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Abstract

Somatic cells can be reprogrammed to a pluripotent state by over-expression of defined factors, and pluripotency has been
confirmed by the tetraploid complementation assay. However, especially in human cells, estimating the quality of Induced
Pluripotent Stem Cell(iPSC) is still difficult. Here, we present a novel supervised method for the assessment of the quality of
iPSCs by estimating the gene expression profile using a 2-D ‘‘Differentiation-index coordinate’’, which consists of two
‘‘developing lines’’ that reflects the directions of ES cell differentiation and the changes of cell states during differentiation.
By applying a novel liner model to describe the differentiation trajectory, we transformed the ES cell differentiation time-
course expression profiles to linear ‘‘developing lines’’; and use these lines to construct the 2-D ‘‘Differentiation-index
coordinate’’ of mouse and human. We compared the published gene expression profiles of iPSCs, ESCs and fibroblasts in
mouse and human ‘‘Differentiation-index coordinate’’. Moreover, we defined the Distance index to indicate the qualities of
iPS cells, which based on the projection distance of iPSCs-ESCs and iPSCs-fibroblasts. The results indicated that the
‘‘Differentiation-index coordinate’’ can distinguish differentiation states of the different cells types. Furthermore, by applying
this method to the analysis of expression profiles in the tetraploid complementation assay, we showed that the Distance
index which reflected spatial distributions correlated the pluripotency of iPSCs. We also analyzed the significantly changed
gene sets of ‘‘developing lines’’. The results suggest that the method presented here is not only suitable for the estimation
of the quality of iPS cells based on expression profiles, but also is a new approach to analyze time-resolved experimental
data.
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Introduction

As a promising technology, induced pluripotent stem cells

(iPSCs) are playing important roles in many fields, including

personal therapy and scientific research. Both human and mouse

fibroblast cells have been reprogrammed to a pluripotent cell state

by the over-expression of several transcription factors (TF) that

appear in embryonic stem cells [1–6]. In addition, many kinds of

somatic cells, including adipose cell, neurons and so on, have also

been reprogrammed to a pluripotent cell state by rapidly

developing iPS technologies [1,2,3,4,5,6].

Similar to ES cells, the pluripotency of iPS cells evoke

expectation and enthusiasm. Different experimental and theoret-

ical approaches have been applied to estimate the similarity

between iPSCs and ESCs. Among these approaches, microarray

technology and clustering analysis are widely used to detect

expression patterns during the reprogramming process. Mark [7]

compared the expression profiles of iPSCs and ESCs by clustering

analysis and concluded that iPSCs could be considered as a

subtype of pluripotent cells. By comparing the percentage of

differentially expressed genes between iPSCs and ESCs, Zhumur

[8] estimated several iPS cell lines originated from different cell

types. However, it is still difficult to accurately measure the quality

of iPSCs based on molecular characteristics and to estimate the

pluripotency of ES cells and iPSCs.

Here, we introduce a new supervised method to estimate the

quality of iPSCs based on gene expression profiles from the

perspective of ES cell differentiation ability. Inspired by the

description of differentiation trajectories in a high-dimensional

state space, time-resolved expression profiles of ESC differentia-

tion processes were transformed into linear scales, which were

named ‘‘developing lines’’ and represent differentiation directions

and the changes in gene expression over time. Here, these

developing lines were used to measure the transcription profiles of

iPSCs and undifferentiated ESCs. If the iPSCs are similar to ESCs,

they should have the similar projection positions on these

‘‘developing lines’’. Moreover, we defined the concept of the

Distance index, which reflects a spatial distance, to measure the

similarity of each sample to ESCs. This method not only provided

an estimation of the quality of iPSCs based on similarities between
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iPSCs-ESCs and iPSCs-fibroblasts at the transcriptional level but

was also a novel approach for the analysis of time-resolved

experimental data.

Results

Distinct descriptions of similarities among cell types in
mouse and human ‘‘Differentiation-index Coordinates’’

To construct the mouse ‘‘Differentiation-index Coordinate’’,

dataset GSE10970, which contains a series of time-resolved

differentiation gene expression profiles for ESC-derived cardiac

precursor cells (CPCs), and dataset GSE3653, which contains a

series of time-resolved differentiation gene expression profiles for

ESC-derived pancreatic islets (PIs), were transformed to a CPC

developing line and PI developing line as described in the

Methods. All collected mouse expression profiles of iPSCs, ESCs,

partly reprogrammed cells, neuronal progenitor cells and

fibroblast cells were estimated by this two-dimensional surface

coordinate (Figure 1).

