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Abstract: The corpus luteum is a small gland of great importance because its proper functioning
determines not only the appropriate course of the estrous/menstrual cycle and embryo implantation,
but also the subsequent maintenance of pregnancy. Among the well-known regulators of luteal
tissue functions, increasing attention is focused on the role of neuropeptides and adipose tissue
hormones—adipokines. Growing evidence points to the expression of these factors in the corpus
luteum of women and different animal species, and their involvement in corpus luteum formation,
endocrine function, angiogenesis, cells proliferation, apoptosis, and finally, regression. In the present
review, we summarize the current knowledge about the expression and role of adipokines, such
as adiponectin, leptin, apelin, vaspin, visfatin, chemerin, and neuropeptides like ghrelin, orexins,
kisspeptin, and phoenixin in the physiological regulation of the corpus luteum function, as well as
their potential involvement in pathologies affecting the luteal cells that disrupt the estrous cycle.

Keywords: corpus luteum; progesterone; luteinization; luteolysis; adipokines; neuropeptides

1. Introduction

The corpus luteum (CL) is a transient endocrine gland with a short lifespan including
its development, functional establishment, and regression. The main function of CL is
progesterone (P4) production, which prepares the uterus for implantation and pregnancy
maintenance [1]. Besides, the luteal P4 content appears to provide a good index of normal
CL function [2]. In the case of failed fertilization, CL regresses in the process of luteolysis,
and subsequently, a new cycle may begin; hence, the CL also plays a central role in the reg-
ulation of the estrous/menstrual cycle [1]. Thus, the complex processes, including the for-
mation, maintenance, and regression of CL, as well as efficient steroidogenesis, are among
the most significant and strictly regulated by luteotropic and luteolytic factors/events in
mammalian reproduction. Therefore, any abnormalities in the CL physiology may lead to
numerous pathologies, and consequently, infertility. For instance, inappropriate vascular-
ization leads to aberrant CL development and the reduced concentration of P4 named the
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luteal phase deficiency [3]. These disturbances have a negative impact on endometrium
growth and its secretory activities, causing miscarriages or preterm delivery [4,5]. On
the other hand, the overstimulated proliferation and luteinization of anovulated follicle,
without ovulatory luteinizing hormone (LH) peak, leads to CL cyst formation [6], whereas
stromal luteoma [7] and pregnancy luteoma are CL tumors connected to the extensive pro-
liferation of large luteal cells (LLCs) [8]. Thus, knowledge about new factors participating
in the CL formation and modulation of such processes as steroidogenesis, angiogenesis,
cell proliferation, and apoptosis, as well as the mechanism of its actions and interactions, is
necessary to prevent infertility events connected with CL dysfunction.

Reproductive success depends on physiological mechanisms that control hormonal
homeostasis influencing female reproduction on four levels: central effects on the hy-
pothalamus and pituitary, peripheral and local effects on the ovary and reproductive
tract, direct effects on the oocyte and embryo, and effects during pregnancy. Thus, in
recent years, a lot of attention has been paid to new endocrine factors like neuropeptides,
as well as adipokines produced by the white adipose tissue (WAT) which influence the
hypothalamic–pituitary–ovarian (HPO) axis [9]. The expression of several adipokines
including adiponectin, chemerin, resistin, visfatin, omentin, as well as their receptors has
been described both in human and animal reproductive tissues. The adipokines were found
to regulate female fertility by direct influence on the numerous processes, including oocytes
maturation, follicular steroidogenesis, angiogenesis, cell proliferation, and apoptosis, as
well as fertilization, implantation, and placental function [10]. Moreover, neuropeptides,
like phoenixin, which affects pituitary hormones secretion, regulates the estrous cycle,
ovarian follicles maturation, and ovulation [11], or kisspeptin (Kiss1), which controls
Gonadotropin-releasing hormone (GnRH) secretion, mediate endocrine and metabolic
inputs into the regulation of human reproduction [12].

In the present review, we described the following adipokines: leptin, adiponectin,
apelin, visfatin, vaspin, chemerin, as well as neuropeptides: orexins, ghrelin, Kiss1, and
phoenixin impact on luteal cells physiology, focusing on its formation, angiogenesis,
steroidogenesis, prostaglandin synthesis, proliferation/apoptosis, and regression pro-
cesses. In this paper, we also analyzed their connection with CL pathologies such as cysts
formation, luteal dysfunction, or neoplasia, and postulated their future implications in
pathologies recognition or treatment.

2. Corpus Luteum Structure and Physiology

The corpus luteum develops immediately after ovulation by forming from the ovarian
follicle cells in a process called luteinization. It is a heterogeneous structure composed
mainly of two types of steroidogenic cells [13]. LLCs come from granulosa cells (Gc), while
small luteal cells (SLCs) have theca interna cells (Tc) origin. Besides this, the CL includes
other types of cells, such as pericytes [14] and endothelial cells [15], as well as fibrob-
lasts [16], and cells of the immune system (macrophages, lymphocytes, neutrophils) [17].
These cells are also sources of hormones, growth factors, and cytokines, and their mutual
interactions are important in both luteinization and luteolysis. In the first days of the luteal
phase, after ovulation, the follicle walls collapse, and the basement membrane between
the Gc and Tc disappears. In this way, blood vessels can penetrate the developing CL.
The above-described luteinization is typical and occurs, for example, in pig. In humans,
SLCs do not mix with LLCs and form an outer layer surrounding LLCs. In some species,
such as horses and marmosets, CL is composed entirely of cells derived from Gc [13].
During luteinization occurs hypertrophy, which causes an increase in the size of the gland.
Generally, in luteal cells (LCs), the suppression of cell proliferation and their arrest in the
G1 phase are observed. Cell cycle inhibitors, such as cyclin-dependent kinase inhibitor 1B
(p27Kip1), are expressed in LCs. Nevertheless, in some species like pigs and sheep, LCs
derived from the Tc retain their ability to proliferate [18]. The developing CL so-called
corpus hemorrhagicum requires the creation of blood vessels to ensure proper blood flow
to the gland and transport of hormones. The endothelial cells and pericytes present in the
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CL are responsible for the formation of blood vessels. Endothelial cells produce angiogenic
factors such as vascular endothelial growth factor (VEGF), fibroblast growth factor (FGF),
angiopoietin 1 (ANG-1), and many others, which in turn stimulate their proliferation and
migration, thus creating blood vessels [19].

The main function of the CL is the already mentioned production of P4 which enables
embryo implantation and the maintenance of pregnancy (Figure 1). Basically, both SLCs
and LLCs, are capable of producing this steroid, however, LLCs are more secretory-active.
They are characterized by regular, spherical cell nuclei and an extensive cytoplasm. In
addition, LLCs have a greater rough and smooth endoplasmic reticulum, as well as the
Golgi apparatus, numerous mitochondria, and lipid droplets, and regardless of the LH
level, they produce large amounts of P4. Thanks to the occurrence of rough endoplasmatic
reticulum and unlike SLCs, LLCs are able to produce peptide hormones and cytokines.
In turn, SLCs have irregular nuclei and a less developed endoplasmic reticulum. Unlike
large cells, they remain dependent on LH stimulation, and when this hormone reaches high
levels in the blood, they are able to produce P4. After LH binds to its receptor on the surface
of these cells, adenylate cyclase is activated, the cyclic adenosine monophosphate (cAMP)
levels increase, and the protein kinase A (PKA) pathway is activated, which ultimately
results in an increase in P4 production [20]. The most important step in luteal P4 production
is the transport of cholesterol to the inner mitochondrial membrane. Steroidogenic acute
regulatory protein (STAR) is a factor that is responsible for this process [21]. Subsequently,
the cytochrome P450 family 11 subfamily A member 1 (CYP11A1), located in the mito-
chondrial membrane, catalyzes the conversion of cholesterol to pregnenolone (P5), which
diffuses out the mitochondria. The final stage takes place in the smooth endoplasmic
reticulum where P5 is converted to P4 thanks to the activity of the hydroxy-delta-5-steroid
dehydrogenase (HSD3B1) [22].
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Figure 1. Corpus luteum development, morphological and hormonal changes during the luteal phase.
VEGF—vascular endothelial growth factor, FGF—fibroblast growth factor, ANG-1—angiopoietin
1, PCNA—proliferating cell nuclear antigen, p27Kip1—cyclin-dependent kinase inhibitor 1B,
P4—progesterone, STAR—steroidogenic acute regulatory protein, CYP11A1—cytochrome P450 fam-
ily 11 subfamily A member 1, HSD3B1—hydroxy-delta-5-steroid dehydrogenase, BCL-2—B-cell
lymphoma-2 protein, PGE2—prostaglandin E2, PGF2α—prostaglandin F2α.
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The corpus luteum has a limited life span and must regress if the oocyte is not fertilized.
The development of the CL, as well as its regression, occurs in a similar way in many species,
but different factors are involved in the regulation of these two processes. The most impor-
tant luteotropic factors in many species are LH (humans, ruminants, and pigs) [23], prolactin
(PRL) (in rodents and rabbits) [5], and prostaglandin E2 (PGE2) (in humans, cattle, and
ruminants) [24,25]. Luteolysis is mainly initiated by another prostaglandin—prostaglandin
F2α (PGF2α), which is derived mostly from the uterus. In cattle and pigs, uterine PGF2α
additionally initiates local PGF2α production in CL. Luteolytic changes appear around
day 17 of the estrous cycle in cow, and on day 13 in pigs. On the surface of LCs, the
expression of the prostaglandin F receptor (PTGFR) increases, and they become sensitive to
PGF2α [26]. Binding to the receptor results in the activation of phospholipase C, increasing
the level of Ca2+ and, consequently, the activation of protein kinase C (PKC). Subsequently,
P4 secretion is inhibited, autophagy together with apoptotic changes in CL appear, leading
to its complete regression [20]. In primates, PGF2α does not initiate luteolysis. The process
is the result of insufficient LH stimulation [27]. However, if fertilization occurs, the cyclic
CL becomes gestational CL, and produces P4 continuously until the end of pregnancy, as
in pigs, cows, and dogs, or for part of it, as in humans and cats, where the gestational CL
is functional only for the first part of pregnancy when its function is taken over by the
placenta [28].

3. Characteristic of Adipokines and Neuropeptides, Their Receptors, and Mechanism
of Action
3.1. Leptin

Leptin is a small 16 kDa protein of great physiological importance due to its pleiotropic
function in various systems and tissues in humans and other species. The discovery of
this hormone in 1994 initiated research into the endocrine role of the adipose tissue and
resulted in the discovery of other adipokines. Leptin expression is mainly noted in the
WAT and its level increases in obese people [29]. Therefore, circulating leptin levels change
with the nutritional status and show circadian fluctuations [30]. The human leptin gene
is located on chromosome 7 and encodes a 167 amino-acid (aa) product. In mammals,
leptin’s aa sequence is highly conserved, and there are also orthologs in amphibians,
reptiles, and fish [31]. Nevertheless, the duck and chicken leptin transcripts have only
26–30% of identity in common with human leptin [32]. The main characteristic function
of leptin is to maintain energy metabolism from the central level in the brain, influencing
the appetite and satiety center, to the peripheral action in muscles, pancreas, and liver,
regulating glucose metabolism [33]. In mammals, leptin binds to its receptor (LEPR, also
called OBR) to activate multiple signaling pathways as Janus kinase 2/signal transducer
and activator of transcription 3 (JAK2-STAT3), mitogen-activated protein kinase (MAPK),
phosphatidylinositol-4,5-bisphosphate 3-kinase/protein kinase B (PI3K/AKT), and protein
kinase AMP-activated catalytic subunit alpha 2 (AMPK or PRKAA2) [34]. There are at least
five leptin receptor isoforms because of alternative splicing (LEPRa, LEPRb, LEPRc, LEPRd,
and LEPRe), which have the same N-terminal ligand-binding domain and a different C-
terminal region. The LEPRa, LEPRb, LEPRc, and LEPRd have a single transmembrane
region, while LEPRe (also called SLR for soluble leptin receptor) is truncated proximal
to the membrane-spanning domain [35]. These isoforms are expressed in the major part
of tissues [36]. The LEPRb is the longest isoform and is essential for energy homeostasis.
Similarly, short OBR isoforms allow bodyweight regulation [35].

Concerning JAK2/STAT3 pathway, LEPR activation induces the recruitment and ac-
tivation of JAK2 which phosphorylates tyrosine residues within the cytoplasmic domain
of LEPRb and generates multiple signal cascades. This activates STAT proteins that play
a role in the regulation of the transcription of genes important for food intake and lipid
metabolism. In the hypothalamus, leptin inhibits AMPK, resulting in an increase in acetyl-
coenzyme A carboxylase (ACC) activity and the reduction of food intake. In contrast, in
mice skeletal muscles, leptin activates AMPK, causing a decrease in ACC and carnitine
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palmitoyltransferase 1 (CPT1) activity, and subsequently, inducing an increase in mitochon-
dria β-oxidation [35] and fatty acid oxidation. Leptin can stimulate AMPK phosphorylation
directly in skeletal muscle, but also indirectly via the hypothalamic-sympathetic nervous
system axis [37]. Leptin can also inhibit the hepatic stearoyl-Coenzyme A desaturase-1
(SCD-1) activity to regulate lipoprotein metabolism and energy expenditure. In addi-
tion, leptin modulates, via the JAK/STAT pathway, the expression of genes important for
thermogenesis, such as the thyrotropin-releasing hormone (TRH) in rats [35].

Leptin also plays a role in reproductive functions. Indeed, leptin gene knockout mice
are infertile due to the incapacity of the hypothalamus to produce GnRH. This phenomenon
is restored by exogenous leptin administration [34]. Leptin receptors are highly expressed
in the hypothalamic-pituitary-adrenal (HPA) axis and gonads [32]. In mammals, it seems
that leptin affects ovarian functions. Indeed, it has an antagonistic effect on in vitro insulin-
like growth factor 1 (IGF1)-induced steroidogenesis in Gc and Tc, and enhances in vitro
mammalian and avian oocytes’ cytoplasmic and nuclear maturation, as well as porcine
embryo development [34,38].

