
Research Article
Flexible Wolf Pack Algorithm for Dynamic Multidimensional
Knapsack Problems

Husheng Wu1 and Renbin Xiao 2

1School of Equipment Management and Support, Armed Police Force Engineering University, Xi’an 710086, China
2School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan 430074, China

Correspondence should be addressed to Renbin Xiao; rbxiao@hust.edu.cn

Received 4 October 2019; Accepted 18 January 2020; Published 18 February 2020

Copyright © 2020 Husheng Wu and Renbin Xiao. Exclusive Licensee Science and Technology Review Publishing House.
Distributed under a Creative Commons Attribution License (CC BY 4.0).

Optimization problems especially in a dynamic environment is a hot research area that has attracted notable attention in the
past decades. It is clear from the dynamic optimization literatures that most of the efforts have been devoted to continuous
dynamic optimization problems although the majority of the real-life problems are combinatorial. Moreover, many algorithms
shown to be successful in stationary combinatorial optimization problems commonly have mediocre performance in a
dynamic environment. In this study, based on binary wolf pack algorithm (BWPA), combining with flexible population
updating strategy, a flexible binary wolf pack algorithm (FWPA) is proposed. Then, FWPA is used to solve a set of static
multidimensional knapsack benchmarks and several dynamic multidimensional knapsack problems, which have numerous
practical applications. To the best of our knowledge, this paper constitutes the first study on the performance of WPA on
a dynamic combinatorial problem. By comparing two state-of-the-art algorithms with the basic BWPA, the simulation
experimental results demonstrate that FWPA can be considered as a feasibility and competitive algorithm for dynamic
optimization problems.

1. Introduction

Most research in evolutionary computation focuses on static
problems where the entire problem-related data remains sta-
tionary through optimization procedure [1–3]. However,
numerous real-world optimization problems arising from
the uncertainty of future events indeed have a dynamic
nature. Changes in dynamic optimization problems (DOPs)
may occur in the decision variables, constraints, and objec-
tive function [4, 5]. This requires optimization algorithms
to not only detect and respond to the change of optima as
quickly as possible but also keep track of the changing optima
dynamically. Hence, the capability of continuously adapting
the solution to a changing environment is necessary for opti-
mization approaches [3, 6]. Therefore, DOPs are more chal-
lenging to address than stationary optimization problems.

DOPs can be generally divided into two major fields as
combinatorial and continuous [7–9]. Typical combinatorial
DOPs include dynamic travelling salesman problem (DTSP)
[10], dynamic vehicle routing problem (DVRP) [11],
dynamic job-shop scheduling problem (DJSSP) [12], and

dynamic knapsack problem (DKP) [13–15]. In fact, many
practical problems can be abstracted as a specific type of
dynamic multidimensional knapsack problem (DMPK)
when multiple dynamic constraints are needed to be tackled,
such as task allocation, investment decision, cargo loading,
and budget management [9, 16]. Given their wild application
and complexity, DMKPs have important theoretical and
practical value. Evolutionary algorithms (EAs) and swarm
intelligence-based algorithms are expected to perform well
on solving both combinatorial and continuous DOPs since
evolutionary dynamics in nature also take place in a highly
uncertain environment [8, 17, 18].

Wolf pack algorithm (WPA) [19] is a relatively new and
promising member of swarm intelligence-based algorithms
that model the cooperative hunting behavior of wolf pack.
It has been proved an efficient optimizer for solving many
nonlinear and complex optimization problems by successful
applications in image processing [20], power system control
[21], robot path planning [22], and static MKPs [23]. Many
derivative versions of WPA also have been designed for solv-
ing different problems, such as binary WPA (BWPA) for 0-1

AAAS
Research
Volume 2020, Article ID 1762107, 13 pages
https://doi.org/10.34133/2020/1762107

https://orcid.org/0000-0003-0951-2734
https://doi.org/10.34133/2020/1762107


ordinary knapsack problem [24], improved binary WPA
(IBWPA) for MKPs [23], and discrete WPA (DWPA) for
TSP [25]. In [26], an integer coding wolf pack algorithm
(ICWPA) is proposed to cope with the combat task allocation
problems of aerial swarm. In [27], the improved WPA
(IWPA) is proposed to solve VRP. Despite its high efficiency
of binary WPA (BWPA) in solving static MKPs, WPA has
not been introduced into the area of DMKPs.

The key issue of handling DOPs using EAs is how to avoid
population diversity loss problem and maintain population
diversity while tracking the changing global optima [5, 8, 9,
28]. In this regard, a flexible population updating strategy
which is capable of introducing and maintaining diversity
during execution is designed for BWPA to address the
DMKPs in this study. Moreover, the flexible population
updating strategy that generates new individuals by making
use of the memory of previously found good solutions can
be viewed as an explicit memory scheme [29, 30].

Compared with static extensions, there are relatively far
less reported publications about DMKPs. It is necessary to
develop new solution approaches for addressing DMKPs
more efficiently as DMKPs have numerous practical implica-
tions. This is one of the main motivations of this study.
Secondly, to the best of our knowledge, this is the first study
that investigates the performance of BWPA and its improved
version (as proposed in this paper) on MKPs in dynamic
environments.

The reminder of this paper is arranged as follows: Section
2 provides the literature review and related concepts of
DMKPs. The original BWPA and its variant FWPA are dis-
cussed in detail in Section 3. While Section 4 conducts the
simulation experiment and analyzes the results. Finally, con-
clusions and some future research issue are given in Section 5.

2. Problem Definition and Related Work

In this section, we outline the necessary concepts of DMKPs
and overview the related work about the MKPs in dynamic
environments.

2.1. Definition of the Dynamic Multidimensional Knapsack
Problem. MKP is a NP-hard problem and has been wildly
used as a combinatorial benchmark problem of EAs and
swarm intelligence-based algorithms [31, 32]. The MKP
depends on the values of the profits pj, resource consump-
tions wkj, and the resource constraints ck. As the generaliza-
tion of the ordinary knapsack problem, MKP is more
representative of real-world scenarios because multiple con-
strains are concerned [33]. The static MKP can be generally
formulated as follows [34]:

max f = 〠
n

j=1
pjxj ð1Þ

s:t:
〠
n

j=1
wkjxj ≤ ck, k ∈M = 0, 1,⋯,mf g

xj = 0, 1f g, j ∈N = 0, 1,⋯,nf g,

8>><
>>: ð2Þ

where n is the number of items andm is the number of knap-
sack constrains with capacities ck for k = 1, 2,⋯,m. Each
item j ∈N requires wkj units of resource consumption in
the kth knapsack and yields pj units of profit upon inclusion.
The goal of MKP is to find a subset of all items that yield
maximum profit without exceeding the multidimensional
resource capacities [34]. All entries are naturally nonnega-
tive. More precisely, without loss of generality, it can be
assumed that the following constraints, as defined by (3),
are satisfied. If this is not the case, one or more variables
could be fixed to 0 or 1.