The mouse Differentiation-index coordinate accurately distin-

guished between the distributions of different cell types and clearly

showed the cell state changes during the reprogramming process.

The mouse embryonic fibroblast cells were located the largest

distance from the ESCs. The partially reprogrammed cells were

located in the middle between the ESC region and fibroblast

region. iPSCs were located close to the ESC region and partly

overlapped with it. Meanwhile, neuronal progenitor cells were

located more closely to the ESC region than the fibroblast cells,

which indicated a greater similarity between neuronal progenitor

cells and ESCs. Recent studies have indicated that compared with

the four factors (Oct3/4, Sox2, c-Myc, and Klf4) required to

induce fibroblast cells, neuronal progenitor cells could be induced

into a pluripotent state by only Oct4 (Pou5f1) expression[9,10].

These results suggested that the distance between ESCs and other

cell types in the Differentiation-index coordinate not only reflected

their cell state and similarities but also partly indicated the

difficulty of inducing them to a pluripotent state.

We also included dataset GSE16925, which was generated with

the tetraploid complementation assay [11] and showed whether

the mouse iPSCs have the ability to develop into an embryo and

mature mice. Based on the large number of ESC expression

profiles, it was obvious that IP14 (including three replicates of

IP14D-1 and IP14D-101) was very close to the ESC region, while

the location of IP20 (including three replicates of IP20D-3) was far

away from the ESC region. In their study, by using blastocyst

injection, 624 IP14D-1 reprogrammed cells generated 22 live pups

(3.5%), 181 IP14D-101 reprogrammed cells generated 4 live pups

(2.2%), and 204 IP20D-3 reprogrammed cells did not generate

any live pups. The ‘‘Differentiation index coordinate’’ clearly

described the relationships among all cell types from this study:

IP14D-101 was more similar to CL11 ESCs than to IP14D-1 (a

shorter distance between IP14D-101 and CL11), which was

confirmed by the hierarchical clustering analysis [11]. Moreover,

due to the deviation of the CL11 ESCs, hierarchical clustering

analysis may not reflect the qualities of iPSCs in this case.

Then, we selected the GSE9940 dataset of human ES cell-

derived neural rosette differentiation expression profiles to

generate a human neuronal developing line. The GSE8884

dataset of human ES cell-derived blast cell differentiation

expression profiles was used to generate the second axis, a blast

cell developing line (blast cells generate both hematopoietic and

endothelial progenies upon transfer to the appropriate conditions).

Thus, the two-dimensional human ‘‘Differentiation-index coordi-

nate’’ was obtained.

All collected expression profiles of human iPSCs, ESCs and

fibroblast cells were estimated using the human Differentiation-

index coordinate (Figure 2). The result showed that only part of the

iPSCs overlapped with the ESCs, and many iPSCs were still located

far away from the ESCs. In addition, we found that the blast cell

developing line was more effective and had more resolving power to

distinguish iPSCs than the neuronal developing line. For estimating

the resolution power of the neuronal developing line for different

cell states, we used dataset GSE9921, which contained gene

expression profiles of human ESCs and neural rosettes (Figure S1),

as a test. The result showed that the neuronal developing line

distinguished between the neurons and ESCs. These results

indicated that the developing line has the best resolution for

distinguishing between corresponding cell types.

Distance-index calculation
The ‘‘Differentiation-index coordinate’’ could be used to

generate a clear and intuitive estimation of pluripotency for

different kinds of cells, especially iPSCs. In the Differentiation-

index coordinate, the distinct projection positions of iPSCs directly

demonstrate their similarities to ESCs in different development

directions at the transcriptional level. For estimating the

similarities of iPSCs accurately, we defined the Distance index (Di),

which reflected the distance ratio of iPS cells to ES cells and

fibroblast cells. A smaller Distance index (Di) demonstrates a higher

similarity of the iPSCs to the center of the ES cells and

dissimilarity to the fibroblast cells.

We calculated the Distance indices (Di) for all collected ESCs

(Tables S1, S2) and iPSCs (Tables S3, S4) for human and mouse.

Based on the Di of human and mouse ESCs, we set the mean value

of all ESC Distance indices as the threshold, which was 0.09384 in

human and 0.11024 in mouse. This threshold reflects the dispersion

of the ESC transcriptome. Eighty percent of human ESCs (24 of 30)

and 60% (12 of 20) of mouse ESCs were under the threshold.