3.2. Adiponectin

In 1996, Maeda et al. isolated, for the first time, adiponectin cDNA from the human
WAT [39]. At the same time, Hu et al. isolated adiponectin cDNA from a murine fibroblast
cell line [34,40]. Adiponectin is the most abundant hormone in the human plasma and
the most abundant protein in human adipose tissue [34,41]. The human adiponectin gene
contains three exons [42]. The full-length human adiponectin protein is composed of 244 aa.
After proteolytic cleavage, a small fragment is generated: the globular domain of the
protein (gAd) which is present in the plasma [43]. The primary structure of adiponectin is
composed of an N-terminal collagen domain, a signal sequence of 18 aa, a variable region
of 24 aa, a collagen-like fibrous domain of 65 aa, a C1q-like globular domain of 137 aa, and
finally, of a C-terminal globular domain [44]. After translation, there is a modification of
the structure by hydroxylation and glycosylation. Adiponectin can create three oligomeric
isoforms: low molecular weight (LMW; 60 kDa) composed of three adiponectin monomers
(28 kDa), middle molecular weight (MMW; 150 kDa), and high molecular weight (HMW;
multimer of 12–32 adiponectin monomers) [42]. In chicken, the predominant isoform in
plasma and adipose tissue is the HMW form. This phenomenon could be explained by the
higher number of lysine residues in the chicken collagen domain compared to the human’s
one, an element able to generate the multimerization and formation of a stable unique
HMW isoform [45].

Adiponectin receptors are AdipoR1 and AdipoR2; there is a close homology between
avian and mammalian AdipoR1 and AdipoR2, which may suggest that their genes are
evolutionarily conserved [46]. They are composed of an N-terminal domain, seven trans-
membrane domains, and a C-terminal domain. However, they differ from G-protein
coupled receptors, as their N-terminal region is cytoplasmic and the C-terminal region is
extracellular [42]. AdipoR1 is abundant in skeletal muscles, while AdipoR2 is abundant in
the liver [47]. Moreover, T-cadherin acts as a receptor of HMV and MMW, but not for LMW
adiponectin isoforms in skeletal muscles [48]. The HMW isoform plays a significant role in
the regulation of insulin signaling [43]. Adiponectin and its receptors were also found in
turkey [49] and goose [50].

The main function of adiponectin is to improve insulin sensitivity and enhance glucose
utilization and fatty acid oxidation [34]. Adiponectin could initiate the adaptor protein,
phosphotyrosine interacting with the PH domain, and the leucine zipper 1 (APPL1)-AMPK
signaling pathway. APPL1 binds to the intracellular domain of AdipoR and generates
the translocation of transcription factors into the nucleus. This signaling induces cell
migration, matrix metalloproteinases (MMP) activation, and collagen remodeling in the rat
cardiac fibroblasts [51], and attenuates neuronal apoptosis in hypoxia-induced ischemia in
neonatal rats [52]. Moreover, adiponectin-induced STAT3 phosphorylation and could be
positively influenced by APPL1. This process generates an inhibition of the adiponectin
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effects on hepatic gluconeogenesis in male C57BL/6 mice. Finally, adiponectin, by the
activation of p-AMPK and peroxisome proliferator-activated receptor α (PPARα) signaling
pathways, promotes fatty acid oxidation. Adiponectin is also able to generate vasodilatation,
endothelial cell proliferation, and migration via endothelial nitric oxide synthase (eNOS)
phosphorylation induced by p-AMPK. The stimulation of glucose uptake by adiponectin
is achieved through GLUT4 translocation mediated by the p-p38 MAPK [42]. In chickens,
it was shown that adiponectin inhibited the lipid deposition and the differentiation of
preadipocytes via p38 MAPK/ATF2 and TOR/p70 S6 kinase signaling pathways [53].

In the case of reproductive functions, it was shown that adiponectin is able to regulate
in vivo and in vitro gonadotropin secretion and GnRH and KISS1 genes expression. Indeed,
adiponectin was shown to regulate ovarian steroidogenesis in most mammals [34]. In rats,
adiponectin, AdipoR1, and AdipoR2 (commonly named as the adiponectin system) are
strongly expressed in oocytes, cumulus cells, Tc, and less abundantly, in Gc. It has been
hypothesized that adiponectin could be involved in Gc steroidogenesis [54]. In humans,
it has been shown that Tc expressed adiponectin, AdipoR1, and AdipoR1, while Gc ex-
pressed both receptors. Adiponectin could have a potential implication in polycystic ovary
syndrome (PCOS) [55]. In mice and humans, adiponectin supplementation during in vitro
maturation has positive effects on early embryo development and meiotic progression [56].
In hens, adiponectin is more expressed in Tc than Gc from preovulatory follicles, AdipoR1
is more expressed in Gc than Tc, and AdipoR2 is expressed in the same way in both types of
follicular cells. Thus, it seems that adiponectin could be involved in chicken preovulatory
follicle development and oocyte maturation [34,57]. It has been shown that the adiponectin
system is expressed at different stages of chicken embryo development [58].

3.3. Apelin

In 1998, during experiments focused on searching for a ligand for the G-coupled
receptor (GPCR) APJ, Tatemoto et al. [59] purified apelin from bovine stomach extracts. The
apelin cDNA encodes 77 aa preproproteins. In humans and cattle, the N-terminal end is
rich in hydrophobic aa, suggesting that it is the secretory signal sequence. The aa sequence
of the isolated bovine peptide corresponds to the deduced sequence of the preprotein from
positions 42 to 58, suggesting that apelin is one of the processing products derived from the
preprotein C-terminal end [59]. After post-translational modification, many active isoforms
of apelin rise which are different in aa sequences length: apelin-36,-17, -13, and the last
form of pyroglutamylated apelin-13 [60]. The distribution of each of the mature apelin
forms in tissues is different [61].

APJ is a G protein-coupled receptor and it was identified in 1993 by O’Dowd et al. [62].
The gene of apelin receptor encodes a protein of 380 aa. The APJ contains seven hydrophobic
transmembrane domains with consensus sites for phosphorylation by PKA, glycosylation,
and palmitoylation [62]. In the Chinese hamster ovary (CHO) cells, apelin-13 and apelin-36
activate the ERK1/2 signaling pathway by binding to APJ coupled with Gi1 and Gi2. On
the other hand, it has been shown that the activation of Akt kinase is a downstream effect
of apelin signaling [63]. Furthermore, in human umbilical vein endothelial cells (HUVEC),
apelin induces the double phosphorylation of the ribosomal protein S6 kinase B2 (p70S6K)
generating cell proliferation through PTX-sensitive G-protein, ERK1/2, Akt, and mTOR
cascades. Without apelin, APJ heterodimerizes with other GPCRs and is also able to activate
signaling pathways [64].

The expression of the apelinergic system (apelin and its receptor) was found in human
Gc and Tc, cumulus, and weakly in the oocyte [64], as well as in the Tc of mice [65]. In pig,
the expression of the apelinergic system is observed in the ovarian follicles, and increases
during follicle growth [66]. Apelin enhances estradiol (E2) and P4 secretion in human
and porcine Gc [66,67]. In cattle, it has a negative effect on in vitro oocyte maturation by
blocking the meiotic progression at the germinal vesicle stage [68]. Apelin enhances rat,
porcine, and bovine granulosa cells proliferation [66].
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3.4. Visfatin

Visfatin is a 52 kDa protein that is considered a cytokine, enzyme, and adipokine,
resulting from its multidirectional action in the organism. It was first identified in 1994
when Samal et al. [69] cloned a cytokine called pre-B-cell colony enhancing factor (PBEF)
from a human peripheral blood lymphocyte cDNA library. Another name that can be
found in the literature for this protein is nicotinamide phosphoribosyltransferase (NAMPT).
The human visfatin is predominantly expressed in bone marrow, muscles, and liver [69].
In 2002, Rongvaux et al. [70] found the murine homolog of PBEF. They characterized
it as an enzyme catalyzing the reaction between nicotinamide and 5-phosphoribosyl-1-
pyrophosphate to yield nicotinamide mononucleotide (NMN), being an intermediate in
the nicotinamide adenine dinucleotide (NAD) biosynthesis [70]. At the same time, visfatin
was identified as a cytokine hormone and an enzyme involved in immune and metabolic
disorders [64]. In mammals, visfatin/NAMPT exists in 2 forms: extra- (eNAMPT) and
intracellular (iNAMPT) [71]. The iNAMPT is a NAD biosynthetic enzyme and it plays an
important role in the activation of sirtuin in mitochondria [72]. It is also involved in the
metabolism, cellular regulation to nutrient availability, maturation, and cell survival [34].
In contrast, eNAMPT is released by cancer cells and could be used as a cancer-derived
biomarker [72,73]. It also acts as an adipokine. Therefore, visfatin is involved in energy
metabolism in mammals and birds [34]. In 2012, Li et al. [74] cloned the chicken visfatin
gene from adult gonads and liver. The chicken visfatin protein has a high sequence identity
in common with humans and rats [74]. In chickens, visfatin is expressed more strongly in
skeletal muscles [75,76].

The visfatin receptor and its cellular mechanism of action remain unclear. However,
some scientists have involved the insulin receptor signaling pathway in the visfatin ac-
tion [77–79]. Moreover, the recently published data also indicate that visfatin can participate
in inflammation processes by the activation of Toll-like receptor 4 (TLR-4) [80,81].

Visfatin expression was noted in different structures of ovaries in hens, turkeys, cattle,
mice, and humans [49,82]. In cattle, visfatin is expressed in Tc and Gc, cumulus cells, and
oocytes [83], while in mice, visfatin expression was noted additionally in stromal and
endothelial cells [84]. In humans, visfatin is expressed in Gc, cumulus cells, oocytes, and,
to a lesser extent, in Tc [85]. An in vitro study showed that visfatin inhibits P4 production
in Gc via STAR and HSD3B downregulation [86]. Contrary to these reports in cows, it
was shown that visfatin increases steroidogenesis and potentializes effects of IGF1 by
increasing STAR and HSD3B expression and, consequently, E2 and P4 secretion [83]. In
the male reproductive system, visfatin is expressed in human and rat testis [87,88] and
human spermatozoa [87]. These findings implicate visfatin in rat spermatogenesis and
steroidogenesis [88].

3.5. Vaspin

Vaspin, also named SerpinA12, belongs to the serine proteases inhibitors family [89],
targeting kallikrein 7 and 14 [90,91]. This adipokine is encoded by the SERPINA12 gene
that is present on the long arm of chromosome 14 (14q32.1) in humans and consists of
1236 nucleotides [89]. The encoded protein is composed of three β-sheets, nine α-helices,
and a flexible reactive center loop with a protease recognition sequence on the top. The
signal peptide is a part of the N-domain [92]; additionally, at asparagine residues of this
domain in humans, there are three predicted glycosylation sites [93]. Vaspin molecular
weight is 45 kDa and the protein is composed of 392, 394, and 395 aa in rats, mice, and
humans, respectively. There is 61.5% identity in common between human and rat vaspin aa
sequences [92], while the vaspin-kallikrein 7 complex has 70 kDa [90]. Its expression was
noted for the first time in the visceral adipose tissue (VAT) of rats [89], and then in many
tissues, including the liver, pancreas [94], skin [95], placenta [96], stomach, cerebrospinal
fluid, hypothalamus [97], and ovaries [98]. Its levels in plasma and follicular fluid were
noted to be around 0.18 to 1.55 ng/mL in humans [99], and at the level of 1 ng/mL in
pigs [98]. The literature indicated several vaspin expression regulators. For example, its
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level depends mostly on body weight; significantly lower concentrations of the adipokine
were observed in the serum of underweight children [100], and the mRNA of vaspin in the
adipose tissue was increased by body mass increase [101]. Besides, other factors increasing
vaspin expression in VAT and serum are insulin, insulin resistance, and leptin elevation,
while in liver, exposure to a high-fat diet was described in many species, including rats,
mice, and humans [102]. Moreover, in porcine ovarian follicles, vaspin expression was
upregulated with fattening [98]; all these findings clearly indicate its compensatory role
in obesity.

The 78 kDa glucose-regulated protein (GRP78), also named as heat shock protein
family A member 5 (HSPA5) [103], was described as a vaspin receptor. The GRP78 is
encoded by a gene found in humans on chromosome 9. The HSPA5/GRP78 consists of
4532 nucleotides located in eight exons [104]. The functional gene promoter is divided into
two parts, the distal domain elevating the basal expression of GRP78 and the proximal reg-
ulatory response to various stimuli [104]. The encoded protein with a molecular weight of
78 kDa is built from 654 aa in humans [105]. The GRP78 structure consists of three domains:
10 kDa C-terminal tail, and 20 kDa domain C-terminus which binds polypeptides, and 44
kDa domain in N-terminus binding ATP [106]. The receptor gene expression was detected
in the brain, thyroid, thymus, and adipose tissue, as well as the placenta, ovary, and testes
of humans, rats, and mice [105]. Protein abundance was noted mostly in the endoplasmatic
reticulum (ER) lumen, and its levels were elevated under the influence of ER stressors, such
as sugar deficit, and inhibited protein glycosylation, or in disturbing intracellular calcium
storage [104]. The GRP78 expression is regulated by different hormones, for example,
in cows’ ovaries, its mRNA was elevated by FSH (follicle-stimulating hormone) [107],
whereas in rats, it was elevated by PGF2α [108]. Furthermore, in human neuronal cells,
leptin stimulates GRP78 protein [109]. Interestingly, the receptor expression depends on
the fattening level in the porcine adipose tissue [110], while in mice, liver was inhibited
by caloric restriction [111]. The GRP78 mainly regulates peptide translocation throughout
the ER membrane targets misfolded proteins to degradation in ER, as well as regulates
cell survival [112]. Interestingly, in the reproductive tract, GRP78 regulates CL function
maintenance via the inhibition of caspase activation, affecting the capacitation of sperm and
participating in uterine receptivity/sensitization, as well as embryo development [113].

