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Mayer-Rokitansky-Küster-Hauser (MRKH) syndrome is a disorder caused by Müllerian ducts dysgenesis 
affecting 1 in 5000 women with a typical 46,XX karyotype. The etiology of MRKH syndrome is complex 
and largely unexplained. Familial clustering suggests a genetic component and the spectrum of clinical 
presentations seems consistent with an inheritance pattern characterized by incomplete penetrance and 
variable expressivity. Mutations of several candidate genes have been proposed as possible causes 
based on genetic analyses of human patients and animal models. In addition, studies of monozygotic 
twins with discordant phenotypes suggest a role for epigenetic changes following potential exposure to 
environmental compounds. The spectrum of clinical presentations is consistent with intricate disruptions 
of shared developmental pathways or signals during early organogenesis. However, the lack of functional 
validation and translational studies have limited our understanding of the molecular mechanisms involved 
in this condition. The clinical management of affected women, including early diagnosis, genetic testing 
of MRKH syndrome, and the implementation of counseling strategies, is significantly impeded by these 
knowledge gaps. Here, we illustrate the embryonic development of tissues and organs affected by MRKH 
syndrome, highlighting key pathways that could be involved in its pathogenesis. In addition, we will 
explore the genetics of this condition, as well as the potential role of environmental factors, and discuss 
their implications to clinical practice.
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INTRODUCTION

Mayer-Rokitansky-Küster-Hauser (MRKH) syn-
drome or Müllerian aplasia affects approximately 1 in 
5000 women and is characterized by the incomplete 
development of the female reproductive tract, including 
uterus, cervix, and upper vagina [1-3]. Herein, we provide 
an overview of the factors that are known or have been 
suggested to be associated with MRKH syndrome with 
the aim to bridge clinical and basic science research. The 
condition is classified as a rare disease by the National 
Institutes of Health [4]. Women with MRKH syndrome 
have a 46,XX karyotype, and typical female development 
of external genitalia and secondary sexual characteristics. 
Despite the usually normal development and function 
of the ovaries, women with MRKH syndrome typically 
present with primary amenorrhea [5]. As a consequence, 
diagnosis often occurs around the time of puberty. 
MRKH syndrome is classified as type I (OMIM 277000) 
if the female reproductive tract is affected [6] and type 
II (OMIM 601076) if associated malformations are also 
present [7]. The most frequent malformations associated 
with MRKH syndrome are renal anomalies including uni-
lateral agenesis, pelvic kidney, double kidney, and skele-
tal anomalies including scoliosis, hip dysplasia, and fused 
vertebrae [8]. Other malformations affect ears and eyes, 
and less frequently the heart [8]. A severe form of MRKH 
syndrome type II is Müllerian duct aplasia, renal aplasia, 
and cervicothoracic somite (MURCS) association, which 
is characterized by impaired Müllerian, renal, and cer-
vicothoracic development [9]. Other clinical features of 
MRKH syndrome include shortened vagina, which may 
lead to dyspareunia if penetrative vaginal intercourse is 
attempted, cyclical abdominal or pelvic pain, and uterine 
factor infertility [2,3,10].

The genetics of MRKH syndrome is complex, and 
key mechanisms regulating reproductive tract develop-
ment are still poorly understood [11]. Familial clustering 
indicates a genetic component in the pathogenesis of 
MRKH syndrome. However, discordant Müllerian anom-
alies (MA) phenotypes in monozygotic twins suggest a 
role for environmental factors [12]. Several genes have 
been suggested as candidates for MRKH syndrome. 
However, functional validation is still lacking, and the 
etiology of MRKH syndrome remains poorly defined. As 
with most rare conditions, the absence of data regarding 
etiology, heritability and associated malformations con-
tinue to pose challenges for patients with the diagnoses, 
their families, and their health care team.

Major challenges in clinical care of these patients 
involve addressing reproduction as well as the ability to 
have penetrative vaginal intercourse. Creation of a vagi-
nal canal includes patient-controlled dilation and various 
surgical techniques of vaginoplasty that include Ab-