Figure 1. Estimates of Different Cell Types in the Mouse
Differentiation Coordinate. The X-axis is the cardiac precursor cell
developing line; the Y-axis is the pancreatic islets developing line. CL11,
IP14D-101, IP14D-1 and IP20D-3 are contained in Dataset GSE15925.
The red arrows indicate the movement of cell state changes. Ellipses
were generated by the mean values and standard variances.
doi:10.1371/journal.pone.0015336.g001

Estimating Reprogrammed Cells by a Linear Model
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We compared the three strains of iPSCs used in the tetraploid

complementation assay [11]. Interestingly, the Distance indices of

iPSCs reflected their distinct abilities to generate live pups

(Table 1). All three repeats of the IP20D-3 strain iPS cells had

larger Distance indices than the threshold value (0.11024). However,

the three replicates of IP14D-101 had larger variances than the

other two cell lines.

Analysis of significant changed genes
The methods presented here are not limited to the estimation of

the similarities between different cell types; they could also be

applied to the analysis of time-resolved experimental data. When

calculating the developing lines, we also defined a weight for each

gene to represent the expression change, and then calculated P

and FDR values based on distribution of weights. With a P-value

cut-off of ,0.01 and an FDR of ,0.1, we selected the most

significantly changed genes in four different ESC differentiation

processes. For assessing the functions of these significantly changed

genes, we performed GO analysis using the DAVID bioinfor-

matics resource [12]. The results (GO annotation: Tables S5, S6,

S7, S8, S9, S10, S11, S12; genes list: Tables S13, S14, S15, S16,

S17, S18, S19, S20) indicated that all clustered genes were

involved in many morphogenetic processes of different tissues,

including stem cell maintenance, prostate gland morphogenesis,

neuron projection morphogenesis, gland development and so on.

Moreover, some significantly regulated genes were also involved in

developmental pathways, such as the retinoic acid and platelet-

derived growth factor receptor signaling pathways.

Furthermore, we compared the significantly changed genes

between the two experiments and generated a list of ‘‘common

genes’’ in both human and mouse (Tables S21, S22, S23, S24).

These lists contained the ‘‘common’’ up-regulated and down-

regulated genes in the two differentiation processes with different

directions and may provide some information about ESC

differentiation. After comparing the lists, we found that only two

genes appeared in the common lists of both human and mouse

genes. POU5F1 (OCT4), which acts as an important factor in the

induced pluripotency process, was the only significantly down-

regulated gene in the four ESC differentiation processes. However,

the NANOG gene was only in the common list for humans, and

SOX2 did not appear in the common list. Correspondingly, TTR,

a protein transports vitamin A (retinol) and a hormone called

thyroxine throughout the body, was the only significantly up-

regulated gene in the four experiments. Another important gene in

the common list was GUCY1A3, which is a GTP cyclase that

generates the second messenger cGMP. These significantly up-

regulated common genes suggest that the initiation of cell-cell

communication is crucial during ESC differentiation.

To better understand the relationship and function of these

genes, we searched for their protein binding partners using

protein-protein interaction data (BioGrid, Version 3.0.66). Inter-

estingly, we found a new model that consisted of three

components: down-regulated genes, up-regulated genes, and

insignificantly changed genes and named it the ‘‘Seesaw module’’

(Figure 3A). The expression of the genes that appeared in the

‘‘Seesaw module’’ directly described the dynamic changes

(Figure 4). The genes that appeared in the seesaw modules have

been reported to be involved in developmental processes; for

example, in the ZBTB16-CD81-IFITM1 module of membrane

proteins, CD81 may play an important role in the regulation of

lymphoma cell growth [13] and acts as the receptor for some

viruses [14], and IFITM1 has been implicated in the control of cell

growth [15]. Some proteinases and their inhibitors were also found

in the Seesaw modules, such as SERPINA1, VTN, KNG1, and

KLKB1. These genes may be involved in apoptosis or some tissue

morphogenetic processes.

Discussion

The induced pluripotent stem (iPS) cell technology is an

enormously promising approach for personal therapy and

scientific research. However, how the cell state alteration process

happens from terminal differentiation to pluripotency is unclear.

The similarities and differences in the transcriptomes of iPSCs and

ES cells have been estimated [7,8], while other properties of iPSCs

Figure 2. Estimates of Different Cell Types in the Human
Differentiation Coordinate. The X-axis is the blast cell developing
line; the Y-axis is the neuronal developing line. Ellipses were generated
by the mean values and standard variances.
doi:10.1371/journal.pone.0015336.g002

Table 1. Distance-index of Dataset of Traploid
complementation assay (GSE16925).