Vaspin binding to GRP78 may regulate the physiology of different cell types. The
probable mechanism depends on GRP78 [103] and vaspin [114] affinities for negatively
charged cell membrane phospholipids. Moreover, binding sites in the GRP78 hydrophobic
region have not been described yet, while vaspin binds GRP78 via helical domains in the
N-terminus [103]. Vaspin activates multiple kinase pathways which allows for pleiotropic
function in the organism. For example, AKT pathway activation stimulates insulin secre-
tion in rats’ pancreatic islets [115], as well as relating to the osteogenic differentiation in
mice [116]. Furthermore, AMPK phosphorylation and nuclear factor kappa B subunit 2
(NFKB2) downregulation inhibit the level of gene expression of adhesion molecules in hu-
man vascular endothelial cells [117]. Through the phosphorylation of MAPK/p38, vaspin
inhibits apoptosis in human osteoblasts [118]. Moreover, by activation of GRP78 and PKA,
but not MAP3/1 pathways vaspin stimulates ovarian follicular steroidogenesis [119], while,
via the activation of MAP3/1, AKT, and STAT3, participates in proliferation induction and
apoptosis inhibition in pigs [120]. Interestingly, via MAP3/1 and PRKAA1, vaspin also
regulates in vitro porcine oocytes maturation [121].

3.6. Chemerin

Chemerin, another member of the adipokines group, was firstly described by two
independent research teams in 2003 as the natural ligand of chemokine-like receptor 1
(CMKLR1, ChemR23), an orphan GPCR related to the chemokine receptors [122,123].
The hormone, known also as retinoic acid receptor responder protein 2 (RARRES2) or
tazarotene-induced gene 2 (TIG2) protein, was identified as a product of the gene with
the expression up-regulated under the influence of tazarotene, the RAR β/γ-selective
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anti-psoriatic agent [124]. The RARRES2 gene consists of six exons and five introns and, in
humans, is located on chromosome 7q36.1. The coding sequence of the porcine chemerin
gene shared about 87.7% and 72.3% similarities with human and mouse sequences, re-
spectively [125]. The human chemerin aa sequence shares about 66%, 63%, 76%, and 84%
identities with rat, mouse, cattle, and pig sequences, respectively [126]. RARRES2 encodes
a biologically inactive hormone precursor called prochemerin. In humans, prochemerin
consists of 163 aa with a 20-aa hydrophobic signal peptide [127]. In the bloodstream,
several different extracellular serine-, cysteine- or carboxypeptidases cleave prochemerin
C-terminus, which results in the formation of active hormone isoforms. The diversified
activity of the hormone depends on its cleavage site and the type of involved protease [126].

Chemerin has been found to exert pleiotropic effects, including the modulation of
insulin sensitivity and the regulation of food intake, energy homeostasis, and adipose
tissue function [128,129]. The hormone has also been found to exert opposite, pro- and
anti-inflammatory effects in the organism. Chemerin was reported to act as a chemotactic
agent for immune cells such as leukocytes, macrophages, and immature dendritic cells
during inflammation [128]. However, it has been indicated that adipokine inhibits the
secretion of pro-inflammatory cytokines, such as interleukin-6 (IL-6) and tumor necrosis
factor-α (TNFα) [128]. The expression of chemerin was confirmed in different tissues of
various species, such as mice, rats, cattle, pigs, and poultry [49,125,130–132]. In humans,
besides the WAT, the expression of the hormone was confirmed in the brown adipose tissue,
liver, lungs, kidneys, skeletal muscles, ovaries, and placenta [133–135]. In human blood,
the hormone concentration reached levels of 100 to 200 ng/mL [136]. Plasma chemerin
concentration was found to be correlated with body mass index (BMI), as well as with age
and sex [134]. In pigs, the plasma chemerin concentration was determined at the level of
70 to 160 ng/mL, and was dependent on the animals’ physiological status (the period of
the estrous cycle or stage of pregnancy) [137].

Chemerin exerts its influence through binding to three GPCRs: CMKLR1, G protein-
coupled receptor 1 (GPR1), and C-C motif chemokine receptor-like 2 (CCRL2). CMKLR1 is
the best-known chemerin receptor. GPR1 has a similar structure to CMKLR1, however, its
role has not been fully explored. Due to the fact that both receptors are expressed in different
tissues, it is assumed that they may play different functions. The presence of CMKLR1 has
been confirmed mainly in cells connected with the immune system, such as macrophages,
natural killer cells, plasmacytoid dendritic cells, and myeloid dendritic cells, while the
expression of GPR1 was detected mostly in cells related to the central nervous system
(CNS) [123,138,139]. Variable levels of chemerin expression were observed in the porcine
hypothalamus during the estrous cycle; higher in the early- and mid-luteal phases [137].
Chemerin and CMKLR1 were also detected at the level of mRNA and protein in mouse
and human ovary under the physiological state [133]. The signal transduction mechanism
of the chemerin receptors is based on MAPK/ERK1/2 and PI3K/AKT pathways (through
CMKLR1), and on the AMPK signaling pathway (through both CMKLR1 and GPR1) [140].
Moreover, it was indicated that chemerin, by binding to CMKLR1, may initiate the influx
of intracellular Ca2+, the repression of cAMP, and the phosphorylation of p42–p44 MAP
kinases [123]. The structure of the third chemerin receptor, CCRL2, prevents it from the
transduction of signal into the cell. However, it was indicated that the receptor binds the N-
terminal region of the adipokine and exposes chemerin’s C-terminus to CMKLR1 localized
on the other cells [141]. The expression of CCRL2 was reported, i.a., in the immune system
cells, such as T cells, macrophages, and neutrophils [139].

In general, chemerin has an inhibitory effect on ovarian steroidogenesis. In human
Gc, it decreases both basal and IGF-1-induced P4 and E2 secretion [142]. The inhibition of
in vitro oocyte maturation in cattle through MAPK/ERK1/2 kinases pathways under the
influence of the hormone was also noted [140].
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3.7. Orexins

Orexin A (OXA) and B (OXB) are hypothalamic-derived neuropeptides that arise as
products of proteolytic cleavage from a common 130 aa precursor called prepro-orexin
(PPO) [143]. The human PPO gene is located on chromosome 17q21 and consists of two
exons and one intron, 1432 bp in length. The first exon, consisting of 143 bp, includes
the 5′-untranslated region and a small part of the coding region. The coding region deliv-
ers the sequence of the first seven residues of the secretory signal sequence. The second
exon consists of the sequence encoding the rest of the open reading frame, as well as the
3′-untranslated region [144,145]. The porcine PPO gene is located on the SSC12 region
of chromosome 12 and consists of one intron and two exons with an overall length of
1247 bp [146]. As mentioned above, both hormones are products of the proteolytic cleavage
of 130 aa prepro-orexin protein. The estimated aa sequence homology between OXA and
OXB is 46%. OXA, considered the more biologically active one, contains 33 aa and has
a molecular weight of 3.5 kDa. OXB has a molecular weight of 2.9 kDa and contains
28 aa [144,145]. The hormones were originally discovered in the rat lateral and posterior
hypothalamus, structures involved mainly in the control of energy homeostasis and food
intake [144,145]. Despite the fact that orexin-positive cell nuclei were localized mainly
in the lateral and perifornical areas of the hypothalamus, their fibers project through all
structures of the CNS [147,148]. The neuropeptides were also identified as modulators
of sleep regulation and arousal [149]. Orexins have also been found to play a role in
the rewarding process and addiction, sensory modulation, stress processing, locomotion,
and cognition [150–154]. The concentrations of orexins were determined in the plasma of
different species. In rats, OXA concentrations reached the level of 12 to 14 pg/mL [155].
In humans, the concentrations of OXA and OXB were determined at the levels of 6.76
to 1000 pg/mL and 670 pg/mL, respectively [156,157]. In pigs, during the estrous cy-
cle, the serum OXA level varied from 210 and 350 pg/mL, whereas OXB—from 210 to
380 pg/mL [158]. During the early gestation period, porcine OXA and OXB concentrations
were determined at 102 to 704 pg/mL and 40 to 4077 pg/mL, respectively. A growing
body of evidence indicates the role of orexins in the regulation of different endocrine axes,
including the HPO axis [159–165].

Orexins have a pleiotropic effect through binging to two GPCRs, containing seven
transmembrane domains: orexin receptor type 1 (OX1R) and type 2 (OX2R). While OX1R
was found to be highly selective for OXA, OX2R binds both orexins with similar affin-
ity [144,145]. These receptors share 94% and 95% sequence identity for both humans and
rats, which indicates the high conservativeness between the species. Both receptors have
been found to mediate the effect of orexin binding through activating PKC, as well as
elevating the intracellular Ca2+ ions level [166]. Several research works indicate that orex-
ins may act on the target cells through a number of signaling pathways, including PI3K,
ERK 1/2, p38, AKT, and MAPK [167–173]. For more, it was also indicated that orexins
may exert their effect by affecting cAMP synthesis and via the activation of the mTORC1
signaling pathway [174–176]. In the central nervous system, orexin receptors have been
localized in many brain regions, including the hippocampus, amygdala, anterior and lat-
eral hypothalamus [177–179]. Besides the central nervous system, the orexin receptors are
widely expressed in a variety of species and tissues. OX1R and OX2R were localized in
the human WAT, digestive tract, and pancreas, as well as in testes, endometrium, and pla-
centa [180–183]. In rat, the expression of the receptors was confirmed, i.a., in the pituitary,
thyroid, jejunum, gonads, lungs, and kidney [155]. In pigs, both orexins have been found
to be expressed in the adipose tissue, pancreas, pituitary, ovaries, uterus, trophoblasts, and
embryos [161,162,180,184–186]. The relationship between orexins and gonadal steroids, of
which the production is regulated by orexins, is reciprocal, and does not just take place at
the ovarian level. Plasma concentrations of OXA and OXB fluctuated during the estrous
cycle in pig, which strongly suggests their dependence on gonadal steroids’ action [158].
Similarly, orexins levels and the expression of their receptors in the hypothalamus and
pituitary in rats [187–191] and pigs [161,192] were dependent on animal hormonal status
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related to the phases of the estrous cycle, pregnancy, gender, the administration of steroid
hormones, and gonadectomy.

The occurrence of orexin receptors in the hypothalamus and pituitary, two higher
branches of the HPO axis, allows the indirect effect of orexins on the reproductive system by
controlling the secretory activities of both structures. Orexin A enhanced GnRH release in
rat hypothalamic explants harvested from females at proestrus [193]. Orexin A also induces
GnRH gene expression and release from GT1-7 neurons [194]. On the other hand, it has been
shown that orexins injected into the third ventricle inhibited LH secretion in ovariectomized
rats [195]. In the case of the pituitary, there was found a stimulatory effect of both orexins on
basal FSH and LH secretion by anterior pituitary cells of proestrus rats [196], and inhibitory
influence of OXA on GnRH-induced LH release by these cells [193]. Immunohistochemical
analysis indicated the presence of the orexin system in porcine ovarian follicles. Moreover,
OXA affected the steroidogenesis and proliferation of Gc [197]. In early pregnant pigs,
the variable and regulated by P4 expression of PPO, OX1R, and OX2R was noted in the
endometrium, trophoblast, and embryo [186,198].

3.8. Ghrelin

Ghrelin was firstly identified in 1999 in the rat stomach as a gut-derived ligand of
an orphan GPC receptor, which is able to stimulate the secretion of growth hormone
(GH) [199]. The hormone is known for its pleiotropic effects on the organism. In humans,
the ghrelin gene called ghrelin and obestatin prepropeptide (GHRL) is composed of four
coding exons and a short first exon of 20 bp, which is termed exon 0. Exons from 1 to
4 encode a 117 aa precursor called prepro-ghrelin. Exon 1 encodes the signal peptide,
whereas the 28 aa coding sequence of the hormone is encoded by parts of exons 1 and 2.
Exon 3 of the gene was found to encode another hormone, obestatin [200–202]. Human,
mouse, and rat GHRL genes were mapped to chromosomes 3p26-256, E3|6 52.84 cM,
and 4q42, respectively [202,203]. As mentioned above, prepro-ghrelin is a precursor of
two peptides: ghrelin and obestatin. Ghrelin is a 28 aa peptide, with the n-octanoylated
modification on the serine 3. The modification was found to be essential for the hormone’s
biological activity [199]. Later, studies on the structure of the hormone revealed another
possible modification of its sequence involving the deletion of Gln14 [204]. The expression
of the hormone gene and/or protein has been confirmed in many species and tissues. The
highest amount of ghrelin’s encoding mRNA was observed in the gastrointestinal tract
and pituitary, whereas the lowest was in the lungs and ovaries [205]. The expression of
the hormone was also confirmed in the CNS, gastrointestinal tract, and reproductive tract
of rats and pigs, as well as in the CNS and gastrointestinal tract of mice [199,206–214]. In
humans, there were normal plasma ghrelin concentration estimates on 10 to 20 fmol/mL
for n-octanoyl modified hormone and 100 to 150 fmol/mL for total ghrelin, including
acyl-modified and des-acyl form of ghrelin. The plasma hormone level has been found
to be elevated during fasting, and reduced in obese individuals [215,216]. In rats, the
plasma levels for n-octanoyl form and total ghrelin concentrations were at the levels of
4.02 fmol/mL and 219.6 fmol/mL, respectively [217]. In pigs, the plasma level of the total
hormone was reported to be at a level of 67.2 pg/mL [218]. Ghrelin may take part in the
regulation of metabolism affecting food intake and body weight [219]. The hormone is
also involved in the regulation of processes such as GH release, cardiovascular system
functioning, and gastrointestinal motility [220–222]. Furthermore, the hormone has also
been shown to be involved in the mechanisms of learning and memory, reward/addiction,
and depression/anxiety [223–226].