max wkj : j ∈N
� �

≤ ck < 〠
n

j

wkj, ∀k ∈M: ð3Þ

Dynamic instances of knapsack problems have been pro-
posed before. However, these studies are mainly focused on
either only one dimension problem or a cyclic change of
the resource constraint [35, 36]. Inspiration from [13, 37],
we construct the dynamic MKP by updating all parameters
ofwkj, pj, and ck after a predefined simulation time unit using
a normally distributed random distribution with zero mean
and standard deviation θ:

p+j = pj 1 +N 0, θp
� �� �

,

w+
kj =wkj 1 +N 0, θwð Þð Þ,
c+k = ck 1 +N 0, θcð Þð Þ:

ð4Þ

In formula (4), p+j ,w
+
kj, and c

+
k denote the updated param-

eters of MKP when a change occurs after a predefined simu-
lation time units, respectively. The less number of simulation
time units yield to more frequent changes and vice versa
[13, 37–39]. The number of iterations allocated for each envi-
ronment is usually adopted as the frequency of changes.

2.2. Related Work on DMKPs. In recent years, DMKPs have
attracted growing interest from the optimization community
with its wide applications and challenging solutions. The
related research on DMKPs can be generally summarized
as follows:

(1) Various dynamic benchmark generators for DMKPs:
many generators have been proposed to generate
changing environments for MKPs and then translate
a well-known static MKP into a dynamic version
using specialized procedures. Branke et al. [37]
designed a dynamic version of MKP by using a nor-
mal distribution to update each parameter of a
MKP when a change occurs, as shown in formula
(4). Yang and Yao [39] formalized a well-known
dynamic problem generator to create required
dynamics for a given static combinatorial problem
using the bitwise exclusive-or (XOR) operator. This
generator is also available for MKPs. Based on a
XOR DOP generator, Li and Yang [40] proposed a
generalized dynamic benchmark generator (GDBG)

2 Research



that can be instantiated into the binary space, real
space, and combinatory space. In addition, the
GDBG can present a set of different properties to test
algorithms by tuning some control parameters.
Rohlfshagen and Yao [38] proposed a new bench-
mark problem for dynamic combinatorial optimiza-
tion by taking both the underlying dynamics of the
problem and the distances between successive global
optima into consideration; the parameters of MKP
can be changed over time by some set of difference
equations

(2) Effects of solution representation techniques for
DMKPs: the effects of different solution representa-
tions (i.e., weight coding, binary representation, and
permutation representation) were compared with a
set of DMKPs in [37]. Simulation results revealed that
the solution representation affects the algorithms’
performance greatly when solving DMKPs and the
binary representation performs relatively poor

(3) Extensions of DMKPs: there are various versions of
DMKPs in terms of the changed parameters ofMKPs.
In [41], a stochastic 0/1 KP where the value of the
items pj are deterministic but the unit resource con-
sumptions w+

kj are randomly distributed was studied.
He et al. [42] proposed a more generalized time-
varying KP (TVKP) called randomized TVKP
(RTVKP) where all parameters of MKPs p+j , w

+
kj,

and c+k change dynamically in a random way. More-
over, the dynamic version of MKPs that change its
parameters p+j , w

+
kj, and c+k using normal distribution

is used as the dynamic benchmark problem of MKPs
most wildly [13, 14, 37, 38]

(4) Different solution approaches for DMKPs: both EAs
and swarm intelligence-based algorithms have been
applied to solve DMKPs by adding some strategies to
improve their adaptability to dynamic environments.
In [42], the elitists model-based genetic algorithm
(EGA) was integrated with greedy optimization algo-
rithm (GOA) to handle RTVKPs; the GOA is capable
of avoiding infeasible solutions and improving the
convergence rate. Ünal [43] adopted the random
immigrant-based GA and memory-based GA to solve
the DMKPs, respectively. Compared with the random
immigrant-based GA, the memory-based GA was
proved to be more effective to adapt to the changing
environments for DMKPs. Afterward, Ünal and
Kayakutlu [14] tested different partial random restart-
ing approaches of parthenogenetic algorithm (PGA)
[44] by solving a set of MKPs in dynamic environ-
ments. When solving the DMKPs using ant colony
algorithm (ACO), Randall [45] updated the phero-
mone trails indirectly according to the changes made
to the solutions during the solution repair period;
therefore, partial knowledge of the previous environ-
ment is preserved and the adaptability to dynamic
environments is enhanced. Baykasoğlu and Ozsoydan

[13] proposed an improved firefly algorithm (FA) that
introduces population diversity by partial random
restarts and the adaptive move procedure. The sim-
ulation results showed that the improved FA was a
very powerful algorithm for solving both static and
dynamic MKPs

3. Overview of Binary Wolf Pack Algorithm

Wolf pack algorithm (WPA) is a relatively new swarm
intelligence-based optimizer which simulate the collaborative
hunting behavior of wolf pack [19]. The basic WPA was orig-
inally designed for continuous optimization problems. Due
to its simple implementation, robustness, and competitive
global convergence performance for high-dimension multi-
modal functions [19–21], WPA has attracted increasing
attention and its various derivative versions for solving dis-
crete problems have been developed in recent years. In [24],
Wu et al. proposed a binary WPA (BWPA) based on binary
coding of solution to solve the classic 0-1 KPs. Afterward,
they modified the BWPA by adding a trying-loading solution
repair operator to handle MKPs [23].

Inspired by social hierarchy of biological wolves, individ-
uals in WPA are divided as artificial lead wolf, scout wolves,
and ferocious wolves according to their roles during search-
ing optimum. The optimization process of WPA can be
generally summarized as scouting, calling, and besieging
behavior. In each iteration, the lead wolf can be replaced by
other wolves that dynamically own better fitness and the
whole population is updated in order to increase diversity.
The main operation procedures of the BWPA are summa-
rized as follows:

Step 1. Initialize the parameters of algorithm step coefficient
S, distance determinant coefficient dnear, maximum number
of repetitions in scouting behavior Tmax, and population
renewing proportional coefficient β. Randomly initialize the
position of artificial wolves in N × n Euclidean space, where
N is the number of wolves and n is the number of variables,
the position of artificial wolf i is Xi = fxi1, xi2, ⋯ , xij,⋯, xing.
As for MKP, Xi is a n bit binary string and represents a poten-
tial solution. Yi = f ðXiÞ denote the objective function value of
the wolf i. The wolf Xlead with best objective function value
Y lead = max fYig is selected as the lead wolf of the first
generation.

Step 2. Scouting behavior models the board search of prey in
wolf pack’s hunting behavior under the command of lead
wolf. Except the lead wolf, the rest n − 1 wolves act as the
scout wolves to take the scouting behavior by implementing
the moving operator Θ, respectively, until Yi > Y lead or the
scouting repetition number T reaches Tmax, then go to Step 3.