be-McIndoe procedure with use of dermal graft as well as 
modifications using amniotic membranes, inert materials, 
oral mucosa, and autologous in vitro grown vaginal tissue 
[2,13,14]. Another surgical approach for vaginoplasty is a 
laparoscopic Vecchietti procedure that has been success-
fully modified from the original approach via laparotomy 
and demonstrated comparable outcomes [15]. Advances 
in reproductive technologies have provided opportunities 
for biological children to women with MRKH syndrome 
through in vitro fertilization (IVF) of gestational carri-
ers and uterine transplant. However, limited data exist 
on transgenerational inheritance patterns of the MRKH 
syndrome related to assisted reproduction, and these 
opportunities pose unanswered questions regarding ge-
netic transmission of the condition to female biological 
offspring of women with MRKH syndrome. A recent 
systematic literature review reported on 125 women with 
MRKH syndrome undergoing 369 cycles of IVF with 
gestational surrogacy and delivering 71 newborns [16]. 
This review did not provide information on the genetic 
outcomes in the offspring [16]. Uterine transplant, albeit 
still experimental, gives women with MRKH syndrome 
an option to carry a pregnancy with a biological child 
[17]. Johannesson et al. (2021) reported on the success 
of 55% live birth rate per attempted transplant, and 79% 
live birth rate per technically successful transplant [18]. 
The authors described that all female neonates were born 
without congenital anomalies but did not specify whether 
uterine or renal anomalies were evaluated in seven female 
neonates [18]. That notwithstanding, increasing accessi-
bility to fertility treatment options may lead to utilization 
of prenatal diagnostics such as preimplantation genetic 
testing for single gene / monogenic disorders (PGT-M) 
or PGT for chromosome structural rearrangements (PGT-
SR) in the future for women with MRKH syndrome 
desiring to have biological children [19,20]. Limited 
evidence is available regarding the inheritance of urogen-
ital anomalies in the biological children of women with 
MRKH syndrome who underwent surrogacy or uterine 
transplant. A survey of IVF programs performing surro-
gate procedures for women with congenital absence of 
the uterus and vagina failed to find genetic transmission 
of MRKH syndrome in 17 female children [21]. Nonethe-
less, clinicians caring for women with MRKH syndrome 
may have an obligation to inform their patients of factors 
affecting transmission of the condition as technology ad-
vances and options of having a biological child become 
more accessible. The impacts of environmental factors 
should be ascertained and considered as well.

In this review, we explore the embryogenesis of or-
gan systems affected by MRKH syndrome and discuss 
the roles that candidate genes and environmental factors 
may play during their development.
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EARLY DEVELOPMENT OF MESODERMAL 
TISSUES

Tissues affected by MRKH syndrome share common 
embryonic origin and genetic programs. Proper develop-
ment of the mesoderm is critical as the reproductive tract, 
kidneys, skeleton, and heart – the organs most commonly 
affected by MRKH – all originate from this germ layer. 
Additionally, early differentiation of these organs are 
mostly regulated by the same main pathways, including 
WNT [22], bone morphogenetic proteins (BMP) [23], 
and fibroblast growth factor (FGF) [24]. Therefore, 
perturbations disrupting early events during mesodermal 
development could involve multiple tissue primordia or 
include signaling factors that are necessary for the cor-
rect formation of more than one organ. Genetic variations 
involving these pathways need particular attention and 
could explain, at least partially, complex presentations 
like MRKH syndrome type II.

During gastrulation, activation of Tcf-3 by β-catenin 
is a key event that activates specific pathways driving 

mesoderm differentiation into paraxial, intermediate, and 
lateral mesoderm [25] (Figure 1). The paraxial mesoderm 
(PM) gives rise to muscles and most of the skeleton. The 
entire urogenital system, including the reproductive tract 
and the kidneys, derives from the intermediate mesoderm 
(IM). Finally, the lateral mesoderm (LM) differentiates 
into the heart, vascular system, smooth muscles, and 
skeleton of the limbs [26]. Mesoderm differentiation is a 
complex process requiring the coordinated and balanced 
expression of several genes. In addition to WNT/β-caten-
in signaling, several other factors play fundamental roles 
in regulating the specification and development of the 
mesodermal germ layer into its main components. Low 
levels of BMP drive IM development and inhibit the ex-
pression of PM genes. Conversely, BMP is expressed at 
high levels in the LM, ensuring its development while re-
pressing IM-specific gene expression [27]. It is believed 
that the gradient of BMP signaling causes the differential 
expression of specific Fox factors acting as effectors of 
mesodermal patterning [28]. LM is specified by Foxf1 
expression, whereas high and low levels of Foxc1 and 