The presence of the receptor responsible for the stimulation of GH release in the
pituitary and hypothalamus of pigs was firstly described by Howard et al. [227] in 1996,
and it was called GH secretagogue receptor (GHS-R). GHS-R belongs to the GPCRs family
and consists of, depending on the species, from 364 to 367 aa, and seven transmembrane
domains [227–229]. Two GHS-R subtypes were identified; the full-length type 1a receptor
and the truncated type 1b. The hormone receptor subtypes are the effect of alternative
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splicing of a single gene. Since GHS-R1a is the functionally active, signal-transducing
form of the receptor, GHS-R1b lacks two domains, 6 and 7, and is unable to bind a ligand
and transduce a signal [229]. Due to the negligible role of GHS-R1b in the ghrelin actions,
herein we will focus only on GHS-R1a. The GHS-R1a structure is characterized by a
high homology between species. Human and rat polypeptide chain sequences share
96.1% homology, whereas human and porcine sequences share a 94.5% similarity [229].
Furthermore, the transmembrane region of the receptor is even more conservative, showing
over 98% sequence similarity in these species [230]. The mechanism of ghrelin signal
transduction is based primarily on the changes in Ca2+ ions concentration via the activation
of G-protein subtype Gaq/11. The activation of the Gaq/11 subtype results in the activation
of phospholipase C (PLC) and PKC, the production of inositol triphosphate (IP3), and, as
a result, the release of Ca2+ ions [231]. Ghrelin has also been found to mediate its effect
via the activation of the ERK1/2, PI3K, and AKT kinases, and the activation of the AMPK
signaling pathway [232–236]. GHS-R1 is widely expressed in mammalian tissues. In the
CNS, the expression of the receptor has been reported in the hypothalamus, and pituitary
of rats, humans, and pigs [227,237,238]. Besides the CNS, the expression of GHS-R1a was
also confirmed in many other peripheral tissues. In humans, the expression of the receptor
was confirmed in the adrenals, myocardium, thyroid, spleen, and pancreas, as well as in
testis, ovaries, and endometrium [239–241]. In rats, the expression of ghrelin receptor has
also been localized in gastrointestinal tissues, kidneys, pancreas, and testes [217,242–245].
In pigs, besides CNS, the receptor has been reported in ovaries and testes [246,247].

In general, ghrelin influences the reproductive system by inhibiting LH secretion
in humans, rats, sheep, and monkeys [248]. Similarly, at the ovary level, ghrelin down-
regulated the secretion of steroids: testosterone (T), E2, and P4, which is also seen in the
altered expression of HSD3B, hydroxysteroid 17-beta dehydrogenase 1 (HSD17B1), and cy-
tochrome P450 family 19 subfamily A member 1 (CYP19A1/P450AROM) proteins in mature
pigs [249]. Interestingly, in the in vitro culture of the ovarian cells from prepubertal pigs,
ghrelin exerts the opposite effect on steroidogenesis [250]. The expression of ghrelin and
GHS-R1a mRNAs has also been shown in chicken ovary, where ghrelin is able to induce
proliferation markers and, at the same time, reduce apoptosis markers and stimulate the
secretion of P4, E2, arginine-vasotocin, and IGF1 [251]. Ghrelin can also influence the oocyte
maturation with a negative effect on cumulus cells viability in cattle [252]. Elevated serum
ghrelin levels are observed in women suffering from PCOS [253].

3.9. Kisspeptin

In 1996, Lee et al. [254] isolated, for the first time, Kiss1 from the melanoma cell line.
The kisspeptin gene was officially named KISS1 [254]. In 2001, Kotani et al. [255] found
that Kiss1 was a natural ligand of GPR54, previously considered an orphan GPCR. Thereby,
GPR54 was also called Kiss1R [255]. The receptor and its ligand are collectively called the
Kiss1 system. In humans, KISS1 is translated to preprokisspeptin, including the signal
peptide to be loaded to the transporting vesicles. Next, the peptide is proteolytically cleaved
at the next site to the dibasic residues by the subtilisin-like convertase. The C-terminal of
nuclear receptor coactivator 4 (RFG) is amidated by the carboxypeptidase. The human Kiss1
is composed of 145 aa propeptide cleaved into a 54 aa peptide, which may be processed to
a shorter peptide of 10, 13, or 14 aa. The kisspeptin protein sequence is highly conserved
between species [256]. Kisspeptin-54, kisspeptin-14, and kisspeptin-13 were purified from
human placenta [58,257]. In cattle, sheep, and goats, the longest form is kisspeptin-53, and
in mice, it is kisspeptin-52 [258].

In 2013, Bianco and Kaiser predicted the KISS1R structure in cellular membrane
considering the aa sequence, which results in three extracellular and three intracellular
loops and seven transmembrane helices [259]. The intracytoplasmic C-terminal region
binds to the regulatory and catalytic subunits of phosphatase A2 [260], and then the Kiss1R
signal induces the increase of Ca2+ levels, the activation of calcium-dependent signaling
pathways, MAPKp38, and ERK1/2 kinases in GnRH neurons. Indeed, when Kiss1 binds
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its receptor, there is an activation of the Gq/11-mediated PLC signaling pathway, and then
a release of intracellular Ca2+ and arachidonic acid [255]. It is suggested that this signaling
cascade allows GnRH release via the GnRH neurons depolarization [261].

In mammals, the Kiss1 system has an important role in reproduction [262], but also
a potential role in metabolism [258]. In 2003, the Kiss1 role in reproduction was first
discovered in human patients. The loss of function due to the mutation of GPR54 leads to
hypogonadotropic hypogonadism characterized by a deficiency in LH and FSH secretion,
infertility, and a lack of puberty onset [263,264]. The same results were observed with
transgenic mice which did not express Kiss1 or its receptor [263]. Kisspeptin expression is
influenced by leptin. Indeed, leptin receptors were found in Kiss1 neurons in the arcuate
nucleus of ob/ob mice [265]. In humans, the Kiss1 system is expressed in spermatozoa [266],
and Kiss1 is also expressed in the ovarian follicle, but it is stronger in cumulus cells than in
mural Gc [267].

3.10. Phoenixin

In 2013, with the use of modern bioinformatics tools, advanced algorithms, and
databases, such as the Human Genome Project, the Samson group identified a hitherto
unknown peptide, which was called phoenixin. Successively, it was possible to confirm
its presence in many species, including humans, rodents, pigs, cows, or zebrafish [268].
Phoenixin is produced mainly in the hypothalamus by the proteolytic cleavage of a small
integral membrane protein 20 (SMIM20). In humans, a gene for this precursor is located
on chromosome 4 at position p15.2 [269]. The hormone exists in many isoforms which
differ in the length of aa sequences and are named phoenixin-42, -36, -26, -20, -17 and
two predominant forms—phoenixin-20 and -14, which are the most active, and occur
in larger amounts in many tissues. It is a highly conserved peptide among species, for
instance, phoenixin-14 has identical sequences in humans, rats, mice, and pigs, while
phoenixin-20 differs in one amino acid between the coding regions of human, canine,
and porcine sequences [268]. The highest expression of this peptide was noted in the rat
hypothalamus. Additionally, in particular, the co-expression of phoenixin-14 and nesfatin-1
occurs at a high range of 70–86% [270]. This peptide is also widely expressed in peripheral
tissues, beginning from the heart [271], thymus, stomach [268], pancreas [272], lung, and
kidney [273], and in the adipose tissue [274], and ovary [275,276]

In 2016, Stein et al. using the deductive receptor-matching strategy, and proposed the
G protein-coupled receptor 173 (GPR173) as a candidate for the phoenixin receptor. So
far, the studies on the influence of phoenixin seem to confirm this assumption. The use
of GPR173 siRNA abolishes the action of phoenixin in the brain, heart [277], and ovarian
follicles [276]. The GPR173 also termed in literature as SREB3 belongs to the superfamily
named the super conserved receptor expressed in the brain (SREB) and consists of seven
transmembrane helical domains, each with one site of phosphorylation [278]. In the case of
this receptor, phosphorylation causes its desensitization and endocytosis [279]. Interestingly,
similar asparagine sites at the N-terminus have receptors for GnRH and LH, suggesting
the importance of GPR173 in the regulation of reproductive functions [280,281]. Until
now, no endogenous agonists have been found for GPR173, but some evidence indicates
that the GnRH-derived peptide formed after cutting this hormone by endopeptidase may
bind to GPR173 to inhibit nerve cell migration in wound healing [282]. It is plausible that
some effects of phoenixin can be GnRH receptor-dependent, e.g., cetrorelix, GnRH receptor
(GnRH-R) antagonist, abolishing phoenixin-induced memory recognition and anxiolytic
effects [283]. Phoenixin-20 can increase the level of cAMP as well as the phosphorylation of
ERK1/2 and CREB (cAMP response element-binding protein), indirectly activating PKA to
stimulate the expression of GnRH mRNA [284].

The existing literature indicates the involvement of phoenixin in metabolism, e.g., the
development of obesity, insulin resistance, or the pathogenesis of inflammatory reactions
of the body, and increased food intake. The effects of this neuropeptide improve memory
and reduce anxiety [277,285]. In humans, the association of phoenixin with long-term
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changes in body weight has been described in PCOS patients where a positive correlation
between BMI and phoenixin levels has been demonstrated [286]. Billert et al. showed that
phoenixin-14 is involved in the proliferation and differentiation of 3T3-L1 cells and primary
rat preadipocytes, thus promoting adipogenesis [274].

Studies on the role of phoenixin in female reproduction are still limited. Neverthe-
less, it is well established that this neuropeptide acts on higher branches of the HPG axis.
Indeed, the intracerebroventricular injection of phoenixin-14 increases GnRH levels in
female rats [287]. In zebrafish, phoenixin 20 can also increase the expression of GnRH-R
and kisspeptin [288]. It is notable that both the GnRH-R agonist (buserelin) and antagonist
(cetrorelix) can modulate the expression of SMIM20 and GPR173 in the entire HPO axis
in adult rats [289]. An in vivo study indicated that the injection of both active isoforms
of phoenixin significantly increased LH plasma levels in female rats [268]. Conversely,
the study conducted in fish Scatophagus argus showed that phoenixin stimulates the gene
expression of gonadotropins, LH and FSH, as well as the GnRH-R in the pituitary, without
affecting GnRH in the hypothalamus, indicating that phoenixin in fish can regulate the
HPO axis directly at the pituitary level [290]. The latest study of Nguyen et al. showed
phoenixin and GPR173 expression in women’s ovaries, and its beneficial effect on ovarian
steroidogenesis and Gc proliferation [276]. In recent years, the first works on the involve-
ment of phoenixin in pathologies of the reproductive system such as PCOS appeared. A
higher phoenixin-14 level was observed in women with PCOS compared to the controls,
and it was positively correlated with LH, FSH, total T level, and BMI [286]. Our team’s
research also indicates a higher phoenixin-14 level in the plasma of rat model of PCOS;
we observed a higher SMIM20 mRNA expression in the ovary and adipose tissue, while
phoenixin-14 peptide production was higher only in the ovary of the PCOS rat [275].

4. Expression and Function of Adipokines and Neuropeptides in the Corpus Luteum
4.1. Leptin

Although most studies focus on the presence of leptin and its receptors in Tc and Gc,
as well as on the role of the adipokine in the regulation of ovarian follicles and oocytes
physiology, there is evidence for leptin system expression also in the CL of various species.
The presence of leptin mRNA and protein has been described in the CL of humans [291],
rats [292], pregnant and non-pregnant pigs [293–295], cattle [296], mares [297], goats [298],
and water buffalo (Bubalus bubalis) [299] (Table 1). The leptin transcript has also been
found in canine CL during pregnancy and the estrous cycle [300], and the adipokine
protein has been immunolocalized in the murine LCs [301]. The expression of LEPR
transcript and protein has been reported in the CL of rats [301,302], pregnant and non-
pregnant pigs [294,303–306], mares [297], and water buffalo [299]. Leptin receptor mRNA
presence has also been observed in the CL of humans [291], pregnant baboons [307],
pregnant and non-pregnant cattle [296,308], and bitches [300]. Additionally, the expression
of the receptor protein has been reported in murine [309], rabbit [310], alpaca [311], and
Japanese black bear [312] CL. The differentiated expression of the leptin system components
dependent on the stage of CL functioning suggests that it may be affected by steroid
hormones [292,293,296,297,299,300,306,308]. The in vitro studies of isolated porcine LCs
revealed an up-regulatory role of E2, P4, and LH on leptin transcript content and the protein
secretion [313,314]. Moreover, the study of Ryan et al. showed that human chorionic
gonadotropin (hCG) may also increase the mRNA level of the adipokine and both variants
of the leptin receptor, LEPRa, and LEPRb, in the murine CL [309].
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Table 1. Expression of adipokines, neuropeptides and their receptors in corpus luteum during
the estrous cycle. The factors that are expressed not only in the estrous cycle (EC) but also in the
pregnancy (PR) corpus luteum have been appropriately marked. AdipoR1—adiponectin receptor
1, AdipoR2—adiponectin receptor 2, APJ—apelin receptor, CMKLR1—chemokine-like receptor 1,
GPR1—G protein-coupled receptor 1, CCRL2—C-C motif chemokine receptor-like 2, OX1R—orexin
receptor type, OX2R—orexin receptor type 2, GHSR—GH secretagogue receptor, KissR1—kisspeptin
receptor, GPR173—G protein-coupled receptor 173.