If Yi > Y lead, the scout wolf i replaces the role of previous
lead wolf and acts as the new lead wolf; Elseif Yi ≤ Y lead, the
scout wolf i, respectively, takes a step towards h different
directions and move to the best direction p ∗ (i.e., Yip∗ =
max fYipg). h is a positive integer that is randomly selected
in the interval of ½hmin, hmax�. After taking a step towards

3Research



the pth scouting direction (p ∈H,H = f1, 2,⋯,hg), the posi-
tion of the scout wolf i is updated by

Xp
i =Θ Xi,Ma, stepað Þ, ð5Þ

where Xi and stepa denote the position and step size of the
scout wolf i, respectively. Ma = f1, 2,⋯,mg. The function
of moving operator ΘðXi,Ma, stepaÞ is updating the Xi by
reversing the stepa bits values which are randomly selected
from Ma.

Assuming that Xi = f1, 0, 1, 0, 1, 0, 0, 1g, Ma = f3, 6, 8g,
and stepa = 2, the reserving from Xi to Xp

i by moving opera-
tor ΘðXi,Ma, stepaÞ can be illustrated as Figure 1.

Step 3. Except the lead wolf, the rest n − 1 wolves secondly act
as the ferocious wolves in calling behavior. In order to hunt
the prey, the lead wolf commands the ferocious wolves to
gather towards its position Xlead by howling. The position
of the ferocious wolf i is updated by

Xnew
i =Θ Xi,Mb, stepbð Þ, ð6Þ

where Xnew
i and stepb denote the updated position and step

size of the ferocious wolf i, respectively. Mb is the set of bits
with different values between Xlead and Xi. Θ is the same
moving operator as defined in Step 2.

If Yinew ≥ Y lead, the ferocious wolf i replaces the previ-
ous lead wolf and restarts the calling behavior; otherwise,
the ferocious wolf i continues running until dis ≤ dnear,
then go to Step 4, where dis indicates the distance between
Xlead and Xi.

Step 4. After calling behavior, the wolves approach and sur-
round the prey, then the whole wolf pack attack and capture
the prey successfully. The position of the wolf i is updated by

Xnew
i =Θ Xi,Mc, stepcð Þ, ð7Þ

where Xnew
i and stepc denote the updated position and

besieging step size of the wolf i, respectively. Mc and Θ are
the same as that defined in Step 3. The relationships between
stepa, stepb, and stepc are described as follows:

stepa = rand int stepc, S½ �,
stepb = rand int stepc, 2S½ �,

(
ð8Þ

where stepc is commonly set to 1; rand int indicates a ran-
domly selected integer in this interval.

Step 5. Update the position of wolf pack with population
renewing proportional coefficient β.

Step 6. Output the position and function value of lead wolf
(i.e., the optimal solution) when termination condition is
satisfied, otherwise go to Step 2. The pseudocode of BWPA
is illustrated in Algorithm 1.

4. Proposed Flexible Wolf Pack Algorithm

Flexibility is the ability to respond to changing environments
effectively. Flexible wolf pack algorithm (FWPA) does not
pursue the ultimate convergence of the population, but to
maintain the diversity of the population throughout the evo-
lution process, that is, to maintain a strong ability to open up
new solution space, which of course should be combined
with elite retention strategies. In this section, a flexible popu-
lation updating strategy based on convergence situation is
designed for FWPA to develop its capability of adapting to
changing environments.

4.1. Original Population Updating Strategy in BWPA. For
the BWPA, there are two cases of updating the population:
population updating in normal situation and catastrophic
situation.

Population updating in normal situation indicates that
RðR = rand int ½N/ð2βÞ,N/β�Þ artificial wolves with worst
objective function values are deleted, while R new wolves
are generated near the lead wolf by

Xnew =Θ Xlead,M, L1b cð Þ, L1 =
1
4 ⋅

exp z gð Þð Þ − exp −z gð Þð Þ
0:1 exp z gð Þð Þ + 2 exp −z gð Þð Þ ,

ð9Þ

where Xlead denotes the position of the lead wolf,
M = f1, 2,⋯, ng, and zðgÞ = 10g/MaxGen − 5; b·c repre-
sents that rounding down of L1 to an integer.

Population updating in catastrophic situation indicates
that R artificial wolves are randomly selected and deleted
from the whole population when the best objective function
value is not updated in tmax continuous iterations, then R
new wolves are reproduced by

X∗
new =Θ Xi,M, L2d eð Þ, L2 =

k1 f Xleadð Þ − f Xið Þð Þ
f Xleadð Þ − f avg

, f Xið Þ ≥ f avg,

k2, f Xið Þ < f avg,

8><
>:

ð10Þ

where d·e represents that rounding up of L2 to an integer, f avg
is the average fitness value of whole population. k1 and k2 are
commonly set to 2 and 4, respectively.

Xi
p

Xi 1

1 1 1 1 1 1

0

0 0 0 0 0

1 10 0 1 10 0 1 10 0 1 10 0

1 10 0 0 0 0 00 0 0 0 0

1 0 1 10 0
or or

Figure 1: An illustration of moving operator.

4 Research



4.2. Flexible Population Updating Strategy. The original
population updating strategy helps to increase the popula-
tion diversity to some degree; however, it may also lead to
two problems: (1) L1, L2, and the average fitness value of
whole population f avg are evaluated in each generation
so that the computational cost increases. (2) In the cata-
strophic situation, the best objective function value is not
updated after tmax continuous generations, which can be
judged that the lead wolf has fallen into a local optimum.
Generating R new wolves based on the previous randomly
selected wolves has a tiny effect on jumping out the cur-
rent local optima, because the updated wolves may gather
to the previous lead wolf with a large probability. There-
fore, the original population updating strategy is ineffective
to introduce or maintain population diversity in a cata-
strophic situation.

Based on the above analysis, we design a simpler and
efficient population updating strategy using the Cauchy dis-
tribution random number. Cauchy distribution is a well-
known continuous probability distribution. Its probability

density function and distribution function are presented by
formulas (11) and (12), respectively.

f x, z, τð Þ = 1
πτ

⋅
1

1 + x − zð Þ/τð Þ2 , −∞ < x < +∞,τ > 0,

ð11Þ

F x, z, τð Þ = 1
2 + 1

π
arctan x − z

τ

� �
, ð12Þ

where z is the positional parameter and τ is the scaling or
shape parameter. Cauchy distribution is named the standard
Cauchy distribution C (0,1) when τ = 1 and z = 1.