Figure 1. Molecular regulation of mesodermal patterning. β-catenin induces TCF-3, which regulates the expression 
of transcription factors and regulatory proteins including Pax3,7, Bmp4, and Wnt1,3a). These signals lead to the 
differentiation of the three main components, lateral mesoderm, intermediate mesoderm, and paraxial mesoderm. 
Expression of VEGF in the lateral mesoderm (LM) initiates progenitor cell specification for the development of the 
heart, blood vessels, limbs and mesenchymal cells. BMP4/FGF3 signaling from the LM stimulates TGF-β/Notch 
signaling, which activates Wnt3a expression in the intermediate mesoderm driving urogenital system and adrenal gland 
development. Expression of Wnt1,3a from the neural tube upregulates Pax1,3 and MyoD in the paraxial mesoderm. 
Pax1,3 and MyoD stimulate SHH/NOTCH and RA/FGF-8 signaling to differentiate the paraxial mesoderm into cartilage, 
tendons, skeletal muscles, and endothelial cells.
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following section. The WDs form mesonephric tubules 
in the adjacent mesonephric mesenchyme. In several 
mammalian species, these tubules perform the functions 
of an embryonic kidney. In humans, this occurs only for 
a few weeks before the caudal portion of the WDs gives 
rise to the ureteric bud (UB), which invades the surround-
ing mesenchyme and forms the metanephros, the future 
permanent kidneys [33]. The WNT/β-catenin pathway 
plays a critical role in WD development and is necessary 
to maintain the WDs epithelium in a precursor state [34]. 
Wnt4 is expressed in the metanephric mesenchyme and 
acts as an inducer of mesenchymal-to-epithelial tran-
sition required for kidney development [35] (Figure 2). 
Both deletion and overexpression of a stabilized form 
of β-catenin result in urogenital anomalies ranging from 
kidney hypoplasia to agenesis [36]. Downstream of 
WNT/β-catenin, a network of effector factors play criti-
cal roles in urogenital system development [7]. Pax2 and 
Pax8 expression ensure renal lineage specification and 
survival [37]. PAX2 induces the expression of critical 
transcription factors including Lxh1, which is required for 

Foxc2 determine the development of PM and IM, respec-
tively. In addition, the FGF pathway is a critical regulator 
of embryonic segmentation in vertebrates [29]. FGF 
factors establish a posterior-to-anterior concentration 
gradient, which induces cell fate and provides positional 
information in the presomitic mesoderm (PSM) [30]. In 
the PM, FGF controls the maturation of paraxial cells into 
segmented tissue [31].

DEVELOPMENT OF THE RENAL SYSTEM

The first event during the development of the genito-
urinary tract is the formation of a ductal system forming 
the primordium of the future urinary system. This starts 
with the emergence of the pronephric duct at the end of 
the third week of gestation in humans and embryonic day 
8 (E8.0) in the mouse. These ducts migrate caudally to 
form the Wolffian ducts (WDs) around gestational week 
4 in humans and E8.5 in the mouse [32]. Development 
of the WD is a necessary event for the differentiation of 
the female reproductive tract as it will be discussed in the 

Figure 2. Development of the embryonic kidneys. The pronephric ducts are primordial ducts forming from the 
intermediate mesoderm. They extend caudally forming the Wolffian ducts, which invade the mesonephric mesenchyme 
and give origin to the mesonephric tubules. In some species, these tubules transiently assume excretory functions 
until the ureteric buds branch out into the metanephric mesenchyme and develop into the metanephros, or permanent 
kidneys.
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be independent of the WDs. However, the presence of the 
WDs is necessary for MD elongation [46]. Although it 
was initially believed that WDs donated cells to the MDs 
during development [47], it has been established that the 
WDs mainly act as a guide during this process [48]. By 
E13.5, the MD development is completed, and the two 
ducts meet at the urogenital sinus.

Further differentiation of WDs and MDs into 
sex-specific reproductive tracts depends on gonadal de-
velopment (Figure 4). In the male, the Sry gene on the Y 
chromosome triggers a signaling cascade leading to the 
development of testes (reviewed by [49]). These produce 
testosterone, stimulating WD differentiation into the male 
reproductive tract, and anti-Müllerian hormone (AMH), 
which causes MD degeneration [50]. In the female, the 
absence of Sry results in the development of the ovaries 
by the action of specific genes including Foxl2 and Wnt4 
[51]. The lack of testosterone and AMH causes regression 
of the WDs and further differentiation of the MDs into 
the female reproductive tract. The anterior regions of the 
MDs develop into the oviducts and the uterus, whereas 
the caudal portions fuse at the urogenital sinus to form 
the uterovaginal duct, giving rise to the cervix and the 
upper vagina [45].

The genetic program regulating the development of 
the female reproductive tract is still poorly characterized. 
The WNT pathway through the stabilization of β-catenin 

WD elongation and the formation of tubular structures in 
the developing kidney [38] and Emx2, which regulates 
successful kidney morphogenesis [39]. Expression of 
Eya1, Wt1, and Six2 is also critical for the maintenance 
of the ureteric bud [40]. In addition, GATA3 and the ret-
inoic acid (RA) regulate ureter budding by inducing the 
expression of the Ret receptor, resulting in the fusion of 
the nephric ducts at the cloaca [41].