Adipokine
Species Expression

Gene Protein

leptin human, rat, pig (EC, PR), cattle, horse, goat, water
buffalo, dog (EC, PR)

human, rat, pig (EC, PR), cattle, horse, goat,
water buffalo

LEPR human, baboon (PR), cattle (EC, PR), dog, rat, pig
(EC, PR), horse, water buffalo

rat, pig (EC, PR), horse, water buffalo, mouse,
rabbit, alpaca, Japanese black bear

adiponectin rat, cattle, pig, water buffalo rat, cattle, pig, water buffalo

AdipoR1, AdipoR2 rat, cattle, pig, water buffalo rat, cattle, pig, water buffalo

apelin cattle, rhesus monkey, pig, mouse cattle, sheep, pig, dog

APJ cattle, rhesus monkey, pig, mouse cattle, sheep, pig, dog

visfatin water buffalo, cattle, pig (EC, PR) water buffalo, cattle, mouse, pig (EC, PR)

vaspin pig pig

chemerin pig (EC, PR), cattle, rat, mouse pig (EC, PR), cattle, rat

CMKLR1 pig (EC, PR), cattle, mouse, rat pig (EC, PR), cattle, rat

CCRL2 pig (EC, PR), cattle pig (EC, PR), cattle

GPR1 mouse, pig (EC, PR), cattle mouse, pig (EC, PR), cattle

orexin pig, rat, water buffalo pig, rat

OXR1, OXR2 pig, rat, water buffalo pig, rat

ghrelin pig, rat (EC, PR), horse, cattle, water buffalo, goat,
sheep

pig, rat (EC, PR), human, horse, cattle, water
buffalo, sheep

GHSR pig, human, horse, cattle, water buffalo, goat pig, human, horse, cattle, water buffalo,

kisspeptin rat, water buffalo rat, water buffalo, dog, cat, rabbit (PR)

Kiss1R rat, water buffalo rat, dog, cat, water buffalo, rabbit (PR)

phoenixin pig pig, human

GPR173 pig pig

In pigs, during the early luteal phase, leptin added alone and in combination with
GH had no effect on P4 secretion by luteal cells [315]. In this period, leptin decreased
caspase 3 activity in the porcine CL (Figure 2). On the other hand, treatment with leptin
and IGF1 suppressed P4 secretion and stimulated the apoptosis rate. In mature CL, leptin
added concomitantly with IGF1, diminished P4 production, however, no effect on caspase
3 activity was found. It has been concluded that the action of leptin is restricted to the
stage of CL formation. During the early luteal phase, leptin acts as an anti-apoptotic factor,
which is necessary for the maintenance of homeostasis in developing CL [315]. In water
buffalo, leptin alone exerted a significant stimulatory effect on P4 synthesis in a dose-
and time-dependent manner; however, in the presence of IGF1, an antagonistic effect was
observed [316]; it has been found that there was a gradual increase in the expression profiles
of the genes and proteins responsible for steroidogenesis, such as STAR, CYP11A1, HSD3B1,
with respect to dose and time duration, and this contributed to increased P4 synthesis.
Moreover, leptin had an inhibitory effect on apoptosis promoting cellular proliferation and
angiogenesis [316]. These observations suggest that, in water buffaloes, leptin regulates



Cells 2022, 11, 957 16 of 47

ovarian steroidogenesis, angiogenesis, and cell proliferation, and it can control the effect of
systemic factors, such as IGF1 [316]. Moreover, a direct stimulatory, dose-dependent effect
of leptin on P4 secretion by CL was reported by Galvão et al. [297] in equine during the
early- and mid-luteal phases of the estrous cycle. Similarly, in the bovine CL during the
early luteal phase, leptin, at physiological concentrations (10 ng/mL), in the presence of
IGF-1 (100 ng/mL), caused a significant increase in P4 secretion by LCs [308]. These results
suggest that leptin may also be the regulator of steroidogenesis in horses and cattle. In
ewes, ovarian exposure to physiological concentrations of leptin on day 3 of the estrous
cycle did not affect P4, E2, or LH concentrations compared to control [317]. These results
suggest a lack of leptin effect on ovarian functions at this stage of the cycle in this species,
and that the effect of leptin on steroidogenesis may be species-specific. Furthermore, E2
and P4 increased leptin gene expression and leptin secretion by the porcine LCs, indicating
that steroid hormones affect leptin mRNA levels and leptin secretion during the mid-luteal
phase of the estrous cycle and early pregnancy [313,314]. Thus, it seems that not only does
leptin affect steroid hormones secretion, but steroids can also affect leptin expression.
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Studies on the influence of leptin on prostaglandin secretion by the ovary are limited
to two experiments. In the equine early luteal cells, leptin increased PGE2 secretion in a
dose-dependent manner [297]. In cats during proestrus, leptin promoted PGF2α release by
the cultured ovarian fragments [318]. Growing evidence indicates that leptin can stimulate
blood vessel growth and CL development. In vivo studies in alpacas have shown that the
administration of leptin during pre-ovulatory fasting increased the vascularization of the
CL, and a positive correlation between vascularization, CL diameter, and plasma P4 levels
was demonstrated [319]. Induced leptin deficiency (after anti-leptin antibody treatment)
during the growth and maturation of the caprine CL resulted in an increase in the number
of large diameter vessels, the number of undeveloped CLs with abnormal morphology, and
a higher ratio of LLCs to SLCs. Leptin replacement therapy following an induced leptin
deficiency promoted normal tissue development, an increase in overall tissue mass, and
the formation of a structure that resembled the mature CL [298]. The results of in vitro
studies seem to confirm the role of leptin in the formation of CL. In goats, leptin stimulated
ANG-1, FGF2, and VEGF gene expression, but only in early-stage luteal cultures [320]. On
the other hand, in the cultured porcine LCs, isolated from days 5–7 of the cycle, leptin
dose-dependently decreased VEGF, ANG-1, and FGF2 mRNA abundance [321].

4.2. Adiponectin

Chabrolle et al. [54] found that the adiponectin system, including adiponectin and
its two receptors AdipoR1 and AdipoR2, was highly expressed in adult rats CL; it was
the first time that AdipoR1 and AdipoR2 were characterized in the rat ovary. Immature
females were treated by pregnant mare serum gonadotropin (PMSG) for 24h, and then
with hCG for 48 h. Using immunohistochemistry, they found that the adiponectin system
was more expressed in CL than in Gc. PMSG and hCG induce ovulation and luteinization,
so the authors hypothesize that an increase in adiponectin and AdipoR1 protein could be
due to a high proportion of CL in the ovary in response to hCG treatment, suggesting that
adiponectin could be associated with rat luteal growth and development [54]. Maillard et al.
discovered, for the first time, that adiponectin, AdipoR1, and AdipoR2 were expressed
in bovine CL [322]. Tabandeh et al. [323] studied the expression of adiponectin and its
two receptors AdipoR1 and AdipoR2, along with the active CL lifespan and in regression
in the bovine ovary. They found that, at the beginning of CL growth, there is a decrease
of adiponectin system expression, while during CL regression, the adiponectin system is
more expressed [323]. Campos et al. [324] found that adiponectin, AdipoR1, and AdipoR2
are expressed in the porcine CL; they classified 2 groups of hypo-fertile and hyper-fertile
gilts based on the number of piglets of the two previous gestations. They discovered that
sub-fertile sows have lower levels of circulating adiponectin in plasma and in follicular
fluid, which correlate with the inhibition of steroidogenesis and lower number of CL, while
in adipose tissue, adiponectin expression is higher. Additionally, it also notes the alerted
expression of adiponectin system in the ovary: the protein content of adiponectin is lower
in the CL of sub-fertile pig; in contrast, AdipoR1 and AdipoR2 levels increase [324]. In pigs,
adiponectin mRNA expression is higher in CL than in Gc and Tc during days 2 to 3, 10 to
12, and 14 to 16 of the luteal phase. For the protein, adiponectin is less expressed at days 10
to 12 of the luteal phase [325]. In buffalo, the adiponectin system is expressed at each stage
of the luteal phase, but it varies depending on the stage. The adiponectin system is more
expressed during the early luteal stage and regression [326].

Maleszka et al. [325] showed that porcine LCs in vitro exposed to physiological con-
centrations of adiponectin have shown a decrease of P4 concentration only in cells derived
from CL in the middle of the luteal phase, but not at the beginning and the end of the
luteal phase. Recombinant adiponectin induces the gene expression of prostaglandin E
synthase (PGES) in porcine Gc [327], which is a key limiting enzyme in the prostaglandin
biosynthesis pathway [328]. Furthermore, recombinant adiponectin induces the gene ex-
pression of cyclooxygenase-2 (COX2) [327]. Sakurai et al. [329] discovered that COX2
activity could be linked to functional CL because of its capacity to stimulate angiogenesis in
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immature rats. Few data are available about the impact of adiponectin on proliferation and
apoptosis in CL. However, Anuradha et al. [330] hypothesized that the high concentration
of adiponectin in CL could allow the prevention of apoptosis in LCs. When bats were
treated with adiponectin during late embryonic development, there was an increase in cell
proliferation markers, such as proliferating cell nuclear antigen (PCNA), and a decrease in
active caspase 3, thus, adiponectin could allow the reactivation of luteal activity, and then
could prevent the apoptosis of LCs [330].

4.3. Apelin

The expression of apelin was confirmed in the CL of different species, for example,
Shirasuna et al. [331] demonstrated, for the first time, the presence of apelin and APJ in
the bovine CL. The authors show that the mRNA expression of apelin and APJ increases
through the luteal phase with the highest peak in the late stage of CL for apelin and
the regression luteal phase for APJ. Shirasuna et al. [331] also detect the mRNA and
protein expression of both apelin, and APJ only the smooth muscle cells of luteal arterioles.
Additionally, Shilffarth et al. [332] obtained similar results; the authors showed that apelin
mRNA levels increase in early and mid-luteal phases in the bovine ovary. The protein
expression of apelin and APJ was also confirmed in adult ewes; the authors of this study
demonstrated that the expression of apelin and APJ mainly occurs in the LLCs [333]. Xu
and Stouffer in 2012 [334] reported that apelin and APJ are expressed in the CL of rhesus
monkeys. The authors demonstrated high levels of apelin in the CL in the early- to mid-late
luteal phases, with a decline in the late luteal stages. Differences in APJ expression have also
been demonstrated by the authors: low levels in the early luteal phase and the highest levels
in the mid–late luteal phase, and a decline in expression in the very late luteal phase [334].
The expression of apelin and APJ (mRNA and protein) has also been confirmed in the CL
of pigs [67]; the quantity of apelin (mRNA and protein) was similar in early and mid-luteal
CL and then decreased in regressing CL and APJ amount is the highest in mid-luteal
CL. Różycka et al. [67] also demonstrated differences in the immunolocalization of apelin
in SLCs and LLCs during the early, mid- (the highest intensity), and late luteal phases.
Additionally, Pirino et al. [335] showed the protein expression of the apelin system in the
CL (in the cytoplasm of some LCs) from dogs’ ovaries, and Pope et al. [65] demonstrated
the expression of apelin and APJ in mice ovaries, mainly in the periphery of the corpora
lutea mass.

Literature data about the effect of apelin on CL physiology are limited. Available
studies show that apelin plays a crucial role in CL luteolysis, angiogenesis, and steroido-
genesis. For example, Shirasuna et al. [331] reported that after 0.5–2 h incubation with
PGF2α, the mRNA expression of apelin and APJ increased in the bovine CL, but after 4 h
incubation with this compound, the mRNA expression of the apelin system was decreased,
when compared to the control. These results suggest that PGF2 α, at the early stage of
luteolysis, stimulates the expression of apelin and APJ, which may be a local regulator in
the bovine CL involved in luteal blood flow [331]. Additionally, apelin has an impact on
the steroid hormones secretion; Różycka et al. show that apelin stimulates P4 secretion
in the porcine CL via the activation of AMPK signaling pathway and the modulation of
HSD3B1 expression [67].

4.4. Visfatin

The expression of visfatin in the CL of water buffalo is best documented. In this species,
the abundance of both visfatin transcript and protein is the highest in the late CL compared
to the CL from other luteal stages, while interestingly, in regression CL, it is the lowest.
Visfatin, as shown by immunohistochemical analysis, is present in the cytoplasm of both
SLCs and LLCs; a moderate signal was observed in the early, middle, and late CL, while a
weak signal was observed in the regressed CL (corpus albicans) [336]. Visfatin expression at
the gene and protein levels was also confirmed in the bovine CL [83]. Annie et al. noted the
changing visfatin expression profile in the ovary during the estrous cycle in mice. Intense
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immunostaining in CL from proestrus and diestrus ovary and moderate from metestrus
phases was demonstrated. Western blot analysis of the entire ovaries homogenates showed
the highest expression of the adipokine in the proestrus phase and the lowest in diestrus.
These reports indicate that visfatin can be involved both in the synthesis of P4 in the early
stage of the luteal phase, as well as in the regression of CL from the previous cycle in
proper time. Nevertheless, these assumptions require confirmation [337]. Visfatin mRNA
and protein were also detected in the human luteinized Gc [85]. Unpublished research of
our team on the porcine ovary also showed a variable expression profile of the visfatin
expression. At the transcriptional level, we observed the highest abundance of NAMPT
in the early CL, and the smallest in the middle CL. Conversely, at the protein level, the
highest expression was observed in the mid-luteal CLs. Moreover, both LH and P4 in early
and mid-luteal CL stimulated the expression of the visfatin protein and its release into the
culture medium by LCs, while PGE2 and PGF2α decreased them during the whole luteal
phase. We also showed the expression of this adipokine at the early stages of pregnancy,
especially during the maternal recognition of pregnancy and implantation, suggesting its
important role in gestation maintenance at a very early stage. Additionally, our studies
indicated an estrous phase-dependent effect of visfatin on P4 secretion. In the early and late
luteal phases, visfatin reduced the secretion of this steroid. Interestingly, in cultures from
the middle CL, it significantly increased P4 secretion. The mechanism of visfatin action
remains to be studied.

Evidence for the involvement of visfatin in the proper functioning of luteal tissue
is still growing. At the moment, it has been shown that, in the in vitro-cultured LCs of
water buffalo, visfatin stimulated the secretion of P4. These changes are also evident in the
increased amount of mRNA of steroidogenic enzymes involved in the synthesis of P4; STAR,
CYP11A1, and HSD3B1 [336]. In the human luteinized Gc, no effect of visfatin alone on
the P4 and E2 secretion was observed. In contrast, the combined treatment of visfatin with
IGF1 increased the secretion of these steroids compared to the action of IGF-1 alone; such
an effect was not observed in the case of FSH stimulation. Additionally, visfatin stimulated
IGF-1 induced the proliferation of the human Gc, and this effect was completely abolished
by the pharmacological blocker of visfatin, FK866. Treatment with human recombinant
visfatin rapidly also increased the phosphorylation of AKT, ERK1/2 kinases, and p38
protein [85].

4.5. Vaspin

Our previous research was the first to detect vaspin expression in the porcine CL;
we showed that both, vaspin and GRP78 mRNA and protein level change during the
estrous cycle, the highest expression was observed in the mid- and late compared to early
luteal phases [338]. These changes were probably connected with fluctuating levels of sex
hormones during the estrous cycle. This observation was followed by the in vitro studies
which showed that LH, P4, PGE2, and PGF2α decreased vaspin protein expression and
its secretion into the culture medium. Moreover, vaspin and GRP78 immunolocalization
was shown in SLCs and LLCs cytoplasm [338], which was in agreement with our previous
report, where we described vaspin expression in Gc and Tc [98].