The Cauchy random numbers can be obtained by
converting formula (12) to its inverse function (13), where
FðxÞ ∈ uð0, 1Þ.

x = z + τ tan π F xð Þ − 0:5ð Þð Þ: ð13Þ

Input: the parameters of BWPA including step coefficient S, distance determinant coefficient dnear , maximum number of repetitions in
scouting behavior Tmax, and population renewing proportional coefficient β
Output: the best objective value
1. Generate initial population of wolves Xi= {xi1,xi2,…, xij,…, xin}
2. Evaluate the fitness of whole population and select the initial lead wolf Ylead=max{Yi}
3. Set iteration counter for initial population g:=0
4. while g<MaxGen do
5. Scouting behavior
6. if Yi > Ylead then
7. renew the lead wolf
8. else if Yi ≤ Ylead & scouting repetition number T < Tmax then
9. takes a step towards h different directions with the moving operator ΘðXi,Ma, stepaÞ
10. else
11. update the position of wolves as in Eq. (5)
12. end if
13. Calling behavior
14. if Yi > Ylead then
15. renew the lead wolf and restart the calling behavior
16. else if Yi ≤ Ylead & dis ≤ dnear then/

∗dis is the distance between Xlead and Xi ∗/
17. wolves move to the lead wolf with the moving operator ΘðXi,Mb, stepbÞ
18. else
19. update their positions as in Eq. (6)
20. end if
21. Besieging behavior
22. if Yi > Ylead then
23. renew the lead wolf
24. else if Yi ≤ Ylead
25. wolves move to the lead wolf with the moving operator ΘðXi,Mc, stepcÞ
26. else
27. update their positions as in Eq. (7)
28. end if
29. Population updating
30. g++
31. Restart the scouting, calling, and besieging behaviors
32. end while

Algorithm 1: Binary wolf pack algorithm.

5Research



The distribution of the Cauchy distribution random
numbers with iterations is shown as Figure 2.

As can be seen from Figures 2(a) and 2(b), the Cauchy
random numbers consist of a few mutation numbers and
many smoothly fluctuating numbers. Such distribution prop-
erty is available for generating a few mutant wolves when
updating their position in the search process. Therefore, the
flexible population updating strategy can be formulated as

Xnew =
Θ Xlead,M, C1ð Þ, t > tmax,
Θ Xlead,M, C2ð Þ, t ≤ tmax,

(
ð14Þ

where C1 = djxje and C1 = C2/μ, Xnew denotes the position of
new generated wolves, and μ is the correlation coefficient that
binds the population updating in both normal and cata-
strophic situation together.

The flexible population updating strategy can be
described as follows: in normal situation t ≤ tmax, similar to
original population updating strategy, R worst wolves are
deleted and then R new wolves are generated based on the
position of lead wolf. In catastrophic situation t > tmax, con-
trary to normal situation, R current best wolves are deleted.

The pseudocode of flexible population updating strategy is
shown as Algorithm 2.

In fact, C1 and C2 can be viewed as the distance between
the reinitialized wolf and the previous lead wolf. The larger
C1 and C2 yield to new wolves that are more different from
the previous lead wolf. Therefore, C1 is larger than C2 when
μ subjects to (0,1). The new generated wolves are close to
the previous lead wolf in normal situation, and the conver-
gence rate can be accelerated because the positive individual
informant is reused, while the new generated wolves are rel-
atively far away from the previous lead wolf in catastrophic
situation, so that the negative informant is deleted and the
population diversity is increased consequently. The idea of
this dynamic population updating strategy compromises
the merits of Partial restart [46–48] and Memory scheme
[49, 50]. The dynamic population updating strategy is infe-
rior to the original ones in terms of increasing population
diversity and previous informant reusing. The capability of
adapting the dynamic environments of BWPA is developed.

4.3. Adapting in Changing Environments. All swarm
intelligence-based algorithms are initially designed for con-
verge to the optima quickly and precisely. However, when

30

20

10

0

–10

–20

–30

–40

Ca
uc

hy
 ra

nd
om

 n
um

be
r

10 20 30 40 50 60 70 80 90 100
Iteration

(a) (b)

–10 –8 –6 –4 –2 0 2 4 6 8 10

Cauchy random number

0.07

0.06

0.05

0.04

0.03

0.02

0.01

0

Pr
ob

ab
ili

ty

Figure 2: (a) Distribution of Cauchy random number with iterations. (b) Probability of Cauchy random number.

Input: N , X, Y , Xlead , Ylead , R, t, tmax
Output: new−X, new−Y
1 Generate initial population of wolves Xi= {xi1,xi2,…, xij,…, xin}
2 Rank Y = ðY1, Y2,⋯,YNÞ and X = ðX1, X2,⋯,XNÞ based on objective function values Set iteration counter for initial population
3 if t ≤ tmax then
4 for i = R + 1 : N
5 new−Xi =ΘðXlead ,M, C2Þ
6 Replace Xi with new−Xi
7 end
8 else if t > tmax then
9 for i = 1 : R
10 new−Xi =ΘðXlead ,M, C1Þ
11 Replace Xi with new−Xi
12 end
13 end if
14 Evaluate new−Y

Algorithm 2: Flexible population updating strategy.

6 Research



solving DOPs, the capability of adapting to changing envi-
ronments (i.e., detecting and tracking the changing optima
quickly) is necessary. The efficient approach of increasing/-
maintaining population diversity is significant for enhancing
the adaptation capability. However, too high level of diversity
will not always lead to better performance for an algorithm.
The knowledge transfer and diversity maintenance should
be well balanced.

In this study, the proposed flexible population updating
strategy is capable of generating new wolves at each genera-
tion, so the diversity loss problem can be well addressed.
After generating the new wolves, the fitness values of the
whole population are reevaluated at each generation; the
changed optima can be detected and tracked when all param-
eters of anMKP change. Moreover, the population is updated
with the use of previous positive information, which is also
beneficial for converging to the new optima quickly. There-
fore, any other dynamic change detecting method is required.

4.4. Design of the FWPA for DMKP. The pseudocode of pro-
posed FWPA is shown as Algorithm 3. To some extent, all
dynamic methods try to make balance between diversifica-
tion (global search), intensification (local search), and the
balance between accuracy and speed. FWPA shows a good
performance on both of them.

5. Simulation Experiments

To verify the performance of FWPA, we conduct both the
static and dynamic experiments using a set of MKP
benchmarks.

5.1. Experimental Data Set. As for stationary environment,
we select 9 different benchmark problems with different dif-
ficulty levels available on the OR-LIBRARY website (http://
people.brunel.ac.uk/mastjjb/jeb/orlib/files). The items of
these instances, n, range from 100 to 500, and the constraints,
m, vary from 5 to 30. These problems were also previously
used in [14, 51–53]. We express these instances by the nota-
tionm.n.iwhich indicates the ith instance withm constraints,
n items. For example, 10.250.00 is the first instance of
mknapcb5.txt with 10 constraints, 250 items, and tightness
ratio of 0.25.

As for the dynamic environment, similar to [13, 37],
dynamic instances of MKP are designed by updating the
parameters after a predefined simulation time units as
defined in Section 2.1. The instance of 10.250.00 was adopted
here as the initial and basic environment to generate the
changing environments. After the change occurs, the param-
eters are updated by formula (4).