DEVELOPMENT OF THE FEMALE 
REPRODUCTIVE TRACT

Following WD development, the Mullerian ducts 
(MDs) form in a process characterized by three main 
but poorly understood phases [42] (Figure 3). The first is 
initiation and begins at E11.5 through activation of BMP 
signaling and the induction of Pax2 and Pax8 expression 
in the cranial coelomic epithelium adjacent to the WDs 
[43]. The BMP/PAX2 axis together with FGF signaling 
activates the expression of the transcription factor Lxh1 
in the coelomic epithelium stimulating the specification 
of MD epithelial cells [44]. In the second phase, invag-
ination, LXH1-positive cells invade the mesonephric 
mesenchyme to form the nascent Müllerian duct [45]. 
Elongation is the third phase and is regulated by induc-
tive factors coming from the WD including WNT4 and 
WNT9B [45]. Initiation and invagination of MDs seem to 

Figure 3. Phases of early development of the Müllerian ducts. During specification, BMP signaling stimulates the 
expression of Pax2 in coelomic epithelial cells (precursors of MD epithelial cells, (red)). WD-derived inductive signaling 
stimulates fibroblast growth factor (FGF) signaling in the Pax2-positive cells to activate the expression of LXH1 and 
commit their fate to Müllerian duct development. During invagination, Pax2/LXH1 positive Müllerian epithelium (ME) 
invaginates into the mesonephric mesenchyme (MM) by WNT4 signaling from the MM. In the elongation phase, WD-
derived WNT9B signaling guides posterior elongation of the nascent MD to the urogenital sinus.
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cervix and upper vagina [57]. Ablation of either Hoxa10 
or Hoxa11 leads to homeotic transformation of the uter-
us to oviducts, whereas knockout of Hoxa13 results in 
agenesis of the caudal portion of the MD. In addition, 
Hoxa13+/-;Hoxd13-/- compound mutation leads to homeot-
ic transformation of the cervix into uterus [58].

DEVELOPMENT OF THE SKELETAL 
SYSTEM

Several pathways involved in the development of the 
urogenital system also regulate skeletogenesis. The PM 
undergoes a series of events leading to the conversion of 
a seemingly uniform population of mesenchymal cells 
into distinct clusters, or somites that will later differen-
tiate into muscles, connective tissues, and bones [59]. 
Somitogenesis is a cell-autonomous process regulated 
by a network of finely synchronized factors. NOTCH, 
FGF, and WNT pathways induce an oscillating wave of 
signaling activity that triggers cells in the posterior end of 

plays a central role during the initial formation of both 
ducts as well as their development into definitive tracts 
[52]. The WNT/β-catenin pathway is expressed in both 
the epithelium and the mesenchyme of the MDs [53], and 
several members have been shown to be critical for MD 
development [54,55]. Wnt4-null female mice develop 
normal WDs, but they do not develop MDs, suggesting a 
specific role for MD initiation [54]. Conversely, ablation 
of Wnt5 results in defective elongation of the developing 
MDs and lack of endometrial glands [56]. In addition, 
the incomplete demarcation between the vagina, uterus, 
and oviduct as well as lack of uterine glands and myo-
metrial aberrations have been reported in Wnt7a knock-
out female mice [55]. Another group of factors critically 
important for the differentiation of the MDs is the family 
of Hox genes, which show a characteristic expression 
pattern along the female reproductive tract. Hoxa9 is 
expressed in the oviduct, Hoxa10 in the mesenchyme 
of the uterus, Hoxa11 in the posterior uterus and cervix, 
and Hoxa13 is the most caudal with expression in the 

Figure 4. Molecular mechanism of sex differentiation. Before sex determination, embryos have undifferentiated, or 
bipotential gonads and both MDs and WDs. In the male, the Y-linked SRY protein interacts with steroidogenic factor-1 
(SF-1) to increase the expression levels of Sox9. This drives the differentiation of Sertoli cells and Leydig cells within the 
testes. Sertoli cells produce anti-Müllerian hormone (AMH) to stimulate MD regression, whereas Leydig cells produce 
testosterone stabilizing WD development through signaling including WNT/β-catenin. In the female, expression of 
Foxl2 inhibits the expression of Sox9. As the gonads develop into ovaries and male factors are not produced, the 
WDs degenerates and the MDs develop into the female reproductive tract under the action of several factors including 
WNT7A, and members of the HOX family.
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to improve timely and accurate diagnosis and optimize 
clinical management.

GENETIC ETIOLOGIES OF MRKH 
SYNDROME

Several candidate genes have been proposed as 
result of genetic analyses in women affected by MRKH 
syndrome or developmental studies in animal models 
[73]. Here we focus on a selected few whose fundamental 
role in the development of the urogenital tract has been 
established – mostly in mouse models or that have been 
recently identified representing potential promising can-
didates [7,55,75,76] (Table 1).

WNT Genes
Located on 1p36.12, WNT4 encodes for a secreted 

protein regulating TCF-dependent signaling [77]. During 
embryonic development, WNT4 has important morpho-
genic roles regulating cell fate and patterning processes 
[78]. Loss-of-function mutations of WNT4 are associated 
with 46,XX sex reversal, kidneys dysgenesis, and Mülle-
rian aplasia [79]. In addition, variations within exon 1 
of WNT4 have been reported in MRKH syndrome [80]. 
However, some investigators have proposed WNT4 defi-
ciency as a presentation distinct from the classic MRKH 
syndrome due to the feature of hyperandrogenism [80].