All obtained data indicated vaspin’s role as a luteotropic factor in porcine CL. This
adipokine, via the activation of GRP78 receptor and PKA, increased P4 secretion, as well as
the expression of STAR protein and enzymes CYP11A1, HSD3B1 participating in cholesterol
conversion to P4 [338]. Our research indicated a vaspin stimulatory effect on E2 secretion
via the upregulation of CYP19A1 in porcine CL [338]. Interestingly, vaspin combined
with LH decreased E2 secretion, and additionally stimulated the expression of CYP11A1
and HSD3B1, which is probably linked with the negative effect of LH on vaspin level in
the LCs. Another study of our team showed also that vaspin, via GRP78 and MAP3/1,
increased the PGE2/PGF2α ratio, as well as the ratio of their receptors prostaglandin E
receptor 1 (PTGER1)/PTGFR [338]. Another confirmation of luteotropic vaspin action was
the stimulatory effect on angiogenic factors VEGFA, FGF2, ANG-1 secretion to the culture
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medium and mRNA expression in the LCs, as well as its stimulatory effect on proliferation
and inhibitory on apoptosis via GRP78 and MAP3/1 [339]. Briefly, after 24h of the in vitro
culture, vaspin downregulated caspase 3/7 activity, and caspase 3 expression, as well as
Bcl-2-associated X protein (BAX)/B-cell lymphoma-2 protein (BCL-2) ratio, and elevated
PCNA and cyclin A, markers of proliferation, levels.

4.6. Chemerin

Much less is known about the chemerin system expression in CL; the presence of
transcripts and proteins of chemerin and its three receptors has been reported only in the
CL of pregnant and non-pregnant pigs [340], and cattle [140]. Gene and protein expression
of the adipokine and CMKLR1 has been observed in whole ovary lysates of rats [341,342].
The authors also reported the up-regulatory effects of 5α-dihydrotestosterone (DHT) [341]
and obesity state [342] on the ovarian expression of chemerin and CMKLR1. Moreover,
the presence of chemerin, CMKLR1, and GPR1 mRNAs, and GPR1 protein was noted in
murine whole ovary lysates [133,343,344]. Some studies suggest that the expression of the
chemerin system in CL may be dependent on the animal’s local hormonal milieu, including
the levels of steroid hormones and prostaglandins [340,343].

Studies on the effect of chemerin on CL physiology are scarce and limited to only
two animal species—mice and pigs. In mice, the research was conducted on two in vitro
models [344]. In the murine superovulation model, where luteinization was induced by
PMSG-hCG, P4 secretion in the luteal tissue culture was inhibited after chemerin adminis-
tration. Moreover, P4 suppression was accompanied by the inhibition of gene expression of
key steroidogenic enzymes (STAR, CYP11A1, and HSD3B1) [344]. In the same study, in the
murine model of luteolysis induced by PGF2α, chemerin stimulated apoptosis and, conse-
quently, luteolysis in the luteal tissue culture, by increasing the gene expression of caspase
3. It was also found that chemerin significantly inhibited P4 secretion by mice luteal tissue
in this experimental model [344]. In turn, the administration of anti-GPR1 antibodies in
both in vitro models completely abolished the observed effects of chemerin, which implies
that GPR1 may be directly involved in the regulation of CL formation and luteolysis in
mice [344]. In the in vitro study on pigs, chemerin has been shown to affect the basal and
LH- and/or insulin-induced secretion of steroid hormones such as P4, androstenedione
(A4), T, estrone (E1), and E2 by LCs during the early, mid-, and late luteal phases of the
estrous cycle, as well as during early pregnancy, i.e., during the maternal recognition of
pregnancy and beginning of implantation [345]. In this study, chemerin exhibited mainly a
stimulatory effect on P4, an inhibitory on E2, and a differentiated effect (depending on the
studied phase of the cycle/pregnancy) on A4, T, and E1 [345]. A subsequent in vitro study
on pigs, conducted by our research team, also showed that chemerin modulated angiogen-
esis and apoptosis processes in LCs harvested during early, mid-, and late luteal phases of
the estrous cycle [346]. The study demonstrated that chemerin stimulated the production
of VEGFA and FGF and increased the protein abundance of angiogenic factors’ receptors,
vascular endothelial growth factor receptors types 1, 2, and 3 (VEGFR1, VEGFR2, VEGFR3),
and fibroblast growth factor receptors type 1 and 2 (FGFR1, FGFR2) in these cells [346].
The study also revealed that chemerin affected the protein abundance of apoptosis-related
factors, i.e., first apoptosis signal (Fas) and Fas ligand (FasL), BCL-2, and caspase 3 in the
porcine LCs [346]. Additionally, in the study on the global transcriptome of the porcine
LCs collected from gilts during the mid-luteal phase of the cycle, the chemerin impact on
genes whose protein products are engaged in the PGE2 (up-regulation of cPLA2, PTGS2,
COX2, PTGES, and PKIB) and P4 synthesis pathways (down-regulation of HSD3B1) has
been shown. Furthermore, it was found that chemerin influenced the expression of genes
whose products are related to the regulation of the apoptosis process (up-regulation of
caspase: CASP10, CASP3, CASP7, BAK1, PMAIP1, CFLAR, and PFKFB3), indicating the
activation of both pro-survival and pro-apoptotic signaling pathways in the porcine LCs in
the presence of chemerin [347]. Furthermore, the study demonstrated the effect of chemerin
on the expression of many genes whose protein products are associated with the NFKB and
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JAK/STAT3 signal transduction pathways, which, in turn, are related to the processes of
cell differentiation, proliferation, and migration, as well as the regulation of the apoptosis
process [347].

4.7. Orexins

Until now, the luteal expression of all components of the orexin system, including
PPO, OX1R, and OX2R transcripts, as well as OXA, OXB and both receptor proteins, have
been described only in pig [162,165,348,349]. The presence of mRNAs and proteins of
OX1R and OX2R has been reported in rat CL [159,350]. Transcripts of PPO and both OXRs
have also been noted in the CL of water buffalo [351]. It was also observed that plasma
concentrations of OXA in pigs were the highest in the early luteal phase (days 2 to 3 of the
cycle), while the plasma concentrations of OXB were highest in the follicular phase (days
17 to 19) of the estrous cycle [158]. The concentration of OX1R mRNA in the porcine CL
reached the highest values in the early luteal phase, decreasing in the following days of
the estrous cycle, while the content of OX2R mRNA was the highest in Gc in the follicular
phase [162]. Similarly, the concentration of OXA and OXB proteins in CL varied during the
cycle, and was highest in the mid and late luteal phases, respectively [165]. The presented
results suggest the clear effect of the hormonal status of animals on the expression of orexin
system components.

The role of the orexin system in the development and degeneration of the luteal
cells is poorly understood, and the results are not always conclusive. Basini et al. [349]
hypothesized that OXA, acting locally in the ovary, may induce the regression of the CL
because it inhibits in vitro P4 secretion by the porcine Lc and new vessel growth in the
porcine aortic endothelial cell line. On the other hand, Grasselli et al. [352] showed a
stimulatory effect of OXB on angiogenesis based on the same experimental model. In CHO
cells transfected with OX1R or OX2R cDNAs, orexins caused cell growth inhibition and
stimulated cell death by apoptosis [353,354]. In the rat LCs, both OXA and OXB decreased
P4 secretion. Interestingly, the OXA effect was abolished only when both OX1R and OX2R
antagonists were present in the culture medium, suggesting some complementary action
between these two types of receptors. In the case of OXB influence on the steroid release, its
effect was blocked only by the OX2R antagonist [350]. In other studies, using the porcine
LCs, it was found that there was either an inhibitory effect of OXA on P4 production [349]
or that there was a lack of effect of both orexins [165]. The observed inhibitory effect
of OXA was probably due to a reduction in the expression of the CYP11A1 gene [349].
The inhibition of P4 production, coupled with the negative effect of OXA on ovarian
angiogenesis and induction of programmed cell death mentioned earlier, may suggest a
potential involvement of OXA in luteolysis. The influence of orexins on steroidogenesis
was also noticeable in follicular Gc, the precursor cells of large luteal ones. Contrary to LCs,
P4 secretion by Gc was stimulated by OXA in rats [355] and sheep [356,357]. The increase
in P4 secretion was associated with the increased expression of STAR protein, HSD3B1,
and CYP11A1, under the influence of OXA [355–357], as well as by down-regulating bone
morphogenetic protein (BMP) signaling [355]. Moreover, FSH-induced E2 secretion by
the porcine Gc harvested from the preovulatory follicle was suppressed by OXA and
OXB [165]. It, therefore, seems that the role of orexins in CL differs depending on its stage
of development: during the transformation of follicular cells into LLCs, orexins stimulate
luteinization, while fully developed CL responds to OXA by inhibiting P4 synthesis, which
is an element of luteolysis.

4.8. Ghrelin

Studies show a variable expression of ghrelin and its receptor GHSR in different species
depending on the stage of development of the CL. Increased levels of ghrelin were observed
in the LCs from the mid- and late luteal phase in buffaloes [358], rats [359], pigs [206,360],
goats [361], horses [297], sheep [362], and humans [240,363]. In mature pigs, a significant
increase in the level of ghrelin during the estrous cycle was demonstrated. Interestingly,
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the greatest rise in ghrelin protein expression was noted in the late luteal phase, which was
confirmed by immunohistochemical analysis, showing the local presence of ghrelin in the
cytoplasm of LLCs. However, a lack of the functional ghrelin receptor GHSR1a expression
was observed during the development of the CL in pigs [360]. Additionally, the increased
mRNA and protein expression of ghrelin was demonstrated in rats during the luteal phase.
In contrast, lower levels of ghrelin during the CL formation and regression phase have
been found. Similarly, it was confirmed by immunohistochemical analysis, showing the
expression of ghrelin in the cytoplasm of steroidogenic LCs. Despite the significantly
increased expression of ghrelin in CL, the plasma concentrations of this peptide during the
estrous cycle of rats were not differentiated [359]. Among others, Tropea et al. observed the
mRNA expression of the ghrelin receptor in the human LCs [363]. What is important is that
immunohistochemical analyses showed a lack of ghrelin expression in the human ovarian
follicles or CL in the early stages of CL development. Ghrelin immunoreactivity in the mid-
and late luteal phases has been demonstrated. On the other hand, GHSR1a expression has
been shown in a wider ovarian cell spectrum, i.e., in oocytes and at all stages of CL devel-
opment, and in interstitial hilus cells [240]. Interesting research by Galvão et al. confirmed
the increased level of GHR/GHSR1A in the later CL phase in the equine ovary [297]. The
expression of ghrelin and its receptor in the whole reproductive system in Holstein heifers,
including the CL, has been demonstrated. It has been observed that ghrelin is present in the
cytoplasm and GHSR in the luteal cell membranes in cattle [364]. Caminos et al. [359] ob-
served similar levels of ghrelin expression in the ovaries of pseudopregnant rats compared
to cyclic animals. In contrast, ovarian monitoring showed a decrease in ghrelin expression
in the later stages of rat gestation. Physiologically, CL is the most functional in the first
weeks of pregnancy. In later stages, it gradually regresses, and the placenta overtakes the
secretory function. The study results suggest that ghrelin expression is directly proportional
to CL activity in cyclic and gestational rats [359]. Other studies showed higher levels of
ghrelin expression during early pregnancy than the estrus cycle in the buffalo [365].

A convergent profile of ghrelin expression and P4 secretion was demonstrated, con-
firming the important role in the regulation of CL development and functioning in rats [359].
One of the first studies determining the functionality of ghrelin in the human LCs con-
firmed its inhibitory effect on ovarian function. The inhibition by ghrelin of both basal and
hCG-induced P4 secretions in human LCs was demonstrated [363]. Similarly, in the study
of the Rak-Mardyła group, ghrelin had an inhibitory effect on P4 secretion and HSD3B
protein expression in cultured porcine LCs [360]. Ghrelin reduced the release of PGE2
but increased the release of luteolytic PGF2α [363]. Moreover, ghrelin led to an increase
in PGF2α, nitrite, and TNFα in the mid-stage of CL development, promoting luteolysis
in the mare [297]. Romani et al. observed that the non-acylated form of ghrelin may
affect the regulation of luteal steroidogenesis and the reduction of P4 and VEGF release in
humans [366]. Treatment of LCs culture with ghrelin led to a decrease in P4 concentration
and mRNA expression of HSD3B1 and CYP11A1 [358]. Interestingly, the administration of
a GnRH antagonist to inhibit ovulation and CL formation led to a reduction in the mRNA
expression of ghrelin [359]. Studies have shown a correlation between the decrease in LH
concentration following the administration of a GnRH antagonist and the expression of
ghrelin in male rats [367]. However, the direct dependence on ovarian function requires
further research. Research by Kheradmand et al. [368] showed that the treatment with
ghrelin for 9 and 14 days had an anti-apoptotic effect in rat LCs throughout reducing
the level of BAX protein and increasing the level of BCL-2 protein in rats. Ghrelin did
not affect the level of caspase-3. Additionally, it was observed to increase the expression
of the PCNA peptide associated with proliferation [368]. Ghrelin expression has been
demonstrated in the cytoplasm of luteal regression cells in women with PCOS. Moreover,
immunostaining revealed the presence of proliferation marker Ki 67 at the sites where
ghrelin was expressed [369]. Research by Alirezaei et al. [370] focused on apoptosis and
proliferation in pregnant sheep; immunohistochemical analysis showed high PCNA and
BCL-2 expression at the fourth month of gestation in CL. However, in the 5th month of
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pregnancy, the level of caspase-3 increased. An increase in ghrelin concentration was
correlated with the concentration of E2 in the ovarian follicles. In contrast, the authors
reported an increase in P4 in CL around the 4th month of pregnancy. These studies indicate
a regulatory role of ghrelin, mainly by E2 during pregnancy [370].