Dataset
Sample
description

Distance-
index* Blastocysts#

Live
pups#

GSM424481 IP14D-1-rep1 0.07858 624 22(3.5%)

GSM424482 IP14D-1-rep2 0.074245

GSM424483 IP14D-1-rep3 0.070892

GSM424484 IP14D-101-rep1 0.103452 181 4(2.2%)

GSM424485 IP14D-101-rep2 0.146979

GSM424486 IP14D-101-rep3 0.048819

GSM424487 IP20D-3-rep1 0.222602 204 0

GSM424488 IP20D-3-rep2 0.211654

GSM424489 IP20D-3-rep3 0.203322

*In mouse Differentiation coordinate, the threshold of ES cells is 0.11024, the
Bolded items have a bigger Distance-index and be determined to ‘‘not good’’
iPS cells.
#These data are cited from [11].
doi:10.1371/journal.pone.0015336.t001

Estimating Reprogrammed Cells by a Linear Model
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are also different compared with ESCs, such as the genome

methylation state [16,17], microRNA profiling[18], histone

modification, proteomic profiles [19], and so on. It is still a

challenge to find an accurate and easy method to estimate the

pluripotency of iPSC candidates based on these cellular properties.

The value of iPSCs is their pluripotency. From this perspective,

pluripotency should be a gold standard for estimating the quality of

iPSCs [20]. The tetraploid complementation assay, with is the most

strict standard, has been successfully performed on mouse cells

[11,21]. Our results suggested that genome-wide expression patterns

could partly reflect the pluripotency of mouse cells. The Distance index

of dataset GSE16925 indicated that low quality iPS cells (IP20D-3)

distinctly have bigger Di then the high quality iPS cells (IP14D-1),

and this disparity is also clearly reflected by the success of live pups.

We believe that the Distance index, as a more accurate and reasonable

measurement, have the potential to become an easy standard to

estimate the quality of iPSCs at molecular level.

The similarity defined by hierarchical clustering method

severely depends on the mathematical characteristics of expression

profiles. The system error of ES cells expression profiles would

affect the clustering results. In our model, the ‘‘developing lines’’

generated by time-ordered linear model have distinct biological

meaning: such lines are projection of ES cells differentiation

trajectories. Meanwhile, the calculation of Distance index by this

supervised method is based on a large number of expression

profiles from different laboratories, and these existing datasets give

our method greater robustness and accuracy. Such characteristics

enable us to compare expression profiles of different sources more

easily. Moreover, this method gives a simple and direct description

of different cell state distributions. The dynamic changes in cell

states induced by reprogramming were also clearly indicated by

the ‘‘Differentiation-index coordinate’’. These dynamic changes of

cell states would help us to understand more about the movement

trajectories of the ES cells differentiation and the reprogramming

process of somatic cells.

As shown, the time-order linear model was also a novel method to

analyze time-resolved experimental data. This method generated

lists of the significantly up/down regulated genes during the time-

resolved experiment. Based on the Protein-protein interaction

network and significantly changed genes during human ES cell

differentiation, we identified some interesting ‘‘seesaw’’ modules.

One of these modules directly regulates the epigenetic changes that

occur during the ESC differentiation process: ZBTB16-(HADC1,

SIN3A, SUMO1)-DNMT3B. DNMT3B encodes a DNA methyl-

transferase that is thought to function in genome DNA de novo

methylation. HADC1 encodes a histone deacetylase that is

responsible for the deacetylation of lysine residues on the N-terminal

tails of the core histones (H2A, H2B, H3, and H4). By SUMO1

modification, DNMT3B modulates its interaction with HDAC1 to

repress the transcription of target genes [22]. ZBTB16 associates

with SIN3A and HDAC1 in vitro and in vivo, and this co-repressor

complex down-regulates the expression levels of target genes [23].

Down-regulation of DNMT3B in this epigenetic ‘‘seesaw module’’

indicates that genome methylation is lost during ESC differentiation.

Figure 3. The Seesaw module that appeared in two Human ESC differentiation processes. Red: significantly up-regulated genes; Yellow:
insignificantly changed genes; Green: significantly down-regulated genes. Red ellipse: the epigenetic regulation seesaw module.
doi:10.1371/journal.pone.0015336.g003

Estimating Reprogrammed Cells by a Linear Model
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Recently, the human genome DNA methylation map was published

at single base resolution. Compared with the undifferentiated H1

human embryonic stem cell line, the methylation level of the genome

of the fetal lung fibroblast cell line IMR-90 was less than 25%, which

is about 1.7*10e7 sites [16]. In particular, most of the mCHG and

mCHH modifications were absent from IMR-90 cells; considering

the significant down-regulation of the DNMT3B gene, this evidence

suggests that DNMT3B may play an important role in the reduction

in methylation during development. Moreover, the stable expression

of ‘‘linker genes’’ indicates that DNA methylation could provide

location information for gene regulation, and histone acetylation and

deacetylation might directly control the transcription of target genes.