An additional factor, Wnt5a is involved in several 
developmental processes through the activation or inhi-
bition of WNT/β-catenin signaling pathways [81]. Wn-
t5a plays critical roles in the paraxial mesoderm during 
somitogenesis regulating proliferation and patterning 
[82]. During MD development, Wnt5a is necessary for 
posterior elongation of the developing reproductive tract 
and its ablation results in vaginal agenesis [56]. To date, 
no WNT5A mutations have been found in patients with 
MRKH syndrome [83]. However, specific deletion of 
Wnt5a in the MD mesenchyme caused partial Müllerian 
agenesis in a mouse model [84].

Wnt7a participates in several developmental pro-
cesses mainly through the canonical WNT/β-catenin sig-
naling pathway [85]. Wnt7a is specifically expressed in 
the epithelial cells of the MD and plays key roles during 
its development [86]. This factor is involved in the in-
duction of cell polarity during the differentiation of the 
female reproductive tract and plays critical roles in uter-
ine smooth muscle patterning and the maintenance of the 
uterine function [87]. However, a molecular analysis of 
11 MRKH syndrome patients did not reveal pathogenetic 
variations of WNT7A, suggesting a lack of association 
[88]. Although the sample size in this study was small, 
mutations of WNT7A have not been reported in MRKH 
syndrome to date.

Further, Wnt9b is expressed in the inductive epithe-

each presumptive somite to undergo mesenchymal-to-ep-
ithelial transition [60]. As a result, somite boundaries are 
established and somites bud off [61].

The fate of each developing somite is determined 
by its position along the anterior-posterior axis [62], a 
process mainly controlled by the Hox genes. Despite this 
rigid specification, cells within each somite retain a high 
degree of plasticity until late somitogenesis [63], and full 
commitment to a particular cell lineage is only achieved 
after segmentation when somites are surrounded by a 
layer of epithelial cells [64].

The differentiation of sclerotomes, the somites that 
will become skeletal tissue, is regulated by a network of 
interacting factors including WNT and BMP proteins, 
PAX1/9, RA, and HOX members [65,66]. Mesenchymal 
organization involved in intervertebral cartilage matura-
tion is regulated by FOXL2 and SOX9 through epitheli-
al-to-mesenchymal (EMT) transition [67]. In the lateral 
mesoderm, EMT processes induce Wnt7a and Sox9 ex-
pression, which activate Runx2 and drive mesenchymal 
condensation to form limb buds [68].

Finally, specification, migration, and differentiation 
of neural crest cells (NCC), which form cranial bones and 
cardiac structures, are also regulated by WNT, BMP, and 
FGF factors [69]. These proteins induce the expression 
of Pax3/7, Dlx5, and Msx1/2, which in turn fine tune 
Wnt, Bmp, and Fgf gene expression through a feedback 
mechanism [69].

PROPOSED ETIOLOGIES OF MRKH 
SYNDROME

MRKH syndrome is a complex and multifactorial 
condition, and the study of its etiology has been hindered 
by small cohort sizes, poor standardization, and lack 
of functional validation. Familial cases are usually ex-
plained by an autosomal dominant pattern of inheritance, 
characterized by incomplete penetrance and variable ex-
pressivity [70]. One issue limiting our understanding of 
the genetics of MRKH syndrome is the poor investigation 
of family members alongside affected women, limiting 
the power of genetic analysis. A second challenge is the 
possibility of mosaicisms [71], which could account for, 
at least partially, discrepancies between mouse and hu-
man variants in affecting MD development [72]. Thirdly, 
the candidate gene approach used so far provides limited 
information without functional genomic analysis, which 
is currently severely lacking [73]. Finally, monozygotic 
twins with discordant MRKH syndrome phenotypes 
suggest environmental contributions that may play a role, 
either alone, or in combination with genetic predisposi-
tion. However, research in this space is limited [74]. As 
a result, the etiology of MRKH syndrome remains unex-
plained. More advanced research strategies are required 
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an important inhibitor of the canonical WNT/β-catenin 
pathway, and single nucleotide and copy number variants 
have been found in MRKH syndrome [73,94]. However, 
its specific role in MD development remains unclear.

Homeobox Genes
The LHX1 gene is located in 17q12 and encodes 

for a transcription factor critical for the development of 
the urogenital systems [95]. In the mouse, MD-specific 
knockout of Lhx1 causes disruption of MD development 
and consequent uterine hypoplasia [95]. Deletion of 
17q12 is one of the most frequent chromosomal rear-
rangements in MRKH syndrome and rare point mutations 
have also been reported [10].

