm x} = 1.219 {\rm ~Mg~m}^{-3}$
Orthorhombic, $P2_12_12_1$	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
Hall symbol: P 2ac 2ab	Cell parameters from 861 reflections
a = 7.5212 (7) Å	$\theta = 2.2 - 25.0^{\circ}$
<i>b</i> = 12.4097 (11) Å	$\mu = 0.08 \text{ mm}^{-1}$
c = 13.5062 (12) Å	T = 293 (2) K
$V = 1260.6 (2) \text{ Å}^3$	Block, pale yellow
Z = 4	$0.24\times0.22\times0.21~mm$

Data collection

Bruker SMART CCD area-detector diffractometer	1577 reflections with $I > 2\sigma(I)$
Radiation source: fine-focus sealed tube	$R_{\rm int} = 0.019$
Monochromator: graphite	$\theta_{\text{max}} = 28.1^{\circ}$
T = 293(2) K	$\theta_{\min} = 2.2^{\circ}$
ω scans	$h = -9 \rightarrow 9$
Absorption correction: none	$k = -16 \rightarrow 16$
10874 measured reflections	$l = -17 \rightarrow 17$
1729 independent reflections	

Refinement

Refinement on F^2	Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full	H-atom parameters constrained
$R[F^2 > 2\sigma(F^2)] = 0.045$	$w = 1/[\sigma^2(F_0^2) + (0.083P)^2 + 0.0611P]$ where $P = (F_0^2 + 2F_c^2)/3$

$wR(F^2) = 0.128$	$(\Delta/\sigma)_{max} < 0.001$
<i>S</i> = 1.11	$\Delta \rho_{max} = 0.28 \text{ e} \text{ Å}^{-3}$
1729 reflections	$\Delta \rho_{min} = -0.13 \text{ e } \text{\AA}^{-3}$
156 parameters	Extinction correction: none
Primary atom site location: structure-invariant direct methods	Absolute structure:

Secondary atom site location: difference Fourier map

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \operatorname{sigma}(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
C1	-0.1137 (5)	0.0252 (2)	1.28219 (18)	0.0864 (8)
H1A	-0.0039	0.0433	1.3144	0.130*
H1B	-0.1816	-0.0218	1.3241	0.130*
H1C	-0.1803	0.0898	1.2697	0.130*
C2	0.0338 (4)	-0.1243 (2)	1.20225 (17)	0.0802 (7)
H2A	-0.0149	-0.1685	1.2549	0.096*
H2B	0.1533	-0.1031	1.2210	0.096*
C3	0.0400 (5)	-0.18853 (18)	1.1072 (2)	0.0845 (7)
H3A	0.1321	-0.2429	1.1131	0.101*
H3B	-0.0725	-0.2257	1.0992	0.101*
C4	0.0749 (4)	-0.12308 (16)	1.01586 (16)	0.0697 (6)
C5	0.0494 (3)	-0.00418 (14)	1.02172 (14)	0.0548 (5)
C6	0.0120 (3)	0.04524 (15)	1.12177 (14)	0.0558 (4)
H6A	0.1232	0.0685	1.1512	0.067*
H6B	-0.0622	0.1085	1.1130	0.067*
C7	0.0594 (3)	0.05043 (14)	0.93680 (15)	0.0560 (5)
H7	0.0790	0.0090	0.8805	0.067*
C8	0.0436 (3)	0.16662 (14)	0.91996 (13)	0.0510 (4)
C9	-0.0213 (3)	0.20203 (14)	0.82852 (13)	0.0562 (5)
Н9	-0.0506	0.1515	0.7804	0.067*
C10	-0.0427 (3)	0.30978 (15)	0.80817 (12)	0.0576 (5)
H10	-0.0879	0.3314	0.7472	0.069*
C11	0.0031 (2)	0.38597 (14)	0.87840 (13)	0.0511 (4)
C12	0.0740 (3)	0.35353 (14)	0.96828 (14)	0.0585 (5)
H12	0.1079	0.4045	1.0151	0.070*

supplementary materials

C13	0.0938 (3)	0.24434 (17)	0.98781 (15)	0.0581 (5)
H13	0.1422	0.2229	1.0481	0.070*
C14	0.0194 (4)	0.57070 (15)	0.92477 (17)	0.0667 (6)
H14A	-0.0449	0.5570	0.9849	0.100*
H14B	-0.0116	0.6407	0.8999	0.100*
H14C	0.1448	0.5681	0.9379	0.100*
N1	-0.0762 (3)	-0.02883 (15)	1.18885 (13)	0.0656 (5)
01	0.1230 (4)	-0.16737 (12)	0.94008 (14)	0.0993 (7)
O2	-0.0251 (2)	0.49113 (10)	0.85323 (10)	0.0627 (4)