In this work, we constructed developing lines of some differen-

tiation fates determinations in mouse and human. Theoretically,

the developing line had the best resolving power for estimating the

cell state of the corresponding cells, i.e, using fibroblast developing

line to estimate iPSCs originated from fibroblasts, using the

neuronal developing line to estimate iPSCs originated from

neurons. However, for the limited number of successful ESC

differentiation events in vitro, it is still difficult for us to construct

developing lines that represent all directions of every ESC

differentiation process. Here, we used two developing lines to

estimate the pluripotency of iPSCs and other cells, and the

promising results encouraged us to improve this method. Although

the resolution powers of the different developing lines still need to

assess, we expect that these ‘‘Differentiation-index coordinates’’

could reflect all of cell fates, fit all expression data, or even

distinguish all cell types accurately in the future.

Figure 4. The expression patterns of genes that appeared in the Seesaw modules.
doi:10.1371/journal.pone.0015336.g004

Estimating Reprogrammed Cells by a Linear Model

PLoS ONE | www.plosone.org 5 January 2011 | Volume 6 | Issue 1 | e15336



The approach presented here could also contribute to the

construction of a ‘‘Cell type coordinate’’, which would reflect the

relationship between different cell types and describe the cell type-

specific differences at different levels (including RNA expression,

protein expression, epigenetic modification, etc.). Recently, the

fibroblast cell have been directly reprogrammed to functional

neurons and Cardiomyocytes [24,25]. Such evidence lights a new

approach to reprogramming cell fates. We hope to construct a

‘‘Cell type coordinate’’ in the future, which could show the

difference among functional cells at the transcriptional level, how

TFs contribute the differentiation in developmental processes, and

which TF could be used to induce the transformation different

functional cells. Furthermore, investigation of differentiation and

improvements in reprogramming technology will help us improve

the methods for qualified iPSCs selection for scientific research

and clinical applications.

Materials and Methods

Preparation of gene expression profiles
The gene expression data were obtained from the largest

expression database, Gene Expression Omnibus (GEO, http://

www.ncbi.nlm.nih.gov/geo/). To construct linear scales that

represent the changes in gene expression over differentiation time,

we analyzed two datasets that contained the expression profiles of

human ESCs differentiating into neural rosettes and blast cells

(Table 2).

To estimate iPS cell pluripotency on a large scale, we collected

the expression profiles of iPS cells and ESCs based on the

Affymetrix Human Genome U133 Plus 2.0 chip (GEO platform:

GPL570) if possible (before Oct. 2009). All of the expression

profile datasets of human iPSCs and ESCs are listed in Table 3.

We also constructed mouse ES cell differentiation developing

lines to estimate the relationship between mouse iPSCs and mouse

ESCs. All of the expression profiles were based on the Affymetrix

Mouse Genome 430 2.0 chip (GEO platform: GPL1226). Two

datasets containing the expression profiles of mouse ES cells

differentiating to cardiac precursor cells and pancreatic islets were

used to generate two differentiation developing lines (Table 4).

As described above, we collected the expression profiles of

mouse iPS cells and mouse ESCs where possible (before Oct.

2009) and analyzed these expression profiles as described in the

method (Table 5).

Probe signal estimates were derived from the SOFT files. Each

probe was treated as an independent transcript. The log-

transformed values of the expression data were then median-

normalized independently for each dataset.

Construction of Developing-lines and Differentiation-
index coordinate

To construct developing lines that represent ESC differentiation

processes, we used a time-ordered linear model algorithm to

transform time-resolved ESC’s differentiation expression profiles

into the Octave environment.

Inspiriting from Clustering [26,27] and PCA method, this linear

model is based on the description of the developmental trajectory

as a line with a distinct direction, which represents the gene

expression change over developmental time. In order to achieve

such aim, tow points must be required:

1. the line could preserve the time order of the projected points

2. the line could preserve the distance ratio of joint sample points

in the microarray space

In high-dimensional space(in this paper, the dimensions are

determined by genes number N), a series of unlooped, head-to-tail

joint vectors (here which represent sample change at t time points,

and N.t) have one co-bisector. Because the angles between each

vector and co-bisector are the same, after each vector is projected

onto the co-bisector, the strict order and length ratio of every

vector is preserved perfectly. Naturally, the co-bisector of a series

of vectors has the longest length among all bisectors (Figure S2),

and it can represent the moving trend of sample. The co-bisector

suited our two requirements for a linear model that represents the

processes of tissue development and cell differentiation.