5.2. Experimental Setup and Parameter Setting. For static
experiments, the correlation coefficient μ is set to 0.5,
0.75, 1, and 2, respectively, to measure its effect on the
performance of the improved BWPA. Two state-of-the-
art algorithms that have been used to solve the MKPs
are used for comparisons; they are chaotic binary particle
swarm optimization with time-varying acceleration coeffi-
cients (CBPSOTVAC) [51] and parthenogenetic algorithm
(PGA) [14]. The parameters of the algorithms were set as
shown in Table 1. For each algorithm and each problem, 30
independent runs with 1000 iterations are implemented; the
population sizes of all algorithms are equal to 100. The best

Input: the parameters of BWPA
Output: the best objective value
1 Generate initial population and select the initial lead wolf
2 Set iteration counter for initial population g:=0
3 while g<MaxGen do
5 Scouting behavior
6 Calling behavior
7 Besieging behavior
8 Population updating based on the flexible population updating strategy
9 g++
10 Restart the scouting, calling, and besieging behaviors
11 end while

Algorithm 3: Flexible binary wolf pack algorithm.

Table 1: Parameters of the algorithms.

Algorithm Main parameters

PGA Elitism rate 0.01, insert rate 0.3, reserve rate 0.3, swap rate 0.3.

CBPSOTVAC Inertial weight wmax = 1:5, wmin = 0:5, acceleration coefficient c1i = c2f = 2:5, c2i = c1f = 0:5, Vmin=4.

BWPA
Step coefficient S = 2, distance determinant coefficient dnear = 4, maximum number of repetitions in scouting behavior

Tmax = 10, population renewing proportional coefficient β = 2.
FWPA The parameters are the same as those of BWPA, μ = 0:5/0:75/1/2.

7Research

http://people.brunel.ac.uk/mastjjb/jeb/orlib/files
http://people.brunel.ac.uk/mastjjb/jeb/orlib/files


solution found (Best), the mean of the solutions (Avg.), and
the standard deviation of all solutions (Std) overruns are used
as the performance measures.

For dynamic experiments, the standard deviation σ of
normal distributions of each parameter is assumed to be
equal. σ reflects the severity of dynamic changes, so two dif-
ferent values of σp = σw = σc = 0:05 and σp = σw = σc = 0:1
are set, respectively, to test the proposed algorithm’s capabil-
ity of adapting to the different dynamic environments. In this
study, for each algorithm and each problem, 30 independent
runs with 2000 iterations are implemented, and a series of
200 iterations is adopted as the frequency of changes. There-
fore, 10 different environments were generated using the
basic environment (i.e., the instance of 10.250.00). The aver-
age best-of-generation was used to measure the algorithm’s
ability of finding a better solution at each generation in
dynamic environments.

Both static and dynamic experiments were executed
using the MATLAB software with a personal computer
bundled with Intel i7 1.6GHZ processor and 8GB RAM.

5.3. Results on Stationary Environment. Results on stationary
environment are shown in Table 2. The best results of each
instance achieved by algorithms are denoted in bold.

According to the results presented in Table 2, FWPA
proves inferior to the other three approaches in the
majority of the problems in terms of Best, Avg., and
Std. With the introduction of dynamic population updating
strategy, the proposed algorithm enables to maintain the
population diversity and enhance the capability of jumping
out of the local optima. Therefore, FWPA can find better
solutions and the efficiency of the proposed strategy is
proved.

From the comparison of the different versions of FWPA
that own different values of μ, it can be seen that the FWPA
with μ = 0:75 performs best, and the performance of the algo-
rithms with μ = 0:5, 1, and 2 is similar to BWPA. For each
test instance, the FWPA with μ = 0:75 achieves best results
in terms of Best and Avg. Therefore, the parameter μ might
affect the performance of FWPA crucially. In the following
dynamic experiments, the parameter μ is set to 0.75.

Table 2: Experimental results on stationary environments for MKPs.

Inst. (best known) PGA CBPSO TVAC BWPA
FWPA

μ = 0:5 μ = 0:75 μ = 1 μ = 2

5.500.0 (120148)

Best 117365 118242 119406 119567 119748 119540 119421

Avg. 116554 118104.6 119297.4 119333.6 119413.6 119361 119219.4

Std 646.30 311.97 89.90 180.66 222.94 445.88 184.88

5.500.14 (218966)

Best 217404 217237 218130 218257 218474 218444 218325

Avg. 216717 216815.6 21783.6 21792.5 218163 21832.6 218104.6

Std 567.87 257.11 435.19 352.54 239.09 107.92 221.07

10.100.0 (23064)

Best 22947 23055 22961 22925 23057 23055 22961

Avg. 22879.6 22958.2 22843.8 22830.8 22850.8 22926.4 22886.2

Std 55.76 194.35 93.14 83.60 124.41 109.04 68.20

10.100.14 (41884)

Best 41572 41646 41727 41748 41791 41767 41737

Avg. 41491 41525 41655.6 41643.4 41704 41688 41655.2

Std 82.76 112.91 74.56 66.98 50.90 86.52 79.41

10.250.0 (59187)

Best 57943 58338 58846 58577 58904 58736 58714

Avg. 57582.8 58132.8 58670.4 58333 58564.8 58522.6 58472.6

Std 323.03 139.42 151.10 265.13 236.87 133.49 258.26

10.250.14 (108485)

Best 107369 107546 107932 108081 108142 108090 107853

Avg. 107118.4 107067 107698 107914 107958.2 107859.2 10770.7

Std 183.70 486.99 168.55 159.78 108.08 223.03 143.45

10.500.0 (117821)

Best 114842 115067 116159 116218 116840 116574 116389

Avg. 114250.8 114852.4 116066.6 115896.2 116631.4 116134.6 116126.6

Std 645.53 357.39 247.15 268.64 150.82 334.27 308.00

30.100.14 (41058)

Best 40866 40917 40954 40957 41058 40912 40922

Avg. 40751.8 40747.8 40857.8 40817.6 40920.4 40797.6 40843.6

Std 93.86 144,72 58.17 91,75 100.65 74.92 80.97

30.250.0 (56842)

Best 55374 55921 56194 55851 56266 56060 56057

Avg. 54827 55719.4 55916.4 55554 56069.4 55818.4 55827.8

Std 445.88 209.81 219.60 294.70 234.40 300.21 223.32

8 Research



For Std, the FWPA with μ = 0:75 achieves the better
results than the compared algorithms in Inst. 10.100.14,
10.250.14, 10.500.0, and 30.100.0, which shows that the
proposed algorithm has a good stability.

5.4. Results on Dynamic Environment. Results of average
best-of-generation on dynamic environments that are gener-
ated by the instance 10.250.00 are shown in Table 3. An effi-
cient algorithm is expected to quickly adapt to new
environments and track the moving optima. From the results
presented in Table 3, it can be seen that the proposed algo-
rithm outperforms the compared algorithms for σ = 0:05
and 0.1. By partially restarting new wolves based on the
memory of previous stored informant, the proposed algo-
rithm is capable of tracking the changing optima quickly by
efficiently maintaining/introducing the population diversity.