Atomic displacement parameters $(Å^2)$

U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
0.105 (2)	0.0972 (18)	0.0569 (12)	-0.0171 (16)	0.0036 (13)	0.0011 (12)
0.1040 (18)	0.0634 (11)	0.0731 (13)	-0.0072 (14)	-0.0128 (14)	0.0222 (11)
0.1134 (19)	0.0459 (9)	0.0942 (16)	-0.0027 (13)	-0.0080 (17)	0.0165 (11)
0.0965 (15)	0.0404 (8)	0.0723 (12)	0.0031 (10)	-0.0171 (13)	-0.0023 (9)
0.0662 (11)	0.0391 (7)	0.0590 (10)	0.0011 (8)	-0.0092 (9)	-0.0002 (7)
0.0660 (11)	0.0464 (8)	0.0551 (9)	-0.0030 (8)	-0.0093 (9)	0.0009 (7)
0.0701 (11)	0.0430 (8)	0.0551 (9)	0.0031 (8)	-0.0019 (9)	-0.0053 (7)
0.0603 (10)	0.0433 (8)	0.0493 (8)	0.0005 (8)	0.0021 (8)	0.0001 (6)
0.0787 (12)	0.0476 (8)	0.0423 (7)	-0.0009 (9)	0.0058 (9)	-0.0040 (6)
0.0793 (12)	0.0538 (9)	0.0397 (7)	0.0015 (10)	0.0022 (9)	0.0058 (7)
0.0602 (9)	0.0421 (7)	0.0510 (8)	-0.0017 (8)	0.0055 (8)	0.0055 (7)
0.0744 (11)	0.0443 (9)	0.0568 (10)	-0.0085 (9)	-0.0103 (9)	-0.0004 (7)
0.0713 (11)	0.0488 (9)	0.0544 (9)	-0.0029 (9)	-0.0150 (9)	0.0057 (7)
0.0878 (14)	0.0414 (8)	0.0708 (12)	-0.0001 (10)	0.0100 (12)	-0.0005 (8)
0.0784 (11)	0.0618 (9)	0.0565 (8)	-0.0120 (9)	-0.0084 (9)	0.0061 (7)
0.169 (2)	0.0465 (7)	0.0828 (11)	0.0139 (12)	-0.0067 (13)	-0.0083 (8)
0.0866 (10)	0.0415 (6)	0.0600 (7)	-0.0016 (7)	-0.0008 (8)	0.0077 (5)
	U^{11} 0.105 (2) 0.1040 (18) 0.1134 (19) 0.0965 (15) 0.0662 (11) 0.0660 (11) 0.0701 (11) 0.0701 (11) 0.0703 (10) 0.0787 (12) 0.0793 (12) 0.0793 (12) 0.0744 (11) 0.0713 (11) 0.0878 (14) 0.0784 (11) 0.169 (2) 0.0866 (10)	U^{11} U^{22} $0.105 (2)$ $0.0972 (18)$ $0.1040 (18)$ $0.0634 (11)$ $0.1134 (19)$ $0.0459 (9)$ $0.0965 (15)$ $0.0404 (8)$ $0.0662 (11)$ $0.0391 (7)$ $0.0660 (11)$ $0.0464 (8)$ $0.0701 (11)$ $0.0430 (8)$ $0.0701 (11)$ $0.0433 (8)$ $0.0787 (12)$ $0.0476 (8)$ $0.0793 (12)$ $0.0538 (9)$ $0.0602 (9)$ $0.0421 (7)$ $0.0744 (11)$ $0.0443 (9)$ $0.0713 (11)$ $0.0488 (9)$ $0.0878 (14)$ $0.0414 (8)$ $0.0784 (11)$ $0.0618 (9)$ $0.169 (2)$ $0.0415 (6)$	U^{11} U^{22} U^{33} $0.105 (2)$ $0.0972 (18)$ $0.0569 (12)$ $0.1040 (18)$ $0.0634 (11)$ $0.0731 (13)$ $0.1134 (19)$ $0.0459 (9)$ $0.0942 (16)$ $0.0965 (15)$ $0.0404 (8)$ $0.0723 (12)$ $0.0662 (11)$ $0.0391 (7)$ $0.0590 (10)$ $0.0660 (11)$ $0.0464 (8)$ $0.0551 (9)$ $0.0701 (11)$ $0.0430 (8)$ $0.0551 (9)$ $0.0701 (11)$ $0.0433 (8)$ $0.0423 (7)$ $0.0603 (10)$ $0.0433 (8)$ $0.0423 (7)$ $0.0787 (12)$ $0.0476 (8)$ $0.0423 (7)$ $0.0793 (12)$ $0.0538 (9)$ $0.0397 (7)$ $0.0602 (9)$ $0.0421 (7)$ $0.0510 (8)$ $0.0714 (11)$ $0.0443 (9)$ $0.0568 (10)$ $0.0713 (11)$ $0.0488 (9)$ $0.0544 (9)$ $0.0878 (14)$ $0.0414 (8)$ $0.0708 (12)$ $0.0784 (11)$ $0.0465 (7)$ $0.0828 (11)$ $0.0866 (10)$ $0.0415 (6)$ $0.0600 (7)$	U^{11} U^{22} U^{33} U^{12} 0.105 (2)0.0972 (18)0.0569 (12) $-0.0171 (16)$ 0.1040 (18)0.0634 (11)0.0731 (13) $-0.0072 (14)$ 0.1134 (19)0.0459 (9)0.0942 (16) $-0.0027 (13)$ 0.0965 (15)0.0404 (8)0.0723 (12)0.0031 (10)0.0662 (11)0.0391 (7)0.0590 (10)0.0011 (8)0.0660 (11)0.0464 (8)0.0551 (9) $-0.0030 (8)$ 0.0701 (11)0.0430 (8)0.0551 (9) $0.0031 (8)$ 0.0603 (10)0.0433 (8)0.0423 (7) $-0.0009 (9)$ 0.0787 (12)0.0476 (8) $0.0423 (7)$ $-0.0015 (10)$ 0.0602 (9)0.0421 (7) $0.0510 (8)$ $-0.0017 (8)$ 0.0713 (11)0.0443 (9) $0.0568 (10)$ $-0.0029 (9)$ 0.0713 (11)0.0414 (8) $0.0708 (12)$ $-0.0001 (10)$ 0.0784 (11)0.0618 (9) $0.0565 (8)$ $-0.0120 (9)$ 0.169 (2)0.0465 (7) $0.0828 (11)$ $0.0139 (12)$ 0.0866 (10) $0.0415 (6)$ $0.0600 (7)$ $-0.0016 (7)$	U^{11} U^{22} U^{33} U^{12} U^{13} 0.105 (2)0.0972 (18)0.0569 (12) $-0.0171 (16)$ 0.0036 (13)0.1040 (18)0.0634 (11)0.0731 (13) $-0.0072 (14)$ $-0.0128 (14)$ 0.1134 (19)0.0459 (9)0.0942 (16) $-0.0027 (13)$ $-0.0080 (17)$ 0.0965 (15)0.0404 (8)0.0723 (12)0.0031 (10) $-0.0171 (13)$ 0.0662 (11)0.0391 (7)0.0590 (10)0.0011 (8) $-0.0092 (9)$ 0.0660 (11)0.0464 (8)0.0551 (9) $-0.0030 (8)$ $-0.0093 (9)$ 0.0701 (11)0.0430 (8)0.0551 (9) $0.0031 (8)$ $-0.0019 (9)$ 0.0603 (10)0.0433 (8)0.0423 (7) $-0.0009 (9)$ $0.0058 (9)$ 0.0787 (12)0.0476 (8)0.0423 (7) $-0.0017 (8)$ $0.0055 (8)$ 0.0793 (12)0.0538 (9)0.0397 (7) $0.0015 (10)$ $0.0022 (9)$ 0.0602 (9) $0.0421 (7)$ $0.0568 (10)$ $-0.0017 (8)$ $0.0055 (8)$ 0.0713 (11) $0.0443 (9)$ $0.0568 (10)$ $-0.0029 (9)$ $-0.0103 (9)$ 0.0713 (11) $0.0488 (9)$ $0.0565 (8)$ $-0.0120 (9)$ $-0.0084 (9)$ 0.0784 (11) $0.0618 (9)$ $0.0565 (8)$ $-0.0120 (9)$ $-0.0067 (13)$ 0.0866 (10) $0.0415 (6)$ $0.0600 (7)$ $-0.0016 (7)$ $-0.0008 (8)$