HNF1β is another member of the homeodomain-con-
taining superfamily of transcription factors and together 
with LXH1 is located in 17q12. During embryogenesis, 
it is involved in the development of several organs in-
cluding the liver, the intestine, the kidney, and the repro-

lial primordia within the mesonephric and metanephric 
kidneys, and the Müllerian ducts [89]. Genetic analysis 
in animal models has shown that Wnt9b is required for 
the caudal extension of the MDs and that Wnt9b-/- mice 
lack reproductive ducts [89]. Of note, exome sequencing 
analysis conducted in 442 MRKH syndrome patients and 
941 controls revealed loss-of-function of Wnt9b in three 
of the cases and five of the controls [75].

A fundamental role in the canonical WNT pathway 
is played by the catenin beta 1 (Ctnnb1) gene [90]. Upon 
stabilization by WNT signaling, CTNNB1 accumulates 
in the nucleus and acts as a coactivator with TCF/LEF 
proteins of downstream genes [91]. In the absence of 
WNT, CTNNB1 undergoes ubiquitination for proteasome 
degradation by a multiprotein destruction complex [92]. 
Due to its critical role in MD development, CTNNB1 has 
been suggested as a candidate gene for MRKH syndrome, 
but causative mutations have yet to be identified [22,93].

Although not a member of the WNT genes, Lrp10 is 

Table 1. Genes Involved in the Development of the Female Reproductive Tract from Studies in 
Mouse Models, and Candidate Gene Variations Found in MRKH Syndrome

Gene Murine FRT phenotype Variants in MRKH References
WNT4 Kidney dysgenesis, FRT agenesis p.L12P;p.R83C [80]
WNT5A Vaginal agenesis, absence of uterine 

glands
- [56,83]

WNT7A Homeotic transformation of oviduct to 
uterus and uterus to vagina

- [86,88]

WNT9B FRT dysgenesis p.Q326Ter [75]
CTNNB1 Uterine hypoplasia - [91,92]
LRP10 - dup 14q11.2;p.D419N [73,94]
LHX1 Uterine hypoplasia del 17q12 [10,95]
HNF1B - del 17q12;p.C1027T [98,99]
HOXA10 Homeotic transformation of uterus to 

oviduct
p.Y57C [101,103,109]

HOXA11 Partial homeotic transformation of uter-
us to oviduct

- [107,110]

EMX2 Agenesis of kidneys and FRT p.E142X [111,113]
TBX6 - del 16p11.2, c.621+1G>A [splice donor] [75]
SHOX - dup PAR1 region containing SHOX; dup of 

CNE-2 enhancer
[121]

PRKX - dup Xp22.33 [122]
PAX8 Dysgenesis of FRT del 2q12.1q14.1, p.V53AfsTer24 , 

c.25+1G>T [splice donor], p.Y66TfsTer10, 
p.R108Ter, p.S181F, p.V89A, p.Ser79Cys

[75,127]

GREB1L Agenesis of kidney and FTR p.Q743Rfs*10], p.C646R, p.V1324Lfs*34, 
p.E93K, p.W235C

[7,76,128]

DACH1/2 Agenesis of FRT - [129]
DOCK4 p.V770M; dup 7q31.1 [73,131]

FRT: female reproductive tract
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the regulation of somitogenesis by mediating Notch and 
Mesp2 signaling [116]. In addition, TBX6 is involved in 
the WNT/β-catenin pathway to regulate the expression 
of Dll1 during presomitic mesoderm patterning [117]. 
CNVs of TBX6 have been reported in several Müllerian 
anomalies including MRKH syndrome [118].

The homeobox gene SHOX is located in the pseu-
doautosomal region 1 (PAR1) of the X- (Xp22.33) and 
Y-chromosomes (Yp11.32) [119]. It is involved in sex 
and skeletal development and SHOX haploinsufficiency 
is associated with short stature in Turner syndrome [120]. 
In vitro transfection studies have suggested a potential 
role for SHOX, possibly following regulation by protein 
kinase X, a gene contained in a novel microduplication at 
Xp22.33 [121,122]. However, the contribution of SHOX 
variations to Müllerian anomalies is not clear and several 
studies have not found causative relationships [123]. 
Nonetheless, partial duplications of PAR1 containing 
SHOX were identified in 5 out of 30 women affected by 
MRKH syndrome, and a duplication of the CNE-2 en-
hancer was found in a patient in a cohort of 36 MRKH 
cases [121,124]. PAX8 is located in 2q14.1 and is a mem-
ber of the paired box (Pax) family of transcription factors. 
In human, PAX8 directly regulates WT1 expression by 
binding to its promoter [125]. Alongside PAX2, PAX8 is 
involved in inducing the mesenchymal-epithelial transi-
tions required for pronephric specification and nephric 
duct formation [37]. In addition, PAX8 is expressed in 
normal and neoplastic Müllerian tissues, and has been 
proposed as an epithelial biomarker for Müllerian tumors 
[126]. Microdeletion of 2q12.1q14.1 involving PAX8 has 
been found in two cases of MRKH syndrome associat-
ed with hypothyroidism, suggesting a possible role in 
MRKH syndrome especially in combination with thyroid 
dysfunction [127].