By comparing the results when σ = 0:05 and 0.1, which
reflect the severity of the change between two dynamic envi-
ronments, it can be seen that the differences of two consecu-
tive environments become larger with the increase of σ. The
proposed algorithm is capable of tracking the changing
optima quickly and find better results than the other algo-
rithms; this situation can attribute to the powerful capability
of opening up new solution space using the dynamic popula-
tion updating strategy.

Convergence graphs of the four algorithms when σ = 0:05
and 0.1 are presented in Figures 3 and 4, respectively. For each
change, the FWPAcan achieve best results. It is apparent from
the figures that the proposed algorithm has more efficient
capability of adapting the dynamic environments.

5.5. Statistical Verification. The statistical results of com-
paring algorithms by a one-tailed test with 98 degrees of
freedom at a 0.05 level of significance are given in Table 4.
In Table 4, the t-test result regarding FWPA, BWPA, PGA,
and CBPSOTVAC is shown as “+,” “~,” and “-” when one
algorithm is insignificantly better than, insignificantly worse
than, significantly better than, and significantly worse than
the other one, respectively.

From the statistical verification presented by Table 4, we
can conclude that FWPA outperforms the other three algo-
rithms for both dynamic and stationary environments. This
result demonstrates the effectiveness of the dynamic popula-
tion updating strategy.

6. Conclusions and Future Work

This paper presents a flexible BWPA (FWPA) by designing a
novel and simpler flexible population updating strategy. The
proposed flexible population updating strategy aims at
addressing the problem of lack diversity for the WPA during
the procedure of solving dynamic optimization problems. In
fact, the flexible population updating strategy is a hybridiza-
tion of Partial restart andMemory scheme strategy. The sim-
ulation experiments on a set of static MKPs prove the
effectiveness of the proposed algorithm. Moreover, the simu-
lation experiments on dynamic MKP instances demonstrate
that the FWPA is capable of tracking the changing optima
quickly and converge to a good solution.

To the best of our knowledge, this paper constitutes
the first paper on the combinatorial dynamic optimization

Table 3: Experimental results on dynamic environments for MKPs.

Env. PGA CBPSOTVAC BWPA
FWPA

(μ = 0:75)

σ = 0:05

1 58131.4 58612.1 58667.6 58736.8

2 59507.5 60451.9 60540.2 60693.6

3 58393.3 59075.9 59028.5 59283.7

4 57377.3 57825.1 57885.6 58205.5

5 57536.6 58152.1 58292.3 58508.9

6 57352.9 57978.0 58187.3 58267.2

7 59151.5 60019.2 60208.9 60357.7

8 57425.0 57968.8 57968.4 58169.5

9 59327.7 59781.1 59907.0 60002.7

10 58601.6 59199.0 59195.0 59399.0

σ = 0:1

1 56192.1 57558.4 58371.0 58613.6

2 56070.7 58026.1 59257.0 59422.1

3 56935.1 58986.9 60776.0 61069.1

4 51729.2 52506.8 54635.9 55060.1

5 58376.2 61149.4 63197.6 63560.1

6 53055.8 55420.5 57063.8 57213.6

7 51145.4 53753.6 55662.7 55840.1

8 58366.9 61091.3 62909.5 63215.7

9 53742.7 56579.1 57636.9 57824.0

10 53224.3 56022.8 57159.0 57435.7

9Research



problems of WPA. Another contribution of the study is
extending the family of approaches for dynamic optimization.

One of the future work is conducting a comparative study
with the advanced algorithms such as jDE, SaDE, and Hyper-
Mutation GA which were designed particularly for dynamic
optimization problems. Moreover, the FWPA will be applied

on various combinatorial dynamic optimization problems
such as DTSP, DVRP, and DJSSP. Continuous dynamic opti-
mization is also an expected research issue for WPA. Besides,
as a relatively new metaheuristic algorithm, WPA has room
for developing the performance of solving dynamic optimi-
zation problems in the long run. The issues of addressing

Av
er

ag
e b

es
t-o

f-g
en

er
at

io
n

×104

0 200 400 600 800 1000 1200 1400 1600 1800 2000
Generations

4.4

4.6

4.8

5

5.2

5.4

5.6

5.8

6

6.2

6.4

FWPA
BWPA

CBPSOTVAC
PGA

Figure 4: Convergence of algorithms on dynamic environments when σ = 0:1.

0 200 400 600 800 1000 1200 1400 1600 1800 2000
Generations

5.4

5.5

5.6

5.7

5.8

5.9

6

Av
er

ag
e b

es
t-o

f-g
en

er
at

io
n

×104

FWPA
BWPA

CBPSOTVAC
PGA

Figure 3: Convergence of algorithms on dynamic environments when σ = 0:05.

10 Research



the dynamic optimization problems more efficient for WPA
can be summarized as follows:

(1) A more powerful capability of detecting and tracking
the dynamic events

(2) Faster convergence rate along with the capability of
being stuck in local optima

(3) Taking advantages of gathered evolutionary informa-
tion to decrease computational cost and adapting the
changing environment more efficiently

(4) Self-adaptive parameters tuning performance to
decrease the difficulty of implementation

Conflicts of Interest

We declared that we have no conflicts of interest to this work.
We declare that we do not have any commercial or associa-
tive interest that represents a conflict of interest in connec-
tion with the work submitted.

Acknowledgments

This work is supported by the National Science and Technol-
ogy Innovation 2030 Major Project of the Ministry of Science
and Technology of China (Grant No. 2018AAA0101200) and
the National Natural Science Foundation of China (Grant
No. 61502534).

References

[1] J.-P. Chiou and F.-S. Wang, “Hybrid method of evolutionary
algorithms for static and dynamic optimization problems with
application to a fed-batch fermentation process,” Computers &
Chemical Engineering, vol. 23, no. 9, pp. 1277–1291, 1999.

[2] S. X. Yang, “Evolutionary computation for dynamic optimiza-
tion problems,” in Proceedings of the Companion Publication
of the 2015 on Genetic and Evolutionary Computation Confer-
ence - GECCO Companion '15, Madrid, Spain, July 2015.

[3] A. Zhou, Y. Jin, and Q. Zhang, “A population prediction strat-
egy for evolutionary dynamic multiobjective optimization,”
IEEE Transactions on Cybernetics, vol. 44, no. 1, pp. 40–53,
2014.

[4] S. K. Nseef, S. Abdullah, A. Turky, and G. Kendall, “An adap-
tive multi-population artificial bee colony algorithm for
dynamic optimisation problems,” Knowledge-Based Systems,
vol. 104, no. C, pp. 14–23, 2016.

[5] Y. Jin and J. Branke, “Evolutionary optimization in uncertain
environments-a survey,” IEEE Transactions on Evolutionary
Computation, vol. 9, no. 3, pp. 303–317, 2005.