Geometric parameters (Å, °)

C1—N1	1.456 (3)	С7—С8	1.465 (2)
C1—H1A	0.9600	С7—Н7	0.9300
C1—H1B	0.9600	C8—C13	1.383 (3)
C1—H1C	0.9600	C8—C9	1.399 (3)
C2—N1	1.457 (3)	C9—C10	1.374 (3)
C2—C3	1.511 (4)	С9—Н9	0.9300
C2—H2A	0.9700	C10-C11	1.383 (3)
C2—H2B	0.9700	C10—H10	0.9300
C3—C4	1.500 (3)	C11—O2	1.365 (2)
С3—НЗА	0.9700	C11—C12	1.385 (3)
С3—Н3В	0.9700	C12—C13	1.389 (3)
C4—O1	1.217 (3)	C12—H12	0.9300
C4—C5	1.490 (3)	C13—H13	0.9300
C5—C7	1.334 (3)	C14—O2	1.421 (3)
C5—C6	1.510 (3)	C14—H14A	0.9600
C6—N1	1.451 (3)	C14—H14B	0.9600

supplementary materials

С6—Н6А	0.9700	C14—H14C	0.9600
С6—Н6В	0.9700		
N1—C1—H1A	109.5	С5—С7—Н7	115.5
N1—C1—H1B	109.5	С8—С7—Н7	115.5
H1A—C1—H1B	109.5	C13—C8—C9	117.47 (16)
N1—C1—H1C	109.5	C13—C8—C7	124.17 (18)
H1A—C1—H1C	109.5	C9—C8—C7	118.33 (16)
H1B—C1—H1C	109.5	C10—C9—C8	121.53 (17)
N1—C2—C3	109.93 (19)	С10—С9—Н9	119.2
N1—C2—H2A	109.7	С8—С9—Н9	119.2
C3—C2—H2A	109.7	C9—C10—C11	119.92 (17)
N1—C2—H2B	109.7	С9—С10—Н10	120.0
C3—C2—H2B	109.7	С11—С10—Н10	120.0
H2A—C2—H2B	108.2	O2—C11—C12	123.75 (16)
C4—C3—C2	114.74 (18)	O2—C11—C10	116.37 (16)
C4—C3—H3A	108.6	C12—C11—C10	119.88 (16)
С2—С3—НЗА	108.6	C11—C12—C13	119.43 (17)
C4—C3—H3B	108.6	$C_{11} - C_{12} - H_{12}$	120.3
C2—C3—H3B	108.6	C13 - C12 - H12	120.3
H_{3A} C_{3} H_{3B}	107.6	C_{8} C_{13} C_{12}	121.69 (18)
01-C4-C5	122 0 (2)	C8-C13-H13	119.2
01 - C4 - C3	119.95 (19)	C_{12} C_{13} H_{13}	119.2
C_{5}	119.99(19)	Ω^2 Γ^1	109.5
C7-C5-C4	116.75 (17)	Ω^2 $C14$ $H14B$	109.5
C7 - C5 - C6	124.98 (16)	H_{14A} $-C_{14}$ $-H_{14B}$	109.5
$C_{1} = C_{2} = C_{0}$	118 27 (16)	02 - C14 - H14C	109.5
N1-C6-C5	112.74 (16)	$H_{14A} - C_{14} - H_{14C}$	109.5
N1_C6_H6A	100.0	H14B - C14 - H14C	109.5
C5 C6 H6A	109.0	C6 N1 C1	109.5 109.72(18)
N1 C6 H6B	109.0	C6 N1 C2	109.72(18) 109.5(2)
C5 C6 H6B	109.0	$C_0 = N_1 = C_2$	109.5(2)
	107.0	$C_1 = N_1 = C_2$	112.18(19) 117.27(15)
10A = C0 = 10B	107.8	02-014	117.27 (13)
	128.98 (17)		1.1.(2)
N1 - C2 - C3 - C4	46.7 (3)	C8—C9—C10—C11	1.1 (3)
C2—C3—C4—O1	163.0 (3)	C9—C10—C11—O2	-178.8 (2)
C2—C3—C4—C5	-16.8 (4)	C9—C10—C11—C12	1.3 (3)
O1—C4—C5—C7	8.4 (4)	O2—C11—C12—C13	178.5 (2)
C3—C4—C5—C7	-171.8 (2)	C10-C11-C12-C13	-1.7 (3)
O1—C4—C5—C6	-172.5 (3)	C9—C8—C13—C12	2.7 (3)
C3—C4—C5—C6	7.3 (3)	C7—C8—C13—C12	-179.2 (2)
C7—C5—C6—N1	151.3 (2)	C11—C12—C13—C8	-0.4 (3)
C4—C5—C6—N1	-27.8 (3)	C5—C6—N1—C1	-178.0 (2)
C4—C5—C7—C8	-178.6 (2)	C5—C6—N1—C2	58.5 (2)
C6—C5—C7—C8	2.3 (4)	C3—C2—N1—C6	-68.5 (3)
C5—C7—C8—C13	30.6 (4)	C3—C2—N1—C1	169.4 (2)
C5—C7—C8—C9	-151.3 (2)	C12—C11—O2—C14	-0.8 (3)
C13—C8—C9—C10	-3.1 (3)	C10—C11—O2—C14	179.37 (19)
C7—C8—C9—C10	178.8 (2)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	$D -\!\!\!-\!\!\!\!-\!\!\!\!\!\!\!\!\!-\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$
C10—H10…O1 ⁱ	0.93	2.54	3.419 (3)	157
Symmetry codes: (i) $-x$, $y+1/2$, $-z+3/2$.				

Fig. 1