Additional Candidate Genes
The growth regulation by estrogen in breast cancer 

1-like gene (GREB1L) is an androgen-regulated factor 
and a co-activator of the retinoic acid receptor (RAR). 
GREB1L has been reported as one of the most promising 
candidate genes of MRKH syndrome (reviewed by [7]). 
Due to its role in RAR activation, expression levels of 
GREB1L are very critical on renal system cellular differ-
entiation, morphogenesis, and homeostasis in vertebrates 
[7]. Of note, variants of GREB1L have been reported in 
both sporadic and familial MRKH syndrome human pa-
tients [76] including a three-generation family of MRKH 
syndrome propositae [128]. In addition, variations of 
GREB1L have also been reported in isolated human cases 
of deafness and bilateral renal agenesis [7], which are 
comorbidities of MRKH type 2.

DACH2 is a transcription factor that functions 
redundantly with DACH1 during MD development. 

ductive tract [96]. Hhf1β has critical functions for kidney 
development regulating cell polarity and patterning of the 
collecting ducts [97]. HNF1β expression is also required 
for renal tubule regeneration in acute kidney injury repair 
[98]. Mutations of HNF1β gene have been reported in 
congenital anomalies of the kidney and the urinary tract 
[99].

Several Hoxa genes play fundamental roles in the 
development of the female reproductive tract. Located 
in 7q15.2, HOXA10 regulates morphogenesis, segmen-
tation, and differentiation processes during development 
[100]. In mice, Hoxa10 loss-of-function causes anteriorly 
directed homeotic transformations of the uterus [101]. In 
addition, Hoxa10 is expressed in the uterus during the 
peri-implantation period and its mutation causes a re-
duction in fertility [102]. A heterozygous Y57C variation 
was found in a genetic study of women with Müllerian 
anomalies [103]. HOXA11 also regulates patterning and 
cell positional memory along the anterior-posterior axis 
ensuring proper organ morphogenesis [104]. In com-
bination with HOXD11, HOXA11 controls branching 
processes during kidney development, and chondrocyte 
differentiation during skeletogenesis [105,106]. Hoxa11 
is expressed in the MD mesenchymal cells and regulates 
stromal cell proliferation [107]. Hoxa11 null mice dis-
play a partial homeotic transformation characterized by 
a shorter uterus lacking glands [108]. In the adult uterus, 
Hoxa11 is expressed in stromal cells regulating decidu-
alization and glandular differentiation during pregnancy 
[107]. In humans, a missense mutation in HOXA11 was 
found to be associated with septate uterus, but it is not 
clear if variations of this gene play a significant role in 
Müllerian anomalies [109,110].

An additional member of this family, Emx2 is ex-
pressed in the epithelial components of WD, MD, ureter-
ic buds, and also in the gonads before sex determination 
[39,111,112] Ablation of Emx2 causes the degeneration 
of WDs shortly after their formation resulting in failure of 
the ureteric bud to invade the metanephric mesenchyme. 
Consequently, Emx2 null mice lack reproductive tracts 
and gonads, and die perinatally due to kidney agenesis 
[39,111,112]. It has been found that Emx2 is regulated 
by PAX2, and compound heterozygous mutations of both 
genes cause urinary tract anomalies [111,112]. A novel 
mutation of EMX2 has been found associated with uter-
us didelphys, suggesting a potential role of the gene in 
regulating Müllerian fusion during uterine development 
[113].

Rearrangements involving 16p11.2 are among the 
most frequent chromosomal aberrations found in MRKH 
syndrome. This region includes TBX6, encoding a tran-
scription factor with critical roles in controlling cell 
fate determination [114]. Tbx6 is involved in the spec-
ification of paraxial mesoderm structures [115], and in 
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doses of DES significantly reduced the uterine respon-
siveness to estrogen [136]. In a mouse model, Hoxa10 
was found to be repressed following administration of 
DES in utero [137]. Most importantly, a retrospective 
study found lower pregnancy rates, higher preterm de-
liveries, and higher spontaneous abortions in women 
exposed to DES in utero compared to women who were 
not exposed to DES [138].

Organotins
Organotins are compounds containing covalently 

bonded tin atoms. They are usually used in the produc-
tion of pesticides and are considered to be biodegradable 
[139]. However, organotins have been also detected in 
seafood, raising concern of potential health risks [140]. 
In several marine species, organotins were shown to im-
pair growth, disrupt embryonic development, and induce 
masculinization in females [140]. In the rat, organotins 
were shown to activate the retinoid X receptor (RXR), 
a critical factor in the RA signaling pathway regulating 
anteroposterior patterning and MD development. It has 
been suggested that these compounds may act as EDCs 
affecting pregnancy and uterine development [141].