[6] C.-H. Li and S.-X. Yang, “Fast multi-swarm optimization for
dynamic optimization problems,” in 2008 Fourth Interna-
tional Conference on Natural Computation, pp. 627-628, Jinan,
China, October 2008.

[7] T. T. Nguyen, S. Yang, and J. Branke, “Evolutionary dynamic
optimization: a survey of the state of the art,” Swarm and Evo-
lutionary Computation, vol. 6, no. 10, pp. 1–24, 2012.

[8] A. Baykasoğlu and F. B. Ozsoydan, “Evolutionary and
population-based methods versus constructive search strate-
gies in dynamic combinatorial optimization,” Information
Sciences, vol. 420, no. 12, pp. 159–183, 2017.

[9] M. Mavrovouniotis, C. Li, and S. Yang, “A survey of swarm
intelligence for dynamic optimization: algorithms and applica-
tions,” Swarm and Evolutionary Computation, vol. 33, no. 4,
pp. 1–17, 2017.

[10] M. Mavrovouniotis and S. Yang, “Ant colony optimization
with immigrants schemes for the dynamic travelling salesman
problem with traffic factors,” Applied Soft Computing, vol. 13,
no. 10, pp. 4023–4037, 2013.

[11] V. Pillac, M. Gendreau, C. Guéret, and A. L. Medaglia, “A
review of dynamic vehicle routing problems,” European Jour-
nal of Operational Research, vol. 225, no. 1, pp. 1–11, 2013.

[12] N. Kundakcı and O. Kulak, “Hybrid genetic algorithms for
minimizing makespan in dynamic job shop scheduling prob-
lem,” Computers & Industrial Engineering, vol. 96, no. 6,
pp. 31–51, 2016.

[13] A. Baykasoğlu and F. B. Ozsoydan, “An improved firefly
algorithm for solving dynamic multidimensional knapsack
problems,” Expert Systems with Applications, vol. 41, no. 8,
pp. 3712–3725, 2014.

[14] A. N. Ünal and G. Kayakutlu, “A partheno-genetic algo-
rithm for dynamic 0-1 multidimensional knapsack problem,”
RAIRO-Operations Research, vol. 50, no. 1, pp. 47–66, 2016.

[15] Y. Feng, G.-G. Wang, and L. Wang, “Solving randomized
time-varying knapsack problems by a novel global firefly
algorithm,” Engineering with Computers, vol. 34, no. 3,
pp. 621–635, 2018.

[16] A. J. Page, T. M. Keane, and T. J. Naughton, “Multi-heuristic
dynamic task allocation using genetic algorithms in a hetero-
geneous distributed system,” Journal of Parallel and Distrib-
uted Computing, vol. 70, no. 7, pp. 758–766, 2010.

[17] R. Mendes and A. S. Mohais, “DynDE: a differential evolution
for dynamic optimization problems,” in 2005 IEEE Congress
on Evolutionary Computation, Edinburgh, Scotland, UK,
September 2005.

Table 4: t-test results of the algorithms.

t-test result
Static Dynamic

1 2 3 4 5 6 7 8 9 σ = 0:05 σ = 0:1
FWPA-BWPA + + + + + + + + + + +

FWPA-CBPSOTVAC + + + + + + + + + + +

FWPA-PGA + + + + + + + + + + +

BWPA-CBPSOTVAC + + + + + + + + + ~ +

BWPA-PGA + + + + + + + + + + +

PGA-CBPSOTVAC - - - - - - - - - - -

11Research



[18] J. Brest, P. Korošec, J. Šilc, A. Zamuda, B. Bošković, and M. S.
Maučec, “Differential evolution and differential ant-stigmergy
on dynamic optimisation problems,” International Journal of
Systems Science, vol. 44, no. 4, pp. 663–679, 2013.

[19] H.-S. Wu, F. M. Zhang, and L. S. Wu, “New swarm intelligence
algorithm-wolf pack algorithm,” Systems Engineering and
Electronics, vol. 35, no. 11, pp. 2430–2438, 2013.

[20] R. Menassel, B. Nini, and T. Mekhaznia, “An improved fractal
image compression using wolf pack algorithm,” Journal of
Experimental & Theoretical Artificial Intelligence, vol. 30,
no. 3, pp. 429–439, 2018.

[21] S. Gupta and K. Saurabh, “Modified artificial wolf pack
method for maximum power point tracking under partial
shading condition,” in 2017 International Conference on Power
and Embedded Drive Control (ICPEDC), Chennai, India,
March 2017.

[22] L. Zhang, L. Zhang, S. Liu, J. Zhou, and C. Papavassiliou,
“Three-dimensional underwater path planning based onmodi-
fiedwolf pack algorithm,” IEEEAccess, vol. 5, pp. 22783–22795,
2017.

[23] H.-S. Wu, F. M. Zhang, and R. J. Zhan, “An improved binary
wolf pack algorithm for solving multidimensional knapsack
problem,” Systems Engineering and Electronics, vol. 37, no. 5,
pp. 1084–1091, 2015.

[24] H. S. Wu, F. M. Zhang, R. Zhan, S. Wang, and C. Zhang, “A
binary wolf pack algorithm for solving 0-1 knapsack problem,”
Systems Engineering and Electronics, vol. 36, no. 8, pp. 1660–
1667, 2014.

[25] W. S. Wu, F. M. Zhang, and H. Li, “Discrete wolf pack algo-
rithm for traveling salesman problem,” Control and Decision,
vol. 30, no. 10, pp. 1861–1867, 2015.

[26] H. Li, R. B. Xiao, and H. S. Wu, “Modelling for combat task
allocation problem of aerial swarm and its solution using wolf
pack algorithm,” International Journal of Innovative Comput-
ing and Applications, vol. 7, no. 1, pp. 50–59, 2016.

[27] Q. K. Cao, K.W. Yang, and X. Y. Ren, “Vehicle routing optimi-
zation with multiple fuzzy time windows based on improved
wolf pack algorithm,” Advances in Production Engineering &
Management, vol. 12, no. 4, pp. 401–411, 2017.

[28] N. P. Bakas, “Numerical solution for the extrapolation prob-
lem of analytic functions,” Research, vol. 2019, Article ID
3903187, 10 pages, 2019.

[29] S. Yang, “Genetic algorithms with memory-and elitism-based
immigrants in dynamic environments,” Evolutionary Compu-
tation, vol. 16, no. 3, pp. 385–416, 2008.

[30] B. Nasiri, M. R. Meybodi, and M. M. Ebadzadeh, “History-
driven particle swarm optimization in dynamic and uncertain
environments,” Neurocomputing, vol. 172, no. 1, pp. 356–370,
2016.

[31] H. Kellerer, U. Pferschy, D. Pisinger, and D. Knapsack Prob-
lems, “Multidimensional knapsack problems,” in Knapsack
Problems, pp. 235–283, Springer, Berlin, Heidelberg, 2004.