First, we built a microarray space, in which the dimensions were

determined by probes that represented transcripts on the

microarray chip. Based on the same microarray platform, each

expression profile had a unique position in this high-dimensional

space.

X is a n|t matrix, which represents the expression data for n

genes measured at t time points. Xi represents the expression

profile at time point i, for all i[½1,t�. The expression score of gene j

at time point i is xji.

X~

x11 . . . x1t

..

.
P

..

.

xn1 � � � xnt

0
BB@

1
CCA~ X1,X2 � � �Xtð Þ ð1Þ

For the purpose of preserving the strict order of the projected

points of Xi,i[½1,t� on the projected line, we first generated (t-1)

vectors XiXiz1
����!

, forall i[ t{1½ �, and the vectors are given by:

XiX(iz1)
�����!

~X(iz1){Xi~

x1(iz1)

..

.

xn(iz1)

0
BB@

1
CCA{

x1i

..

.

xni

0
BB@

1
CCA, i[ 1,t{1½ � ð2Þ

Then, we defined the co-bisector as eall
�!. The inner product of

vector XiX(iz1)
�����!

and the co-bisector eall
�! is Seall

�!, XiX(iz1)
�����!

T, and it

should satisfy the equation below:

Table 2. The dataset were used to generate human ESCs differentiation developing-lines.

Dataset Tissue Experiment type Publication/Experimenter

GSE9940 ESCs ESCs in vitro differentiation to neuron rosettes [28]

GSE8884 ESCs ESCs in vitro differentiation to blast cells [29]

All the gene expression dataset are published on GEO (Gene Expression Omnibus). All the dataset are based on Affymetrix Human Genome U133 Plus 2.0 Chip (GEO
platform: GPL570).
doi:10.1371/journal.pone.0015336.t002

Estimating Reprogrammed Cells by a Linear Model
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Seall
�!, XiX(iz1)

�����!
T~ eall

�!�� ��: XiX(iz1)
�����!��� ���: cos h, forall i[ t{1½ � ð3Þ

Naturally, after the points of Xi, i[½1,t� were projected onto the

co-bisector of XiXiz1
����!

, i[ t{1½ �ð Þ, the projected points retained

their order. Among all co-bisectors that could preserve the

distance ratio of these sample points by projection, the co-bisector

eall
���!
in the linear subspace determined by XiXiz1

����!
, forall i[ t{1½ �,

has the longest length. Thus, the optimized eall
���!

could be

represented as the linear combination of XiXiz1
����!

, forall i[ t{1½ �:

eall
�!~

Xt{1

i~1

(ai
:XiX(iz1)
�����!

) ai[R ð4Þ

To simplify our calculations, we set eall
�!�� �� to 1:

eall
�!�� ��~

ffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i~1

si
2

s
~1 ð5Þ

With equations (2), (3), (4), and (5), the parameters ai and h and

vector eall
���!
were determined.

Thus eall
���!
was obtained, and this vector represented the change

in the expression level during differentiation from the ESC state to

a terminally differentiated state. We named this vector the

‘‘developing line’’.

When the expression profiles of other samples are projected

onto the vector (eall
���!
), the projection position Pi of each sample is

calculated by:

Pi~Xi
0 :eall

���!
~ x1i, � � � ,xnið Þ:

e1

..

.

en

0
BB@

1
CCA, i[ 1,t{1½ � ð6Þ

This projection position represents the relative similarity at the

transcriptional level. To account for similar gene expression states,

the same kinds of cells were grouped together, even though the

expression data came from different laboratories.

We generated two human ESC differentiation developing lines

and two mouse ESC differentiation developing lines that

corresponded to four time-resolved ESC differentiation expression

profiles. Then all of the collected expression data for ESCs,

fibroblast cells and iPSCs were individually projected onto the

developing lines. The coordinates of all projection positions were

analyzed and visualized with the R software. The projection

regions of ESCs, fibroblast cells and iPSCs were determined by the

mean values and standard deviations of each cell type.

The microarray approach usually contains the noise which

generated from experiment stage. In order to see the robustness of

our time-ordered linear model, we selected mice fetal liver

development time-course expression profiles to make tests. We

randomly replaced the genes expression values of samples in

GSE13149, and the genes number of randomly replaced was

continuously increased from 1% to 20% of all genes. Then, the

modified datasets were calculated to generate modified ‘‘develop-

ing lines’’. Another dataset GSE6998 was projected on these

Table 3. The datasets were used to estimate relationship between human iPSCs and human ESCs.