4.9. Kisspeptin

In 2006, Castellano et al. [371] found Kiss1 in rat CL. They found that Kiss1 was
expressed in rat cyclic ovary and weakly expressed in corpus hemorrhagicum. The intensity
of Kiss1 expression correlates with the stage of CL formation. Kisspeptin is strongly
expressed in the steroidogenic cells of CL during proestrus, and there is a decrease in its
expression when the CL is in regression [371]. Peng et al. found that 7 days after hCG
treatment of PMSG-primed rats, there was an increase of Kiss1 and its receptor Kiss1R in CL.
Indeed, Kiss1 and Kiss1R are expressed dominantly in CL compared to Gc and Tc [372,373].
Cielesh et al. [374] found Kiss1 and Kiss1R in the bitch ovary. Kiss1 is expressed in CL, only
in the lateral marging of the cyclic bitch. In contrast, Kiss1 is not expressed in the CL of
the prepubertal, anestrous bitch. The Kiss1R is expressed in CL during all of the stages
of the reproductive cycle [374]. Tanyapanyachon et al. [375] found that Kiss1 is expressed
in cat CL, mainly at the formation and development stages, but there is no expression in
steroidogenic cells. At the formation stage, Kiss1 is expressed both in the periphery and
in the center of CL. In contrast, during the development stage, Kiss1 is more expressed in
the periphery than in the center of CL. Kiss1R is expressed in the cytoplasm of LCs in the
periphery and the center of CL during formation and development [375]. Mishra and al.
found Kiss1 and Kiss1R in buffalo LCs from developing CL [376] and in the cytoplasm of
LLCs from early and middle CL [377]. Maranesi and al. [378] found the Kiss1 system in
rabbit CL. Kisspeptin is expressed in nuclei and cytoplasm of LCs from CL during early
(Day 4), mid- (Day 9), and late (Day 13) pseudopregnancy. The Kiss1R is expressed in the
cytoplasm of LCs mostly during early pseudopregnancy but it is also expressed during
mid-pseudogestation but not during the late stage. The Kiss1 system could be involved in
CL protection from luteolysis. It was the first study about the Kiss1 system involvement in
the CL lifespan of rabbits by modulating P4, prostaglandins synthesis, and prostaglandin
synthase 2 (PGS2) expression during pseudopregnancy [378].

Inoue et al. [379] observed that, when musk shrews are treated with suncus kisspeptin
consisting of 29 amino acid residues (sKp-29), CL is formed 3 days after the treatment, as
well as after coupling. This effect is blocked by a pre-treatment with a GnRH antagonist.
This suggests that Kiss1 stimulates GnRH release in the hypothalamus. It was already
reported in spontaneous ovulating species. So, sKP-29 acts as a coupling stimulus to induce
suspected ovulation [379]. In rats, it was shown that Kiss1 antagonist P234 administration
into ovarian bursa for 3 days from the morning of the proestrus day can induce changes
in CL morphology. Indeed, the outer layer of the CL was not well-formed [373]. In rat
LCs, Kiss1 increases P4 secretion. Moreover, Kiss1 and hCG together increase P4 secretion
more than hCG or Kiss1 alone. So, Kiss1 could favor CL formation and the sustainable
development of pregnancy by stimulating key steroidogenic enzymes and proteins like
STAR and CYP11A1. Finally, Kiss1 could be a luteinization stimulator and a regulator of
CL lifespan by acting on steroidogenic enzymes which modulate P4 production [372]. In
mice, Stephens et al. generated the transgenic mice lacking PGR exclusively in kisspeptin
cells (KissPRKO). It is mice knock-out for the P4 receptor in kisspeptin-positive cells. They
found that KissPRKO female mice have less CL as a result of a decrease in ovulation rate.
The E2 administration did not beget LH surge, so they hypothesized that the infertility
of KissPRKO female mice is due to a decrease of neuronal activation with an absence of
GnRH pulse induced by Kiss1 [380]. In luteal explants from buffalo, Kiss1 increased the
expression of genes regulating the synthesis of P4 in CL as STAR, CYP11A1, and HSD3B1
and luteinizing hormone receptor (LHR) 12h after treatment, whereas it decreased 24h
after treatment. In contrast, Kiss1 enhanced a hCG-induced decrease in genes expression.
So Kiss1 could have a potential role in steroidogenesis in buffalo [377]. In the rabbit,
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the agonist Kiss-10 increased P4 secretion by CL in early and mid-pseudopregnancy. In
contrast, the antagonist Kiss-234 had the opposite effect [378]. In the rabbit, the agonist
Kiss-10 decreased PGF2α secretion in early and mid-pseudopregnancy. In contrast, the
antagonist, Kiss-234, has the opposite effect. In addition, Kiss-10 increased PGE2 secretion
and Kiss-234 had the opposite effect. It improved P4 synthesis during the early CL stage
and did not affect PGF2α and PGE2 secretion at the mid- and late luteal stages. Kiss-10 and
Kiss-234 did not affect prostaglandin-endoperoxide synthase 1 (PTGS1). In contrast, Kiss-10
decreased the luteal activity of PTGS2 and Kiss-234 increased it during early and mid-
pseudopregnancy. Thus, it seems that Kiss-10 positively regulates P4 synthesis. Kiss1 has a
luteotropic role and increases luteal P4 production, maybe via autocrine and/or paracrine
mechanisms inducing a decrease of PGF2α and then an increase of PGE2 due to the blocking
of PTGS2 activity [378]. No data are available about the effect of Kiss1 on angiogenesis
in CL. However, in bat ovary treated with a low dose of Kiss1 (100 ng/mL), there was
an increase in VEGF protein, which is a biomarker of angiogenesis. With a high dose of
Kiss1 (1 µg/mL), the opposite effect is observed [381]. Furthermore, in the same study, it
has been shown that Kiss1 increased the expression of PCNA simultaneously decreasing
caspase 3; when P4 is added to Kiss1, the ovarian cells proliferation is higher [381].

4.10. Phoenixin

So far, the expression of phoenixin in the CL has only been documented in the human
ovary; immunohistochemical analysis showed an increase in phoenixin-20 and GPR173
expression with follicle growth, so that the most intense signal was obtained in the antral
follicles and CL [276]. Our preliminary unpublished studies also indicate the presence of
phoenixin-14/GPR173 in the porcine CL. Both the mRNA of SMIM20 and the level of the
phoenixin-14 protein increase during the luteal phase. On the other hand, the expression of
the GPR173 gene reaches the highest level in the early luteal phase and then drops, while
the protein level increases during the luteal phase. We also localized phoenixin-14 in the
cytoplasm and GPR173 in the cell membrane, mostly in LLCs. Additionally, the secretion
of phoenixin by LCs can be downregulated by LH, P4, and prostaglandins E2 and F2α in
the mid-luteal phase.

The influence of phoenixin on ovarian physiology is still poorly understood. So
far, in the literature, we could not find any information about the influence of phoenixin
on the functions of LCs. It remains still undiscovered. Nevertheless, with the growing
research on this peptide, it is only a matter of time to discover its other beneficial aspects
on reproduction, especially considering the growing evidence of phoenixin involvement in
steroidogenesis, Gc proliferation, and oocyte maturation [382]. Indeed, in vitro experiments
on the human non-luteinized Gc line (HGrC1) showed that phoenixin-20 significantly
increases proliferation, the secretion of E2, and the expression of CYP19A1, LHR, and FSH
receptor (FSHR), as well as increasing the number of ovulated mouse oocytes with a higher
level of maturation [276]. Similarly, in zebrafish, the same isoform of phoenixin stimulates
steroidogenesis via an increase of the expression of steroidogenic enzymes like cyp11a1,
cytochrome P450 family 17 subfamily A member 1 (cyp17a1), cyp19a1, hsd17b, and estrogen
receptors esr2a and esr2b in the ovary. In addition, phoenixin-20 has been observed to be
involved in vitellogenesis by increasing the transcript level of hepatic vitellogenin and
promoting egg maturation [288]. Our preliminary study indicated that phoenxin-14 can
dose-dependently regulate the secretion of P4 and E2 in porcine CL. Nevertheless, further
research is needed to confirm this effect, as well as to understand other aspects of the role
of phoenixin in the formation, functioning, and regression of the CL. It is worth adding
that phoenixin-14 contains aa sequences present in the structure of MITRAC7, a protein
responsible for the proper functioning of the mitochondrial respiratory chain. In addition,
the MITRAC complex consists of various COX1 complexes, which in turn participate in
the synthesis of prostaglandins. The relationship between phoenixin and prostaglandin
synthesis has not been understood so far, but in the light of this information, it seems that
it is worth developing this question in the future [383,384].



Cells 2022, 11, 957 25 of 47

5. Involvement of Adipokines and Neuropeptides in Corpus Luteum Pathology

The corpus luteum can be affected by numerous pathological conditions, including,
for example, relatively frequently observed cysts [385]. Their rupture is a serious problem
both during the menstrual cycle, by temporarily stopping menstruation, and pregnancy,
where it can contribute to the loss of a pregnancy due to abnormal embryo invasion and
ectopic pregnancy [386]. Moreover, this ailment is very often noted in the period after the
first menstruation, contributing to the disturbance of the ovulation process [387]. The main
symptoms include persistent abdominal pain in 84.6% and acute abdominal pain in 15.4%
of patients [387]. Interestingly, their detection, and thus, the diagnosis itself, is difficult, due
to the relatively small size and fairly thick walls. In addition, other studies investigated
that the greatest cyst production mainly occurs immediately after CL formation [388]. In
turn, the early formation of cysts is attributed, among others, to premature closure of
the ovulation site [389]. Furthermore, recent studies suggest that the CL cysts can very
often, in as many as 80% of cases, be confused with ectopic pregnancy [390]. Data indicate
that, in patients with positive serum β-hCG levels, a significant resistive index of greater
than 0.7 for an adnexal mass may be important in differentiating ectopic pregnancy from
CL cysts [390]. In addition, studies on cattle have shown that age and milk-producing
capacity may be criteria for a higher risk of luteal cysts—older cows and those with a
higher production rate are more likely to develop cysts [391]. The detection of cysts may be
based on rectal palpation and ultrasonography combined with the measurement of serum
P4 concentration [392]. In the case of the problems posed by follicular cysts, an increased
secretion of Kiss1 has been observed in cows. These results were connected with direct
or also indirect with an increase in LH secretion [393]. In addition, other studies have
demonstrated the immune reactivity of Kiss1 and the Kiss1R in LCs at both the nuclear
and cytoplasmic levels [378]. It was investigated that the Kiss1 system is expressed in the
CL of pseudopregnant rabbits and presents a luteotropic effect via the downregulation of
PTGS2, which in turn, reduces PGF2α levels and increases PGE2 and P4 [378] (Figure 3).

Additionally, CL disorders may result from the influence of various types of viruses,
and bacteria on the proper functioning of the immune system, which manifests in the form
of inflammation [385]. Interestingly, processes related to the immune system are often
associated with angiogenesis [394,395]. Research shows that in rats, cattle, and humans,
following the process of ovulation in the area of luteinizing, developing CL, there is a
high number of immune cells, macrophages, and eosinophils. These kinds of cells are
responsible for the secretion of angiogenic factors: VEGF, FGF, and hypoxia-inducible factor
1 (HIF-1) which may affect inflammatory-induced angiogenesis in the early luteal phase.
Such data suggest that the immune system may play an important role in early luteal
development [396–398]. It has also been reported that luteal cells inflammation can be
induced by the herpes virus [399]. The time of exposure to the virus during the estrous cycle
has been investigated to be important in the formation of inflammation which infiltrates
the ovary, with CL being one of the most unfavorable changes [400]. As a consequence
of viral exposure, i.a., a reduction in P4 production by CL is noted, with plasma levels
only around 2 ng/mL [385,401]. Bacteria can also be another cause of ovarian dysfunction.
Studies conducted on cows show, i.a., that the intrauterine infusions of Trueperella pyogenes
caused luteal dysfunction [402]. Moreover, uterine bacterial infection after delivery may
also contribute to premature loss of CL [403]. It has been shown, i.a., that a consequence
of postpartum uterine infection with bacteria is that later developing CL secretes much
less P4 than in non-infected individuals [404]. It has been investigated that Escherichia coli
bacteria can affect the development of diseases of the uterus of dairy cows due to specific
virulence factors, e.g., fimH, hlyA, or astA, and the activation of this inflammation is the
basis for the development of endometrial and embryo damage, and delayed ovulation,
as well as shortening or extension of the luteal phase [405]. At the moment, there are no
data on the influence of individual adipokines and neuropeptides in the inflammatory
processes of the ovary and of CL itself, which introduces a wide perspective for future
research in this area. It is worth noting here that previous studies indicate the participation
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of adipose tissue hormones in inflammatory processes in women with one of the most
common pathologies of the ovary, namely PCOS. For example, literature data indicate
that, if the hypothalamus has a low-grade chronic inflammatory state, it may be a cause of
central leptin resistance in PCOS rats [406]. Additionally, it was also investigated that the
adiponectin/leptin ratio could serve as a potential biomarker of low-grade inflammation
in women with this syndrome. Unfortunately, the scope of research on other adipokines in
this type of inflammatory process is still very limited [407].

Cells 2022, 11, x FOR PEER REVIEW 27 of 31 
 

 

 
Figure 3. Involvement of adipokines and neuropeptides in corpus luteum pathology. P4—
progesterone, LH—luteinizing hormone, ↓—decrease, ?—unknown effect. 

Additionally, CL disorders may result from the influence of various types of viruses, 
and bacteria on the proper functioning of the immune system, which manifests in the form 
of inflammation [385]. Interestingly, processes related to the immune system are often 
associated with angiogenesis [394,395]. Research shows that in rats, cattle, and humans, 
following the process of ovulation in the area of luteinizing, developing CL, there is a high 
number of immune cells, macrophages, and eosinophils. These kinds of cells are 
responsible for the secretion of angiogenic factors: VEGF, FGF, and hypoxia-inducible 
factor 1 (HIF-1) which may affect inflammatory-induced angiogenesis in the early luteal 
phase. Such data suggest that the immune system may play an important role in early 
luteal development [396–398]. It has also been reported that luteal cells inflammation can 
be induced by the herpes virus [399]. The time of exposure to the virus during the estrous 
cycle has been investigated to be important in the formation of inflammation which 
infiltrates the ovary, with CL being one of the most unfavorable changes [400]. As a 
consequence of viral exposure, i.a., a reduction in P4 production by CL is noted, with 
plasma levels only around 2 ng/mL [385,401]. Bacteria can also be another cause of ovarian 
dysfunction. Studies conducted on cows show, i.a., that the intrauterine infusions of 
Trueperella pyogenes caused luteal dysfunction [402]. Moreover, uterine bacterial infection 

Figure 3. Involvement of adipokines and neuropeptides in corpus luteum pathology. P4—progesterone,
LH—luteinizing hormone, ↓—decrease, ?—unknown effect.