[32] A. Fréville, “The multidimensional 0-1 knapsack problem:
an overview,” European Journal of Operational Research,
vol. 155, no. 1, pp. 1–21, 2004.

[33] J. Langeveld and A. P. Engelbrecht, “Set-based particle swarm
optimization applied to the multidimensional knapsack prob-
lem,” Swarm Intelligence, vol. 6, no. 4, article 73, pp. 297–342,
2012.

[34] G. R. Raidl, “An improved genetic algorithm for the multicon-
strained 0-1 knapsack problem,” in 1998 IEEE International

Conference on Evolutionary Computation, pp. 207–211,
Anchorage, AK, USA, May 1998.

[35] S. K. Basu and A. K. Bhatia, “A naive genetic approach for
non-stationary constrained problems,” Soft Computing,
vol. 10, no. 2, pp. 152–162, 2006.

[36] V. Roostapour, A. Neumann, and F. Neumann, “On the per-
formance of baseline evolutionary algorithms on the dynamic
knapsack problem,” in Parallel Problem Solving from Nature –
PPSN XV. PPSN 2018. Lecture Notes in Computer Science, vol
11101, A. Auger, C. Fonseca, N. Lourenço, P. Machado, L.
Paquete, and D. Whitley, Eds., Springer, Cham, 2018.

[37] J. Branke, M. Orbayı, and Ş. Uyar, “The role of representations
in dynamic knapsack problems,” in Applications of Evolution-
ary Computing. EvoWorkshops 2006. Lecture Notes in
Computer Science, vol 3907, F. Rothlauf, Ed., Springer, Berlin,
Heidelberg, 2006.

[38] P. Rohlfshagen and X. Yao, “The dynamic knapsack problem
revisited: a new benchmark problem for dynamic combinato-
rial optimisation,” in Applications of Evolutionary Computing.
EvoWorkshops 2009. Lecture Notes in Computer Science, Vol
5484, M. Giacobini, Ed., Springer, Berlin, Heidelberg, 2009.

[39] S. Yang and X. Yao, “Experimental study on population-based
incremental learning algorithms for dynamic optimization
problems,” Soft Computing, vol. 9, no. 11, pp. 815–834, 2005.

[40] C.-H. Li and S. X. Yang, “A generalized approach to construct
benchmark problems for dynamic optimization,” in Simulated
Evolution and Learning. SEAL 2008, Lecture Notes in Computer
Science, vol 5361, X. Li, Ed., Springer, Berlin, Heidelberg, 2008.

[41] B. C. Dean, M. X. Goemans, and J. Vondrák, “Approximating
the stochastic knapsack problem: the benefit of adaptivity,”
Mathematics of Operations Research, vol. 33, no. 4, pp. 945–
964, 2008.

[42] Y. He, X. Zhang, W. Li, X. Li, W. Wu, and S. Gao, “Algorithms
for randomized time-varying knapsack problems,” Journal of
Combinatorial Optimization, vol. 31, no. 1, pp. 95–117, 2016.

[43] A. N. Ünal, “A genetic algorithm for the multiple knapsack
problem in dynamic environment,” in Proceedings of theWorld
Congress on Engineering and Computer Science 2013 Vol II
WCECS 2013, p. 2, San Francisco, CA, USA, October 2013.

[44] R. Shuai, W. Jing, and X. Zhang, “Research on chaos partheno-
genetic algorithm for TSP,” in 2010 International Conference
on Computer Application and System Modeling (ICCASM
2010), Taiyuan, China, October 2010.

[45] M. Randall, “A dynamic optimisation approach for ant colony
optimisation using the multiple knapsack problem,” in 2th
Australian Conference on Artificial Life, Sydney, Australia,
November 2005.

[46] R. Zhou, H. P. Lee, and A. Y. C. Nee, “Applying ant colony
optimisation (ACO) algorithm to dynamic job shop schedul-
ing problems,” International Journal of Manufacturing
Research, vol. 3, no. 3, pp. 301–320, 2008.

[47] M. R. Khouadja, L. Jourdan, and E. Talbi, “Adaptive particle
swarm for solving the dynamic vehicle routing problem,” in
ACS/IEEE International Conference on Computer Systems
and Applications-AICCSA 2010, pp. 1–8, Hammamet, Tunisia,
May 2010.

[48] M. R. Khouadjia, B. Sarasola, E. Alba, L. Jourdan, and E. G.
Talbi, “A comparative study between dynamic adapted PSO
and VNS for the vehicle routing problem with dynamic
requests,” Applied Soft Computing, vol. 12, no. 4, pp. 1426–
1439, 2012.

12 Research



[49] S. Yang, “Memory-based immigrants for genetic algorithms in
dynamic environments,” in 7th annual conference on Genetic
and evolutionary computation,, pp. 1115–1122, Washington.
DC, USA, June2005.

[50] H. Wang, D. Wang, and S. Yang, “Triggered memory-based
swarm optimization in dynamic environments,” in Applica-
tions of Evolutionary Computing. EvoWorkshops 2007. Lecture
Notes in Computer Science, vol 4448, M. Giacobini, Ed.,
Springer, Berlin Heidelberg, 2007.

[51] M. Chih, C. J. Lin, M. S. Chern, and T. Y. Ou, “Particle swarm
optimization with time-varying acceleration coefficients for
the multidimensional knapsack problem,” Applied Mathemat-
ical Modelling, vol. 38, no. 4, pp. 1338–1350, 2014.

[52] S. Boussier, M. Vasquez, Y. Vimont, S. Hanafi, and
P. Michelon, “Amulti-level search strategy for the 0-1 multidi-
mensional knapsack problem,” Discrete Applied Mathematics,
vol. 158, no. 2, pp. 97–109, 2010.

[53] S. Hanafi and C. Wilbaut, “Improved convergent heuristics for
the 0-1 multidimensional knapsack problem,” Annals of
Operations Research, vol. 183, no. 1, pp. 125–142, 2011.

13Research


	Flexible Wolf Pack Algorithm for Dynamic Multidimensional Knapsack Problems
	1. Introduction
	2. Problem Definition and Related Work
	2.1. Definition of the Dynamic Multidimensional Knapsack Problem
	2.2. Related Work on DMKPs

	3. Overview of Binary Wolf Pack Algorithm
	4. Proposed Flexible Wolf Pack Algorithm
	4.1. Original Population Updating Strategy in BWPA
	4.2. Flexible Population Updating Strategy
	4.3. Adapting in Changing Environments
	4.4. Design of the FWPA for DMKP

	5. Simulation Experiments
	5.1. Experimental Data Set
	5.2. Experimental Setup and Parameter Setting
	5.3. Results on Stationary Environment
	5.4. Results on Dynamic Environment
	5.5. Statistical Verification

	6. Conclusions and Future Work
	Conflicts of Interest
	Acknowledgments