Dataset Experiment samples Samples Numbers Publication/Experimenter

GSE12390 Human iPS and ESCs 21 [30]

GSE12583 Human iPS and ESCs 9 [31]

GSE13828 Human iPS and ESCs 10 [2]

GSE14711 Human iPS and ESCs 11 [5]

GSE15148 Human iPS and ESCs 28 [32]

GSE16093 Human iPS and ESCs 5 [33]

GSE16654 Human iPS and ESCs 36 [7]

GSE9832 Human iPS and ESCs 16 [34]

GSE9865 Human iPS and ESCs 13 [35]

All the gene expression dataset are published on GEO (Gene Expression Omnibus). All the dataset are based on Affymetrix Human Genome U133 Plus 2.0 Chip (GEO
platform: GPL570).
doi:10.1371/journal.pone.0015336.t003

Table 4. The dataset were used to generate mouse ESCs differentiation developing-lines.

Dataset Target Tissue Experiment type Publication/Experimenter

GSE10970 Cardiac precursors cells ESCs Differentiation time-course [36]

GSE3653 Pancreatic islets ESCs Differentiation time-course [37]

All the gene expression dataset are published on GEO (Gene Expression Omnibus). All the dataset are based on Affymetrix Mouse Genome 430 2.0 Chip (GEO platform:
GPL1226).
doi:10.1371/journal.pone.0015336.t004
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modified ‘‘developing lines’’. The variance of projection locations

indicated the robustness of time-linear model. This model can

endure 17% random replacement of total genes (Figure S3, Table

S25). Such result showed this linear model has a strong robustness

to noise.

Distance index calculation
We defined the concept of a Distance index, which represents the

similarity of each sample to ESCs. The centers of the ES cell pro-

jection region and the fibroblast cell projection region were set as two

anchor points. The Distance index (Di) of sample A was defined as:

DiA~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(xA{x(ES{center))

2z(yA{y(ES{center))
2

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(xA{x(fibroblast{center))

2z(yA{y(fibroblast{center))
2

q ð7Þ

In equation (7), xA and yA are the projection coordinates values

of sample A in the ‘‘Differentiation-index coordinate’’. A smaller

Distance index (Di) indicates that the projection of the sample is

closer to the center of the ES cell projection region. The Distance

index (Di) was used to generate an estimation for each iPSC.

Furthermore, the distribution of the Distance index (Di) of all

ESCs determine a threshold value to estimate the transcriptional

similarity of iPSCs. The Distance index reflects the real distance of

each cell type to the transcriptome distribution of ESCs in

microarray space.

Functional analysis
By applying multiple testing, we calculated the P-value and

Benjamini-Hochberg FDR for the weight of each probe in vector

eall
���!
. The significantly changed probes were isolated with a cut-off

P-value of ,0.001 and a FDR of ,0.1. The probe sets were

further converted to transcripts by Gene Name Bath Viewer

(DAVID, http://david.abcc.ncifcrf.gov). We performed a func-

tional analysis on the significantly changed genes on the DAVID

bioinformatics resource [12].

Supporting Information

Figure S1 Estimates of Human ES cell and neuron
rosettes in the Human Differentiation Coordinate. The

X-axis is the blast cell developing line; the Y-axis is the neuronal

developing line. Ellipses were generated by the mean values and

standard variances.

(PDF)

Figure S2 Maximizing the projection of each vector on

the angle-bisector. Vector Xi
�!

and Xiz1
��!

existing in a 3-D

space, represent a cell departed form state A, bypassing state B,

finally reached to state C. First we transform location of Xiz1
��!

to

(Xiz1)0
����!

, then we get the angle %h, then generate one angle-

bisector eall
�!, and angle%h~

1

2
%BAC�. On this angle-bisector,

AB0
��!

and B0C0
��!

are projections of VectorAB
�!

and BC
�!

.

AB0
��!��� ���~ AB

�!��� ���|cos(h)

B0C0
��!��� ���~ BC

�!��� ���|cos(h)
However, in this 3-D space, there exist

a plane eall
�!^ eall

���!
which is perpendicular to the plane ABC; each

line passing point A are a angle-bisector of %BAC�, all of them

meeting our requirement. Obviously, when the included angle h�

is minimized, the projection AB0�
��!

and B0C0�
���!

are maximized, at

this time, the maximized angel-bisector is uniquely determined by

intersection of plane eall
�!^ eall

���!
and plane ABC. When the

dimensions of this space is over 3, the maximized angel-bisector is

uniquely determined by intersection of all angle-bisector plane

½eall(i)
��!^ eall(i)

����!
,i[ ½1,t{1�. So, when the angle-bisector exists in the

subspace which is determined by the parent vector, the projection

length of each vector is maximized. Proof: As we know, there exists

a e�all

e�all~
X

ai
Xi

Xik k
ai[R i[(1, n)

e�
all

��� ���~1

e�
all
: Xi

Xik k
~cosh� i[(1, n)

Let assume there is an eall satisfies that

eallk k~1

eall
: Xi

Xik k
~cosh i[(1, n)

Table 5. The datasets were used to estimate relationship between mouse iPSCs and mouse ESCs.