Moreover, in the case of abnormal function of this organ, neoplasia is also noted. For
example, studies have shown that lymphosarcoma can occur in the ovary and, above all,
with particular risk in CL [408,409]. In addition, it was investigated that, due to relatively
high blood flow and well-developed capillaries, tumors of other organs also have the
possibility of metastasis to CL [389]. The role of adipokines in tumorigenesis in CL has
not yet been investigated. However, the latest reports show that apelin can stimulate the
survival of cancer ovarian cells, which makes the apelinergic system a potential target
during therapies eliminating spreading metastases [410]. In addition, leptin appears to
be another adipokine contributing to a worse prognosis in ovarian cancer. Interestingly,
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research conducted on a group of obese women has shown that adipokine promotes cancer
progression by stimulating the migration and invasion of neoplastic cells [411]. It was
shown that adipokine can reduce the proliferation of the type of cells caused by bisphenol
and its derivatives [412]. The present literature data indicate the possibility of adipokines’
involvement in the ovarian structure such as CL, but more extensive research is needed on
this matter.

During the correctly occurring luteal phase, P4 is produced, which determines the
proper proliferation of uterine cells in order to prepare this organ for a possible pregnancy.
Thus, the basic problem posed by the dysfunction of the luteal phase is the dysregulation
of the menstrual cycle, and thus the increased risk of problems with becoming pregnant
or maintaining the pregnancy itself. Interestingly, it has been shown that, in patients with
luteal phase deficiency, the menstrual cycle lasts 24.2 days, while in healthy women, it is
about 29± 3 days [413]. Moreover, defects of the luteal phase occur when the phase lasts less
than 10 days [414]. There is a number of potential causes contributing to this disorder, one of
which is anorexia nervosa (AN). Research from 2016 indicates that around 75 million girls
are seriously underweight worldwide [415]. Despite the fact that dysfunction of the HPO
axis may be reversible in women with AN, unfortunately, the consequences of this disease
affect female fertility and cause pregnancy complications. The cause of them is the low level
of P4 observed in patients with AN, indicating a disturbance in the luteal phase responsible
for the production of the hormone [416]. Interestingly, it has been shown that the luteal
phase defect is observed with a 10–15% weight loss [413]. Obesity also negatively affects
the course of the luteal phase and related disorders of reproductive function [417]. In
both anorexic and obese women, there are changes in the amplitude of LH pulses and a
decrease in the excretion of the main P4 metabolite, namely pregnanediol glucuronide, in
the luteal phase, which could indicate the defect [417,418]. It has been investigated that
both weight gain and weight loss induce changes in the CL transcriptome [419]. Moreover,
in the same study, it was shown that obesity impairs P4 secretion in the middle luteal
phase, which is related to the downregulation of CL steroid pathways [419]. However,
correlation studies between the levels of circulating KISS1, adiponectin, and leptin during
the early follicular, pre-ovulatory, and luteal phases in women of normal body weight
and overweight did not indicate substantial differences in adipokine levels between the
groups [420]. In turn, another cause of a defect in the luteal phase may be increased by
exercise, and the absence of regular periods may affect 1 to 46% of women [421]. Previous
studies have shown that, in the case of vigorous physical activity, both anovulatory cycles
and a defect in the luteal phase are the most common disorders of the menstrual cycle [422].
A luteal phase defect manifested by a reduction in P4 production, and thus insufficient
endometrial stimulation, is also associated with a disturbance in oocyte maturation, which,
in this case, reduces reproductive capacity, and leads to premature loss of pregnancy [423].
It seems that changes in the adipose tissue mass and the adipokines that it produces
may contribute to the observed disorders in women of high physical intensity. Research
conducted on a group of young female basketball and handball players preparing for the
competition showed a statistically significant reduction in the level of circulating ghrelin
and leptin during moderate and long-term aerobic exercise and an increase in visfatin
concentration after short-term exercise. In addition, a significant increase in the level
of adiponectin was also observed as a result of speed and conditioning training [424].
Interestingly, a study conducted on women with high physical activity who had a defect in
the luteal phase showed a significant reduction in the level of circulating leptin, however,
this result could be directly related to the reduction of body adipose tissue in this group
of patients [425]. Moreover, other studies have also indicated that ghrelin levels in non-
menstruating athletes are higher than in exercising women suffering from a luteal phase
defect, which also suggests a relationship between adipokine levels and reproductive
capacity [426]. Furthermore, it is worth noting that the problem of hypothyroidism may
also be indirectly associated with anovulatory cycles and a defect in the luteal phase [427].
Moreover, hypothyroidemia is also observed in highly active women [428]. In addition,
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some studies indicated that the treatment of infertility (caused by a luteal phase defect)
by thyroid hormones may increase the fertilization rate in patients before undergoing
hormone therapy with chorionic gonadotropin [429]. The problem of hypothyroidism may
also be indirectly associated with anovulatory cycles and a defect in the luteal phase [427].
Additionally, it was investigated that, in actively training women, a decrease in the level
of circulating leptin positively correlates with a downstream of thyroid hormones [430].
There is some evidence that a defect in the luteal phase may also be related to the course of
endometriosis. It has been investigated whether, in infertile women with endometriosis, the
defect of the luteal phase is manifested in the form of dysfunction of small and large LCs,
and thus LH-dependent P4 production [431]. However, some research is in opposition to
linking endometriosis with a defect in the luteal phase. The study diagnosing a luteal phase
defect, conducted on 84 patients, did not show a statistically significant correlation between
endometriosis and the same type of CL dysfunction [432]. In addition, previous histological
examinations of the endometrium also showed no significant differences in the levels of P4
receptors in women with a luteal phase defect compared to healthy patients [433].

Interestingly, the defect in the luteal phase may be caused by the disturbance of the
secretion of PRL by the endometrium. It has been shown that, in women with a luteal phase
defect, the endometrium produces less PRL, suggesting that tissue levels of this hormone
may aid in the diagnosis of a luteal phase defect [434]. In addition, studies conducted
on a group of healthy women and with endometriosis have shown that sick women are
characterized by significant hyperprolactinemia in the mid-luteal phase. These results
may support the belief that hyperprolactinemia may interfere with luteal function, causing
infertility in patients with endometriosis [435]. It has also been shown that leptin has the
ability to increase the production of PRL via endometrial stromal cells [436], however, there
is no evidence that this could directly affect the luteal phase defect.

It is worth noting here that the spectrum of known luteal pathologies of CL is extensive,
and may be connected with abnormal P4 secretion as well as persistent CL or premature
luteolysis. In the first case, impaired P4 production may be caused by the problem of
persistent CL, as well as by inappropriate follicles development prior to ovulation or
abnormal luteal maturation [437]. Dysfunction, such as persistent CL, may result from
endometrial hypoplasia or the intra-uterine injection of irritating solutions [408,438]. In
turn, premature luteolysis can be directly combined with the injection of specific hormones
on different days of the cycle. It has been shown that exposure to oxytocin or P4 in
the early days of the estrous cycle and to E2 during pregnancy may cause premature
luteolysis [408,439–441]. In addition to disturbed P4 secretion, the clinical picture of luteal
phase deficiency may also be caused by an inadequate response of the endometrium to
the correct concentration of steroid hormones, and the main cause is endometriosis, as
well as PCOS [442]. In endometriosis, persistent inflammation may be the cause of this
condition [443], while one of the main reasons of P4 resistance in women with PCOS is the
decreased expression of P4 receptors in the endometrium [444].

The cause or the common denominator of many of the above-mentioned pathologies
of the CL and the associated defects of the luteal phase is the insufficient secretion of P4.
Both adipokines and neuropeptides may prove helpful in the treatment of luteal phase
dysfunction caused by a deficiency in P4 secretion. The methods currently used in assisted
reproduction treatment consist of, apart from the exogenous administration of P4, the use
of various stimulants of the endogenous secretion of this steroid. One of the most common
is the administration of hCG, which is to induce an increase in P4 secretion, but also the
GnRH agonists indirectly influencing P4 biosynthesis, by stimulating the LH surge [442].
Here, a key role may be played by neuropeptides such as kisspeptin, of which the research
has shown to be a potent LH stimulant. A strong stimulation of LH release, especially in
the preovulatory phase, has been observed in healthy women who were subcutaneously
injected by various doses of kisspeptin 54 [445]. Similarly, Jayasena et al. observed that
subcutaneous administration of kisspeptin 54 strongly stimulates LH release in women
with hypothalamic amenorrhea [446]; a similar effect on LH secretion was observed in
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phoenixin [277]. Nevertheless, further research and analyses are necessary to determine
the direct involvement of adipokines in the CL pathologies we discussed earlier, i.e., the
formation of cysts, inflammations, adhesions, neoplasia, or luteal dysfunction.

6. Conclusions

To summarize, literature data clearly indicated the involvement of different adipokines
and neuropeptides on CL physiology, including its formation and regression, as well as
the regulation of its main function, P4 synthesis. Adipokines: leptin, adiponectin, apelin,
visfatin, vaspin, chemerin, and neuropeptides: orexins, ghrelin, kisspeptin and phoenixin
are expressed in LCs, dependent on the luteal phase stage in different species, including
human, rodent, and agricultural species. Moreover, its expression is modulated by the
main hormones regulating luteal cells function, such as P4, LH, or prostaglandins. Its effect
on CLs physiology depends mostly on the studied adipokine or neuropeptide, e.g., leptin,
apelin and vaspin stimulates P4 synthesis, while adiponectin has an opposite effect. Actions
of presented adipokines/neuropeptides may also be species-dependent, e.g., chemerin in
mice decreases P4 level and stimulates the apoptosis of LCs, while in porcine, it stimulates
steroidogenesis and angiogenesis. The observed effect may be also dependent on the
development stage of CLs, as noted for orexins; during the transformation of follicular
cells into LLCs, orexins stimulate luteinization, while a fully developed CL responding to
OXA is connected to luteolysis. Nevertheless, adipokines and neuropeptides are important
regulators of CLs physiology, and proper balance between them is needed to maintain CLs
function. As shown for kisspeptin, mice with its knockout have fewer CLs as a result of a
decrease in ovulation rate. What is more, a lot of work describing the complicated molecular
mechanisms of adipokines action in CLs gives the knowledge necessary to modulate CLs
physiology useful in the synchronization of the estrous cycle in female animals, and may
improve their fertility. Moreover, adipokine and/or neuropeptide levels in the blood
serum in the future may also be predictors of different pathological stages in CLs, as was
described previously for different adipokines and ovarian follicles pathology PCOS [447].
For example, low levels of adipokines, which stimulate P4 secretion and maintain CLs
function like leptin or vaspin, may indicate luteal phase deficiency. Future studies are
necessary to determine the direct involvement of adipokines in CLs pathology, such as
the formation of cysts, inflammations, adhesions, neoplasia, or luteal dysfunction, and the
connection between these pathologies and adipokines blood level, which introduces a wide
perspective for future research in this area, and makes adipokines specific markers of LCs
dysfunction.
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174. Urbańska, A.; Sokołowska, P.; Woldan-Tambor, A.; Biegańska, K.; Brix, B.; Jöhren, O.; Namiecińska, M.; Zawilska, J.B. Orex-
ins/Hypocretins Acting at Gi Protein-Coupled OX2 Receptors Inhibit Cyclic AMP Synthesis in the Primary Neuronal Cultures. J.
Mol. Neurosci. 2011, 46, 10–17. [CrossRef] [PubMed]

175. Wang, Z.; Liu, S.; Kakizaki, M.; Hirose, Y.; Ishikawa, Y.; Funato, H.; Yanagisawa, M.; Yu, Y.; Liu, Q. Orexin/Hypocretin activates
MTOR complex 1 (MTORC1) via an Erk/Akt-Independent and calcium-stimulated lysosome v-ATPase pathway. J. Biol. Chem.
2014, 289, 31950–31959. [CrossRef] [PubMed]

http://doi.org/10.1097/00001756-200501190-00002
http://www.ncbi.nlm.nih.gov/pubmed/15618879
http://doi.org/10.1111/j.1460-9568.2009.06952.x
http://www.ncbi.nlm.nih.gov/pubmed/19811530
http://doi.org/10.1016/S0006-8993(00)02555-5
http://doi.org/10.1210/endo.142.8.8299
http://www.ncbi.nlm.nih.gov/pubmed/11459774
http://doi.org/10.1677/jme.1.01818
http://www.ncbi.nlm.nih.gov/pubmed/16461933
http://doi.org/10.1159/000080453
http://doi.org/10.1016/j.peptides.2012.11.003
http://doi.org/10.1152/ajpendo.00179.2007
http://doi.org/10.1152/ajpendo.00467.2006
http://doi.org/10.1016/j.anireprosci.2009.03.007
http://doi.org/10.1016/j.regpep.2010.07.166
http://www.ncbi.nlm.nih.gov/pubmed/20688107
http://doi.org/10.1017/S1751731117003779
http://www.ncbi.nlm.nih.gov/pubmed/29366436
http://www.ncbi.nlm.nih.gov/pubmed/23568972
http://doi.org/10.1016/j.anireprosci.2014.03.015
http://www.ncbi.nlm.nih.gov/pubmed/24916957
http://doi.org/10.1111/bph.12324
http://www.ncbi.nlm.nih.gov/pubmed/23902572
http://doi.org/10.1074/jbc.M508603200
http://www.ncbi.nlm.nih.gov/pubmed/16282319
http://doi.org/10.1677/JOE-08-0536
http://www.ncbi.nlm.nih.gov/pubmed/19460850
http://doi.org/10.1210/en.2007-1739
http://www.ncbi.nlm.nih.gov/pubmed/18450961
http://doi.org/10.1016/j.bbrc.2006.12.045
http://www.ncbi.nlm.nih.gov/pubmed/17188243
http://doi.org/10.1152/ajpregu.91034.2008
http://www.ncbi.nlm.nih.gov/pubmed/19793950
http://doi.org/10.1371/journal.pone.0185548
http://www.ncbi.nlm.nih.gov/pubmed/28976997
http://doi.org/10.1155/2013/854623
http://www.ncbi.nlm.nih.gov/pubmed/24382962
http://doi.org/10.1007/s12031-011-9526-2
http://www.ncbi.nlm.nih.gov/pubmed/21547533
http://doi.org/10.1074/jbc.M114.600015
http://www.ncbi.nlm.nih.gov/pubmed/25278019


Cells 2022, 11, 957 37 of 47
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