Phthalate Esters
Phthalates are organic compounds mainly used as 

plasticizers and are among the most persistent organic 
pollutants in the environment [142]. In particular, both 
the EPA and the Chinese Environment Monitoring Centre 
raised health concerns over some of these compounds 
including the bis(2-ethylhexyl) phthalate (DEHP) [142]. 
In rats, fetal exposure to phthalates during the time of sex 
differentiation induced reproductive tract malformations 
similar to testicular dysgenesis in humans [143]. This 
phenomenon led to the term “phthalate syndrome” to 
describe phthalate-induced reproductive defects in rodent 
male offspring. In a rat model, in utero exposure to a mix-
ture of phthalates containing butyl benzyl phthalate, dib-
utyl phthalate, diisobutyl phthalate, and DEHP has been 
found to induce the absence of vaginal opening and other 
uterine malformations similar to MRKH syndrome [144].

Methoxychlor
Methoxychlor (MXC) is an organochlorine pesticide 

that was used as replacement for dichlorodiphenyltrichlo-
roethane (DDT) and is one of the most studied EDCs. 
Although MXC is banned for use in the United States, 
strict regulation in other countries is lacking [145]. While 
MXC itself has a low binding affinity to the estrogen re-
ceptor, its secondary metabolites (HPTE [2, 2-bis-(p-hy-
droxyphenyl)-1, 1, 1-trichloroethane] and mono-OH 
MXC) have greater estrogenic, estrogen inhibitory, and 
androgen inhibitory effects [146]. In the rat, MXC reduc-

Studies in the mouse suggested a critical role for MD 
development. Although ablation of Dach2 alone does not 
cause malformations, double Dach1/2 mutant mice show 
disruption in MD development [129]. This is likely due 
to the downregulation of key genes including Lxh1 and 
Wnt7a [129]. The WD of these mutants form normally, 
suggesting a specific role in MD formation and differen-
tiation. To date, however, no mutation of DACH2 and/
or DACH1 has been identified in women affected by 
Müllerian anomalies.

Another gene that in recent years has been found 
associated with congenital anomalies of the female repro-
ductive tract is Dock4. This membrane-associated protein 
participates in signal transduction by regulating small 
G proteins [130]. Its specific role in MD development 
has not been established but variations have been found 
in Müllerian anomalies including MRKH syndrome 
[73,131].

ENVIRONMENTAL ETIOLOGIES 
AFFECTING EMBRYONIC DEVELOPMENT

Environmental factors are believed to play a role 
in MRKH syndrome, likely through epigenetic modifi-
cations [132]. Normal MD development occurs in an 
environment free of estrogens, which are sequestered by 
α-fetoprotein (AFP) in rodents, and possibly by AFP pep-
tides in humans [133]. Endocrine-disrupting chemicals 
(EDCs) are synthetic and naturally occurring compounds 
that interfere with the endocrine system signaling [133]. 
Hundreds of EDCs have been classified by the United 
States Environmental Protection Agency (EPA) as activa-
tors or blockers of estrogen and androgen receptors [134]. 
Due to the role of estrogens and androgens in gonadal 
and reproductive tract development, EDCs could have 
important embryological effects [133]. However, despite 
increasing potential concern, more data is required to 
understand the effect of EDCs exposure on reproductive 
development and function.

Diethylstilbestrol (DES)
Diethylstilbestrol (DES) is an estrogen agonist once 

prescribed to pregnant women to prevent miscarriage, 
premature labor, and other pregnancy-related complica-
tions. However, DES was later found to cause congenital 
anomalies in the fetus. Decades of research have shown 
that exposure to DES induce epigenetic modifications 
and result in reproductive malformations in both humans 
and mice [135]. The development of human fetal repro-
ductive tracts implanted in BALB/C athymic nude mice 
was severely affected by administration of DES. In ad-
dition, stromal layering was inhibited in the upper tract, 
whereas the lower portion displayed highly glycogenated 
squamous epithelium [135]. In rats, fetal exposure to high 
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urogenital development or differentiation. Understanding 
the complexity of the developmental programs that are 
often shared among organs affected by MRKH syndrome 
requires a multidisciplinary approach that includes: 1) 
genetic testing of patients and their family members; 
2) analysis of exposure history; and, most importantly, 
3) functional validation using animal models. Novel 
approaches including whole genome/exome sequencing 
and genome editing will be instrumental in defining the 
molecular factors regulating MD development, char-
acterizing their roles, and ultimately advancing MRKH 
syndrome clinical diagnosis. Creation and utilization of 
rare diseases registries and multicenter collaborations 
will enable the capacity to conduct such studies on a large 
scale. Acquired knowledge of genetic and environmental 
factors of MRKH syndrome will allow clinicians to coun-
sel affected women who are contemplating pregnancies 
on the risk of transmission of the condition to their female 
offspring. Closing this gap between bench and bedside 
should be the ultimate goal of the above research.
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