Dataset Experiment samples Numbers of Samples Publication/Experimenter

GSE10806 Mouse iPS and ESCs 11 [38]

GSE10871 Mouse iPS and ESCs 32 [39]

GSE12499 Mouse iPS and ESCs 10 [10]

GSE14012 Mouse iPS and ESCs 24 [40]

GSE16925 Mouse iPS and ESCs 15 [11]

GSE8024 Mouse iPS and ESCs 8 [41]

GSE8128 Mouse iPS and ESCs 9 [42]

All the gene expression dataset are published on GEO (Gene Expression Omnibus). All the dataset are based on Affymetrix Mouse Genome 430 2.0 Chip (GEO platform:
GPL1226).
doi:10.1371/journal.pone.0015336.t005
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coshwcosh�

Then

e�all
:eall~

X
ai

Xi

Xik k
:eall

~
X

aicosh

w

X
aicosh�

~
X

ai

Xi

Xik k
:e�all~e�all

:e�all~1

This is impossible. So there is no eall which can satisfy the

condition of coshwcosh�. Thus, e�all is the longest bisector.

(PDF)

Figure S3 Noise Random permutation testing to devel-
oping line (GSE13149): The Projection location of
Dataset GSE6998.
(PDF)

Table S1 Distance-index of Human Embryonic Stem
Cells.
(PDF)

Table S2 Distance-index of Mouse Embryonic Stem
Cells.
(PDF)

Table S3 Distance-index of Human Induced Pluripotent
Stem Cells.
(PDF)

Table S4 Distance-index of Mouse Induced Pluripotent
Stem Cells.
(PDF)

Table S5 GO analysis of negative regulated genes in ES
cell-derived Cardiac precursors cells Differentiation
(GSE10970).
(PDF)

Table S6 GO analysis of positive regulated genes in ES
cell-derived Cardiac precursors cells Differentiation
(GSE10970).
(PDF)

Table S7 GO analysis of negative regulated genes in ES
cell-derived Pancreatic islets cells Differentiation
(GSE3653).
(PDF)

Table S8 GO analysis of positive regulated genes in ES
cell-derived Pancreatic islets cells Differentiation
(GSE3653).
(PDF)

Table S9 GO analysis of negative regulated genes in ES
cell-derived blast cells Differentiation (GSE8884).
(PDF)

Table S10 GO analysis of positive regulated genes in ES
cell-derived blast cells Differentiation (GSE8884).

(PDF)

Table S11 GO analysis of negative regulated genes in ES
cell-derived neuron rosettes Differentiation (GSE9940).

(PDF)

Table S12 GO analysis of positive regulated genes in ES
cell-derived neuron rosettes Differentiation (GSE9940).

(PDF)

Table S13 Positive regulated genes in ES cell-derived
blast cell differentiation (GSE8884).

(PDF)

Table S14 Negative regulated genes in ES cell-derived
blast cell differentiation (GSE8884).

(PDF)

Table S15 Positive regulated genes in ES cells-derived
neuron rosette differentiation (GSE9940).

(PDF)

Table S16 Positive regulated genes in ES cells-derived
neuron rosette differentiation (GSE9940).

(PDF)

Table S17 Negative regulated genes in ES cell-derived
Cardiac precursors cells Differentiation (GSE10970).

(PDF)

Table S18 Positive regulated genes in ES cell-derived
Cardiac precursors cells Differentiation (GSE10970).

(PDF)

Table S19 Negative regulated genes in ES cell-derived
Pancreatic islets cells Differentiation (GSE3653).

(PDF)

Table S20 Positive regulated genes in ES cell-derived
Pancreatic islets cells Differentiation (GSE3653).

(PDF)

Table S21 Significant Up-regulated Common Genes in
GSE8884 and GSE9940.

(PDF)

Table S22 Significant Down-regulated Common Genes
in GSE8884 and GSE9940.

(PDF)

Table S23 Significant Up-regulated Common Genes in
GSE10970 and GSE3653.

(PDF)

Table S24 Significant Down-regulated Common Genes
in GSE10970 and GSE3653.

(PDF)

Table S25 Noise Random permutation testing to devel-
oping line (GSE13149): The Projection location of
Dataset GSE6998.

(PDF)
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